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Kurzfassung

Die Berechnungsregeln von Spreadsheets können als Sammlung von Constraints aufgefasst
werden, die nur in eine Richtung ausgewertet werden. Oft wäre es vorteilhaft, wenn auch
die andere Richtung verwendet werden könnte (z.B.: vorgegebene Gesamtsumme, wobei
einige Posten noch variiert werden können). Denn nicht selten führt die festgelegte
Richtung der Auswertung zu einer zeitraubenden Versuch-und-Irrtum-Arbeitsweise oder
zur Eingabe redundanter (und möglicherweise falscher) Berechnungsregeln.

Um dieses Problem im Detail zu betrachten und zu bearbeiten, habe ich im Rahmen
dieser Bachelorarbeit ein web-basiertes Spreadsheet erstellt, das die Berechnungsregeln
in alle Richtungen verwendet, bzw. ein constraint-basiertes Arbeiten ermöglicht. Anhand
mehrere Beispiele wird gezeigt, dass durch diese Erweiterung Spreadsheets auch für
Probleme eingesetzt werden können, für die sie sonst ungeeignet wären.
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Abstract

Spreadsheet formulas can be seen as a collection of unidirectional constraints. Users
often want to apply the formulas in the other direction (for example, to find values that
add up to a certain sum vs. calculating the sum), which can lead to a time consuming
trial-and-error approach of finding the right values or error-prone rewriting of existing
formulas.

As part of this thesis, I developed a web-based spreadsheet that supports working with
constraints. Number of examples are presented to illustrate that addition of constraints
make spreadsheets applicable to a whole new set of problems for which they would
otherwise be unsuitable.
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CHAPTER 1
Introduction

Traditional spreadsheets can be seen as a collection of cells, arranged in a two-dimensional
matrix, that contain either a value or a formula. A value represents what is actually
displayed in a spreadsheet (a string, type of number, date etc.)1 and a formula describes
the value of a cell by transforming values of other cells or constants.

As a cell cannot simultaneously contain both a value and a formula, this makes formulas
inherently unidirectional [MPSC14]. For instance, a cell C holding the formula = A+B
computes the value of C from the values of A and B, but the user is not able to compute
the values of A and/or B by editing C.

This makes modeling some quite simple problems in a traditional spreadsheet relatively
cumbersome. Let us consider one such example used to calculate fictional sale profits
shown in fig. 1.1.

Determining how many more units need to be sold for profits to double cannot be done
by simply doubling the value in cell B5, as it would erase the previously defined formula
that established the relationship between the values in the first place.

In this case, users usually resort to what [Lel88] calls a “manual relaxation”, where various
values for B1 (Units sold) are tried until B5 (Profit) shows the right value. Alternatively,
users can rewrite the formula to =(B5+B4)/(B3-B2), which assigns a value to B1 in
terms of B5. However, as the relationships between cells in a spreadsheet get more
complex, such formula rewriting approach becomes increasingly non-trivial and error
prone.

The basic idea of a constraints-based spreadsheet is to consider both values and formulas
to be constraints—equality relationships between the cell they are defined in on one side,
and other cells or constants on the other. By using a constraint-satisfaction mechanism

1Empty cell and an error resulting from a formula that can not be evaluated can be considered as
special kind of value
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1. Introduction

A B

1 Units sold 1000

2 Material cost 5

3 Unit price 10

4 Fixed costs 2000

5 Profit = (B3-B2)*B1 - B4

A B

1 Units sold 1000

2 Material cost 5

3 Unit price 10

4 Fixed costs 2000

5 Profit 3000

Figure 1.1: A spreadsheet used to calculate fictional sale profits2

(solver) we can then determine the values for cells that satisfy these relationships. Multiple
such constraints can be defined for one cell (e.g. C = A+B; C = 400) and in addition to
equality, other relationships such as >, < or 6= between cells can be expressed.

This not only achieves bidirectionality of formulas and lets us easily solve calculations
like the one described above, but also makes it possible for such system to solve whole
class of “guessing” problems, as we will see in the presented examples.

As part of this thesis, I implemented a prototype of such spreadsheet ontop of the Z3
solver [Mic] called Lot3, to explore how the traditional spreadsheet UI can be extended
to support working with constraints.

2Samples will be presented in this form, with user input on the left and an evaluated spreadsheet on
the right

3Available online at http://try-lot.appspot.com/, source code at http://github.com/esad/Lot
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CHAPTER 2
Lot

2.1 Overview

At first glance, Lot looks like a traditional spreadsheet without formatting and other
tools that were outside of the scope of the prototype (Figure 2.1). Selection and editing
of cells work like expected: arrow keys or mouse can be used to change the selection,
double-clicking or pressing the enter key while a cell is selected lets user edit the cell
contents inline. Some other basic spreadsheet ergonomics are implemented, for example
after pressing to finish editing of a cell, the selection advances into the next row,
supporting rapid input of series of values.

Figure 2.1: Initial screen of Lot

3



2. Lot

One visible difference is the addition of the constraints sidebar, which gives an overview
of all constraints defined in a spreadsheet. Here, the user can also add new constraints
over multiple cells, for example A1+A2 = B4-B3.

After entering the spreadsheet from fig. 1.1 into Lot we obtain the same initial result. To
answer the question of how many items need to be sold for profits to double, we can now
simply remove the value in B1 and enter an additional value constraint = 6000 into B5
(Figure 2.2). Derived solution will be shown in B1:

A B

1 Units sold

2 Material cost 5

3 Unit price 10

4 Fixed costs 2000

5 Profit = (B3-B2)*B1 - B4; = 6000

A B

1 Units sold 1600

2 Material cost 5

3 Unit price 10

4 Fixed costs 2000

5 Profit 6000

Figure 2.2: Fictional sale profits spreadsheet in Lot, with an additional constraint
on profits

Note that if we try to supply a different value for B1, the set of constraints becomes
unsatisfiable and the following error message is shown:

Figure 2.3: Lot displaying a message that defined constraints cannot be satisfied

Currently, Lot is uncapable of detecting which constraints are in conflict. However, as
working in a spreadsheet is inherently incremental (cell values and constraints are entered
in a sequence), showing the error message as soon as a conflicting set of constraints is
detected is usually helpful enough for user to spot the cause of unsatisfiability.
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2.2. Constraints

2.2 Constraints
Internally, a constraint in Lot is described by the following algebraic data types1:

type Constraint = Constraint Expr Rel Expr
| PredicateConstraint Predicate (List Expr)

type Expr = Const Float | Id String | Calc Op Expr Expr
type Rel = Eq | NotEq | Lt | LtEq | Gt | GtEq
type Op = Add | Sub | Mul | Div
type Predicate = Distinct

Figure 2.4: ADTs describing the abstract syntax of a constraint in Lot

We distinguish between relational constraints and predicate constraints. A relational
constraint asserts a relationship between two expressions, described by a relational
operator such as = or >. Predicate constraint asserts a relationship between multiple
expressions, described by the predicate itself. Currently, only one such predicate named
distinct is implemented. It asserts that all supplied expressions must have a different
value. We can use it to write distinct(A1,A2,A3,A4,A5) instead of A1 != A2; A2 != A3;
A3 != A4; A4 != A5.

Constraints are entered using a syntax similar to the one for formulas in a traditional
spreadsheet. They can be entered either directly in a cell (for example, by typing =
(A1+A2)/2 into A3) or in the sidebar. When constraints are entered in the cell, a
left-side expression Id <cell-address> is assumed. In the sidebar, the left side of the
relation cannot be inferred and must be specified. Multiple constraints can be entered in
one line, separated by ;.

When user edits a cell, all the constraints with the left side of Id <cell-address> are
converted to their textual representation, with left-side expression omitted. The textual
representations are then concatenated with the delimiter ; and shown to the user for
editing.

Predicate constraints can currently only be entered in the sidebar. Future extensions
may include unary predicates such as maximize that would be meaningful in the context
of a single cell. Users could then enter !maximize in a cell to denote that the value of
that cell should be maximized.

1Listing taken directly from the implementation in the Elm programming language
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CHAPTER 3
Examples

The following examples will show how Lot can be used to solve some problems beyond
usual spreadsheet calculations.

3.1 Temperature converter
In the first example, we will write a simple temperature converter between Celsius degrees
(C), Fahrenheit degrees (F) and Kelvin (K), as described by the following equations:

C = (F − 32) ∗ 5/9
K = C + 273.15

As discussed in chapter 1, in order to convert between any two units in a conventional
spreadsheet, we would have to derive 6 separate formulas (C → F, F → C, C → K, K →
C, F → K, K → F ). We can express this more naturally in Lot, by having only two
constraints in the cells holding Celsius and Kelvin values:

A B

1 Celsius = (B2-32)*5/9

2 Fahrenheit

3 Kelvin = B1+273.15

A B

1 Celsius 0

2 Fahrenheit 32

3 Kelvin 273.15

Figure 3.1: Spreadsheet for a temperature converter

Even though we didn’t supply any values, Lot will supply initial values that satisfy the
constraints. To convert beetween temperatures, we just need to add one additional value

7



3. Examples

constraint to the source cell. For example, to convert from 451 ◦F, we just need to add
an additional B2 = 451 constraint:

A B

1 Celsius = (B2-32)*5/9

2 Fahrenheit = 451

3 Kelvin = B1+273.15

A B

1 Celsius 232.77777

2 Fahrenheit 451

3 Kelvin 505.92777

Figure 3.2: Spreadsheet for a temperature converter with Fahrenheit input

We can also check for which temperature the Celsius and the Fahrenheit scale will have
the same value:

A B

1 Celsius = (B2-32)*5/9

2 Fahrenheit = B1

3 Kelvin = B1+273.15

A B

1 Celsius -40

2 Fahrenheit -40

3 Kelvin 233.15

Figure 3.3: Spreadsheet for finding the temperature which has same Celsius and
Fahrenheit readings

3.2 Magic squares
An order-n magic square is a n× n matrix containing numbers 1 to n2, with each row,
column and main diagonal having the same sum. In this example we will use Lot to find
a 3× 3 magic square.

It should be noted that identifiers in constraints are not limited to cell references such as
A1, but can be arbitrary labels. We can use one such identifier to denote the sum that
each row, column and main diagonal should have, and use it to simplify expressing the
required constraints.

In this example, we will use sidebar to enter global constraints and make use of the
distinct predicate to assert that all cells should have different values. After entering the
constraints we arrive at the result shown in fig. 3.4.

As magic square is defined as sequence of natural numbers, we will further need to switch
the Domain to Ints in the sidebar to tell the solver to consider only integer solutions, but
this will also include negative numbers. Unfortunately, Lot currently doesn’t implement
an universal quantifier nor a predicate that would let us concisely limit the range of
values, so we’ll have to supply these manually. We arrive at the final solution in fig. 3.5.

8



3.3. Map coloring

A1+A2+A3 = S
B1+B2+B3 = S
C1+C2+C3 = S
A1+B1+C1 = S
A2+B2+C2 = S
A3+B3+C3 = S
A1+B2+C3 = S
A3+B2+C1 = S
distinct(A1,A2,A3,B1,B2,B3,C1,C2,C3)

A B C

1 -0.5 0.375 -0.625

2 -0.375 -0.25 -0.125

3 0.125 -0.875 0

Figure 3.4: Almost a magic square

Domain = Ints
A1+A2+A3 = S
B1+B2+B3 = S
C1+C2+C3 = S
A1+B1+C1 = S
A2+B2+C2 = S
A3+B3+C3 = S
A1+B2+C3 = S
A3+B2+C1 = S
distinct(A1,A2,A3,B1,B2,B3,C1,C2,C3)
A1 >= 1; A1 <= 9
A2 >= 1; A2 <= 9
A3 >= 1; A3 <= 9
B1 >= 1; B1 <= 9
B2 >= 1; B2 <= 9
B3 >= 1; B3 <= 9
C1 >= 1; C1 <= 9
C2 >= 1; C2 <= 9
C3 >= 1; C3 <= 9

A B C

1 2 7 6

2 9 5 1

3 4 3 8

Figure 3.5: Magic square

3.3 Map coloring

Map coloring problem concerns itself with coloring a map of territories with n colors,
so that no two neighbouring territories have the same color. It has been proven that
any map can be colored by at most 4 colors [Gon07]. In this example, we will use Lot
to come up with a sample coloring for the map of Austrian states and determine the
maximum number of colors needed to color this map.

Figure 3.6 shows a solution for coloring such map with 3 colors. We arrive at this
solution by starting with n = 4 and decrementing n until “Constraints cannot be satisfied”

9



3. Examples

message is displayed. The map in fig. 3.7 is obtained by applying the following coloring
function:

color(n) : {0, 1, 2} → {red, green, blue} =


red if n = 0
green if n = 1
blue if n = 2



A B

1 W

2 NÖ

3 B

4 St

5 OÖ

6 S

7 K

8 T

9 V

Domain = Ints
b1 != b2
b2 != b4; b2 != b5;
b3 != b2; b3 != b4
b4 != b5
b6 != b5; b6 != b4; b6 != b7
b8 != b6; b8 != b7; b8 != b9
b1 >= 0; b1 < n
b2 >= 0; b2 < n
b3 >= 0; b3 < n
b4 >= 0; b4 < n
b5 >= 0; b5 < n
b6 >= 0; b6 < n
b7 >= 0; b7 < n
b8 >= 0; b8 < n
b9 >= 0; b9 < n
n = 3

A B

1 W 1

2 NÖ 0

3 B 2

4 St 1

5 OÖ 2

6 S 0

7 K 2

8 T 1

9 V 0

Figure 3.6: Coloring of Austrian states for n=3

V T
S

OÖ

St

NÖ W

B

K

Figure 3.7: Coloring result (Graphics derived by the author from original
map by Andreas Griessner, published under the GFDL license)
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CHAPTER 4
Implementation

4.1 Initial considerations

I considered the following three approaches for prototype implementation:

1. Extending an existing desktop-based spreadsheet application such as Microsoft
Excel, LibreOffice Calc or web-based Google Sheets, all of which include a possibility
for developers to extend the built-in functionalities by invoking code defined in an
external module. An obvious advantage of such approach is getting the traditional
spreadsheet functionality “for free”. Familiarity of users with the interface and
broad user base would also make future usability study easier. On the other hand,
it was not clear if the extensibility offered by the APIs would be flexible enough to
support such fundamental changes and whether integrating an external solver was
possible at all. While LibreOffice supports extensions in several languages (Java,
Python, C++, LibreOffice Basic), Microsoft Excel and Google Sheets only support
extensions written in a specific language (VBA and JavaScript, respectively).

2. Modification of existing open-source spreadsheet application. While this option
would allow greater flexibility in implementation and make solver integration more
feasible, it also implied a steep learning curve to get familiar with the code base1.
Ultimatively, this option would also impose a limit on the choice of a programming
language.

3. Development of a standalone prototype. While offering most flexibility in both
choice of the programming language as well as architecture, this option would also

1LibreOffice codebase in February 2016 was more than 7 million lines of code long, according to
the data from Open Hub (https://www.openhub.net/p/libreoffice), a service that collects metrics on
various open-source projects

11
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4. Implementation

imply additional effort to implement the basic spreadsheet functions first, before
the constraints-based related features could be added on top.

I evaluated the above alternatives in terms of the following criteria:

Low barrier to entry Ability to share progress and receive early feedback from the
community and my mentor—implied not only that the prototype should be able to
run cross-platform, but it also must not involve complex installation and have no
security implications (installing unknown binaries).

Solver availability As implementing own solver was beyond the scope of this thesis,
availability of the solver and ability to integrate it into prototype was a must-have.

Flexibility Ability to efficiently implement concepts described in this thesis.

Productivity Finally, I wanted to use a programming language/environment that I felt
would be most productive choice for implementing the prototype.

The only platform where the first goal could be fully achieved was a browser-based
solution. Desktop-based alternatives meant shipping separate add-ons or binaries for
each platform that also bundled the solver together with all security implications of
such approach. A notable exception would be usage of Java or Python to implement an
extension for LibreOffice Calc in combination with a solver that compiled to JVM or had
a Python implementation.

Initial research (usage in the babelsberg-js project2 and [NON15]) indicated that it was
possible to cross-compile the Z3 solver written in C++ (and potentially other solvers) to
JavaScript using LLVM-to-Javascript compiler Emscripten [Zak11].

I opted to development of a standalone browser-based prototype that would use the
Emscripten-compiled Z3 solver, even though an integration into Google Sheets or extension
of EtherCalc3 was also a viable option. My rationale was that the flexibility and
productivity benefits of such approach would offset the additional effort needed to
implement a basic spreadsheet interface.

For the implementation, I choose the programming language Elm [CC13]. Elm is a
modern, functional, statically typed language that compiles to JavaScript and offers
well-defined interoperability with existing JavaScript code. Some of the Elm’s features,
such as the strong static type system, support for ADTs, exhaustive pattern matching,
availability of powerful parsing libraries and support for functional reactive programming
proved essential to timely development of the prototype.

2https://github.com/babelsberg/babelsberg-js/tree/master/z3/emz3
3Open-source web-based spreadsheet (https://ethercalc.net)

12
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4.2. Solver

4.2 Solver
In order to solve constraints and arithmetic expressions found in a typical spreadsheet,
as well as some less typical problems shown in Chapter 3, a solver that would be used in
Lot needed to fullfil the following criteria:

Support for both real numbers and integers

Support for non-linear arithmetic over both domains

Ability to produce models for satisfiable formulas In addition to knowing whether
the constraints can be satisifed, we also need the solver to provide us with set of
values (a model) that satisifies them

There are certain known limitations on non-linear arithmetic: it is undecidable over
integers, that is, there’s no general algorithm for solving non-linear integer equalities
[MB09]. While it is decidable over reals, it remains very expensive and for many problems
a solver will not be able to provide us with a solution.

For above criteria, SMT solvers looked very promising. SMT (Satisfiability Modulo
Theories) [MB09] concerns itself with checking satisfiability of formulas with respect to
one or more fixed background theories (such as non-linear arithmetic over reals) which
constrain the interpretation of symbols used in the formula. SMT solvers modularly
combine special purpose algorithms for each domain with boolean satisfiability.

Z3 [Mic] is a state of the art SMT solver from Microsoft Research available under an
open-source MIT license. It was an obvious choice for the implementation, as it fullfils
all of the stated criteria and additionally supports other features that could be useful
for future development, such as support for boolean arithmetic and optimization. A
standard input format for SMT solvers called SMT-LIB 2 (2 stands for second version of
the standard) is used to input the generated SMT problem into Z3. SMT-LIB features a
LISP-like syntax designed with ease of generation/parsing in mind.

An example of SMT-LIB 2 input generated for the Temperature Converter example from
chapter 3 is shown in fig. 4.1.

4.2.1 Emscripten compilation

Emscripten was used to compile the Z3 solver, written in C++, to JavaScript in order to
run it in the browser. Emscripten takes a LLVM (Low Level Virtual Machine) assembly
generated by one of the frontends (in case of the Z3, the Clang C++ compiler, but other
frontends for various languages exist as well) as an input, performs various optimizations
and outputs a low-level, optimizable subset of JavaScript called asm.js.

Z3 includes a standalone command-line executable that parses a “high-level” SMT-LIB
2 input from STDIN or a file, as well as a static C library that exposes lower-level
primitives.

13



4. Implementation

(set - option :pp - decimal true)
(declare -const b1 Real)
(declare -const b2 Real)
(declare -const b3 Real)
( assert (= b3 (+ b1 273.15)))
( assert (= b1 (/ (* (- b2 32) 5) 9)))
(check -sat)
sat
(get -value (b1 b2 b3))
((b1 0.0)(b2 32.0)(b3 (/ 5463.0 20.0)))

Figure 4.1: Generated SMT-LIB 2 input for the temperature converter example,
Z3 output shown in blue

Calling C functions from JavaScript using Emscripten is possible, but it is relatively
cumbersome and requires manual redeclaration of all exported functions. The exposed
Z3 C API functions are very low-level and it would require significant effort to generate
correct formulas from internal constraint representation in Lot using only these primitives.

With this in mind, I opted for generating SMT-LIB 2 code from internal constraint
representation, and using Emscripten-provided filesystem API to store the generated
program in a virtual input file. Invoking the Z3 command line executable is then simulated
by invoking callMain() with constructed arguments array (see fig. 4.2).

A big issue was the size of the generated JavaScript file for the Z3 command line tool.
With highest optimization settings (-O3), Emscripten generated a 17 MB JavaScript
output. On the development machine4, parsing and evaluating this file in recent versions
of Chrome and Firefox took up to 10 seconds, during which the browser was completely
unresponsive. This meant that the loading had to be made asynchronous and when Lot
is started, user is presented with a loading screen.

Compilation with highest optimization settings caused evaluation of certain SMT pro-
grams to segfault. This was probably related to memory alignment issues and non-portable
Z3 C++ code, however a thorough investigation of the cause proved to be difficult. I
noticed that older versions of Z3 (4.3.x and below) didn’t exhibit this problem, so I opted
to use an older version of the solver. This version doesn’t support optimizations and
weak constraints.

While disabling optimization helped mitigate the problem, the size of generated JavaScript
grew beyond 100 MB, making the loading process take prohibitively long (around 5
minutes).

4Late 2013 MacBook Pro, 2.6 GHz Intel Core i5 with 8 GB RAM
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4.2. Solver

var stdout = [];
var stderr = [];
z3em.fs. createDataFile ("/" , "input.smt2", program , true , true );
try {

z3em. module .print = function (str) { stdout .push(str ); }
z3em. module . printErr = function (str) { stderr .push(str );}
z3em. module . callMain (["- smt2", "/ input.smt2 "])

} catch ( exception ) {
console .error ("z3 - emscripten exception :", exception );

} finally {
z3em.fs. unlink ("/ input.smt2 ");

}
if ( stdout [0] == "sat ") {

// ...
} else if ( stdout [0] == "unsat ") {

// ...
} else {

// ....
}

Figure 4.2: Invoking Z3 command line tool from JavaScript
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CHAPTER 5
Future improvements

Due to a limited scope of my work on this thesis, Lot leaves lot of room for future
improvements. Some of the most relevant ones are listed below.

5.1 Enumerating solutions

Often a solution found by the solver is not unique. To implement enumeration of all
possible solutions (a set which can be infinite, for example in case of A1 > 0), user
interface would need to be extended with the ability to go back and forth between
solutions. It would also be helpful to inform the user of the opposite fact - whenever a
solution found is unique.

Z3 doesn’t support returning “next” solution, however a simple workaround could be
implemented. The idea is to “block” already examined solutions, by adding a set of
inequality constraints for them to the set of original constraints. This way, the solver will
either find a new solution or report unsatisfiability, in which case we have enumerated all
solutions. The same mechanism could be automatically invoked on the first solution to
check its uniqueness.

5.2 Optimization support

In most instances of problems with multiple solutions, the user is interested in a “best”
solution, which implies optimization. Optimization involves finding such solutions where
certain value is maximized or minimized. As Z3 already has support for optimization,
implementing it in Lot would be quite straightforward and would involve extending the
constraints syntax with new minimize and maximize predicates and generating the right
SMT-LIB2 assertions.
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Domain = Ints
A1+A2+A3 = S; B1+B2+B3 = S
B1+B2+B3 = S; C1+C2+C3 = S
A1+B1+C1 = S; A2+B2+C2 = S
A3+B3+C3 = S; A1+B2+C3 = S
A3+B2+C1 = S
distinct(A1,A2,A3,B1,B2,B3,C1,C2,C3)
A1 >= 1; A1 <= 9; A2 >= 1; A2 <= 9
A3 >= 1; A3 <= 9; B1 >= 1; B1 <= 9
B2 >= 1; B2 <= 9; B3 >= 1; B3 <= 9
C1 >= 1; C1 <= 9; C2 >= 1; C2 <= 9
C3 >= 1; C3 <= 9

Domain = Ints
sum(A1:A3) = s; sum(B1:B3) = s
sum(C1:C3) = s; sum(A1:C1) = s
sum(A2:C2) = s; sum(A3:C3) = s
A1+B2+C3 = s; A3+B2+C1 = s
distinct(A1:C3)
all(A1:C3, >= 1); all(A1:C3, <= 9)

Figure 5.1: Constraints used to find a 3x3 magic square rewritten to use ranges
and a universal quantifier

5.3 Ranges

In a traditional spreadsheet, ranges are used as an abbreviation for a set of neigbouring
cells. For example, range A1:C3 can be used to refer to 9 cells in columns A and C
between rows 1 and 3. As such, a range represents a matrix of values and needs to be
reduced to a scalar in order to be assigned to a cell as a value, which is usually done by
applying a built-in function such as sum().

Limited support for ranges in Lot would consist of parsing the range syntax and then
allowing ranges to be used as arguments to functions such as sum() or avg(), as well
as predicates like distinct. Another possible extension, quantifier predicates such as all
(asserting that a relation should hold for all elements of a range) and exists (at least one
element should satisfy the relation) would also support ranges. A possible application of
such syntax is shown in fig. 5.1.

A more complete implementation would involve implementing matrix algebra to support
arithmetic operations on both ranges and scalars. This would allow ranges to be freely
used anywhere in the constraint expression. In this case, both sides of a constraint would
need to reduce to a value of the same type (either two scalars or two matrices of same
dimensions). To ensure that such constraint is valid, a simple type-checking would need
to be performed.

5.4 Constraint replication

Cell replication is one of the most used features of a traditional spreadsheet. Whenever
a user copy/pastes a cell, formula references from the original cell are automatically
updated taking into account the relative locations of the dependent cells.
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5.5. Usability evaluation

As constraints can be defined over multiple cells (for instance, A1+A2+A3=s from the
magic square example), a different mechanism for replication needs to be developed that
takes into account all constraints defined on the range of cells that are being replicated.
In [Spe92], authors discuss one such approach that could be adopted for Lot.

5.5 Usability evaluation
Finally, an empirical evaluation in form of a usability study should be conducted in order
to validate assumptions about the interaction model made in this thesis.

Conducting such study may however prove difficult at the current stage, as the prototype
lacks many of the features that users presume when interacting with a spreadsheet,
such as above discussed ranges, cell replication, dependency visualization and rich set of
built-in functions.
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CHAPTER 6
Related work

In this chapter, some of the early efforts at extending the spreadsheet with constraints
are presented, as well as some alternative approaches such as bidirectional formulas and
deductive spreadsheets. A more complete overview of the field can be found in [KV07]
and [Cer13].

6.1 LogiCalc
Earliest attempts at extending the spreadsheet model involved combining spreadsheets
with logic programming. First such spreadsheet was LogiCalc [Kri88], developed in
1983-88 by Frank Kriwazek as part of his Master thesis. LogiCalc was quite limited in
functionality and could actually be considered more of a spreadsheet interface to define
and query Prolog facts. Spreadsheet regions with values could be mapped to set of facts
(for example, numbers in two columns could be mapped to a days-in-month/2 relation).
Users could declare constraints over defined relations using cells as variables to query the
facts. For example, declaring:

father-of(A1,A2). father-of(A3,A2). father-of(A4,A3).

then supplying value for any of the A1..A4 cells would supply values for the other cells
that satisfied the constraints.

While constraints could also involve arithmetic predicates such as Times(X,Y,Z) (meaning
X ∗ Y = Z), such predicates weren’t fully bidirectional as they required at least two
instantiated variables (i.e. Times(A1,A2,4) could not find any solution).

6.2 PERPLEX
PERPLEX [Spe92] (fig. 6.1) supported working with constraints that were defined using
Prolog-like predicates (infix notation was also supported, but internally rewritten to
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Figure 6.1: PERPLEX used to model the temperature converter example from
chapter 3

(Source: Screenshot)

predicates). The built-in predicates had defined set of legal input-output modes for their
arguments. For example, the Plus(X Y Z) predicate (meaning X + Y = Z) was defined
using three functions:

f(X, Y ) = X + Y for mode (in in out)
f(X, Z) = Z −X for mode (in out in)
f(Y, Z) = Z − Y for mode (out in in)

This mode information was used to determine the order of evaluation of constraints,
which also meant that a constraint Plus(A1 A1 2) could not be used to determine the
solution A1 = 1. In such cases, another predicate called Between could be used to supply
a range of possible values for an input, much like a for-loop in an imperative language.

PERPLEX also allowed users to define their own predicates in terms of the built-in ones,
using Programming by Example [Hal84]: after a user defined relationship between cells in
a spreadsheet using number of existing predicates, this relation could be saved as a new
predicate, with automatically inferred input-output modes.

6.3 Equalizer
The constraints-based spreadsheet that Marc Stadelmann described in his Masters thesis
[Sta93] was one of the first implementations that used an external solver. His prototype
(called Equalizer as it supported only equality constraints) was implemented ontop of a
commercial Lotus Improv spreadsheet and used the Mathematica software package for
constraint solving.

Constraints are entered in a separate window outside the grid of cells, which was
influenced by the separation between the data and computations already enforced in
Improv [ABE07].
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6.4. Other systems

Improv pioneered a new addressing model of “named ranges” in which columns and rows
of the spreadsheet grid can be hierarchically grouped and assigned names. Equalizer
made use of named ranges by considering them as vectors and defining operations on
vectors, allowing for more expressive constraint definitions.

Figure 6.2: Equalizer used to model an electric circuit. Source: [Sta93]

6.4 Other systems
Extension of logic programming with constraints satisfaction, called constraints logic
programming (CLP) [JL87], lead to number of implementations for specific classes of
constraints, called CLP(X) where X stands for the constraint class (finite domains,
arithmetic, linear etc.).

One such class, the CLP(fd) - with variables ranging over finite domains - has particular
real-life applicability and has lead to number of spreadsheet extensions based on it, such
as ExSched [CYG07], aimed at scheduling and timetabling problems and CsSolver
[FFJ+03], developed with a particular use-case of on-site sales configuration and quotation
in mind, both implemented on top of Microsoft Excel.

6.5 Bidirectional formulas
In [MPSC14], authors describe a framework based on concept of lenses [Fos10] - well-
behaved bidirectional transformations - to synthesize reverse formulas from the ones input
by the user. Implemented on top of Microsoft Excel, the add-in intercepts values entered
by the user in cells holding a bidirectionalized formula, then applies the generated inverse
formula to find the values for source cells and finally updates those cells instead. Authors
claim that such approach is 1) intuitive, 2) not affecting the usual behavior of existing
spreadsheets (conservative) and 3) presenting the new features using terminology that
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(a) Base relations

(b) Deduced relations

Figure 6.3: Deducing relations in NEXCEL using Datalog rules. Source: [Cer13]

users are already familiar with (transparent) and see is as preferable to a constraints-based
system.

6.6 Deductive spreadsheets
While some of the above systems use logic programming to implement the built-in
functions and actual constraint solving, full power of logic programming - having the
ability to specify and manipulate rules that can be used to deduce new facts - is not
made available to the user.

[Cer13] calls spreadsheet extensions that allow Prolog-style computation of new values
from existing values “deductive spreadsheets”. The implementation described by Cervesato
(fig. 6.3) uses Datalog, a syntactical subset of Prolog that has some properties beneficial
in a spreadsheet-like environment, such as guaranteed termination of queries.

Other notable deductive spreadsheets include XcelLog [RRW07], also based on Datalog
and supporting working with multiple values in each cell, as well as PrediCalc [KG07],
which uses own variant of first order logic language and focuses on visualization and
resolution of inconsistent constraints.
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CHAPTER 7
Conclusion

A constraints-based spreadsheet, like the one implemented in this thesis, represents a
fundamental change to a traditional spreadsheet model. Using constraints instead of
unidirectional formulas not only increases the utility of spreadsheet as a tool for what-if
analysis, but also increases its power as a calculation tool—making it applicable to a
whole new set of problems.

Such fundamental change comes at a cost. Users need to adapt to the new model in
which cell can hold both value and a formula, and become aware of implications that
editing of cells has in the new model.

By utilizing a state-of-the-art Z3 SMT solver, we were able to profit from advances in
SMT research over the past decade and rely solely on the solver for implementation of all
arithmetics. Emscripten made it possible to compile the solver to JavaScript and run the
whole application in the browser on the client-side. This let us avoid the need to perform
roundtrips to the server for reevaluation, which might have introduced prohibitive latency
for a highly interactive application.

The modern Web, defined by HTML5, CSS3 and emergence of new languages that
compile to JavaScript, such as functional, statically typed language Elm used in this
prototype, proved to be a highly productive development environment. Unparalleled ease
of distribution (simply sharing an URL, with updated versions being available at the
same URL) proved crucial in obtaining initial feedback on the prototype.

While it demonstrates advantages of a constraints-based model, our prototype lacks almost
all other features found in a a modern spreadsheet. As implementation of these features
would require multiple man-years of effort, the next step towards real-life application
would be development of an extension for an existing spreadsheet such as Microsoft
Excel—a challenge on its own.
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