
An Infrastructure for
Adaptive Dynamic Optimization

Derek Bruening, Timothy Garnett, and Saman Amarasinghe
Laboratory for Computer Science

Massachusetts Institute of Technology

Cambridge, MA 02139

{iye,timothyg,saman}@lcs.mit.edu

Abstract

Dynamic optimization is emerging as a promising ap-
proach to overcome many of the obstacles of traditional
static compilation. But while there are a number of com-
piler infrastructures for developing static optimizations,
there are very few for developing dynamic optimizations.
We present a framework for implementing dynamic analy-
ses and optimizations. We provide an interface for build-
ing external modules, or clients, for the DynamoRIO dy-
namic code modification system. This interface abstracts
away many low-level details of the DynamoRIO runtime
system while exposing a simple and powerful, yet efficient
and lightweight, API. This is achieved by restricting opti-
mization units to linear streams of code and using adaptive
levels of detail for representing instructions. The interface
is not restricted to optimization and can be used for instru-
mentation, profiling, dynamic translation, etc.

To demonstrate the usefulness and effectiveness of our
framework, we implemented several optimizations. These
improve the performance of some applications by as much
as 40% relative to native execution. The average speedup
relative to base DynamoRIO performance is 12%.

1 Introduction

The power and reach of static analysis is diminishing
for modern software, which heavily utilizes dynamic class
loading, shared libraries, and runtime binding. Not only is
it difficult or impossible for a static compiler to analyze the
whole program, but static optimization is limited by the ac-
curacy of its predictions of runtime program behavior. Us-

Copyright c©2003 by the Institute of Electrical and Electronics Engi-
neers. Personal use of this material is permitted. However, permission to
reprint/republish this material for advertising or promotional purposes or
for creating new collective works for resale or redistribution to servers or
lists, or to reuse any copyrighted component of this work in other works
must be obtained from the IEEE.

ing profile information improves the predictions but still
falls short for programs whose behavior changes dynami-
cally. Additionally, many software vendors are hesitant to
ship binaries that are compiled with high levels of static op-
timization because they are hard to debug.

Shifting optimizations to runtime solves these problems.
Dynamic optimization allows the user to improve the per-
formance of binaries without relying on how they were
compiled. Furthermore, several types of optimizations are
best suited to a dynamic optimization framework. These in-
clude adaptive, architecture-specific, and inter-module opti-
mizations.

Adaptive optimizations require instant responses to
changes in program behavior. When performed statically, a
single profiling run is taken to be representative of the pro-
gram’s behavior. Within a dynamic optimization system,
ongoing profiling identifies which code is currently hot, al-
lowing optimizations to focus only where they will be most
effective.

Architecture-specific code transformations may be done
statically if the resulting executable is only targeting a sin-
gle processor, or by using dynamic dispatch to select among
several transformations prepared for different processors.
The first option unduly restricts the executable while the
second bloats the executable size. Performing the optimiza-
tion dynamically solves the problem by allowing the exe-
cutable to remain generic and specialize itself to the proces-
sor it happens to be running on.

Inter-module optimizations cannot be done statically in
the presence of shared and dynamically loaded libraries.
But all code is available to a dynamic optimizer, present-
ing optimizations with a view of the code that cuts across
the static units used by the compiler for optimization.

Dynamic optimizations have one significant disadvan-
tage versus static optimizations. The overhead of perform-
ing the optimization must be amortized before any improve-
ment is seen. This limits the scope of optimizations that can

be done online, and makes the efficiency of the optimiza-
tion infrastructure extremely critical. For this reason, while
there are numerous flexible and general compiler infrastruc-
tures for developing static optimizations, there are very few
for the development of dynamic optimizations.

Another important contrast with static compilation is
transparency. Unlike a static compiler optimization, a dy-
namic optimization cannot use the same memory alloca-
tion routines or input/output buffering as the application,
because the optimization’s operations are interleaved with
those of the application.

The main contribution of this paper is a framework for
implementing dynamic analyses and optimizations. The
framework is based on the DynamoRIO dynamic code
modification system. We export an interface for building
external modules, or clients, for DynamoRIO. With this
API, custom runtime code transformations are simple to
develop. Efficiency is achieved through two key princi-
ples: restricting optimization units to linear streams of code
and using adaptive levels of detail for representing instruc-
tions. Our interface provides direct support for customiz-
able traces and adaptive optimization of traces, while main-
taining transparency with respect to the application. It is
general enough to be used for non-optimization purposes,
including instrumentation, profiling, and security [23]. The
system is available to the public in binary form [16].

The paper is organized as follows. We first present in
Section 2 a description of the DynamoRIO system. Dy-
namoRIO operates on unmodified native binaries and re-
quires no special hardware or operating system support. It
is implemented for both IA-32 Windows [5] and Linux, and
is capable of running large desktop applications. Section 3
describes our optimization interface in detail, and Section 4
gives some examples of dynamic optimizations written us-
ing the interface. We give experimental results in Section 5.
We discuss two other dynamic code modification interfaces
along with other related work in Section 6.

2 DynamoRIO

Our optimization infrastructure is built on a dynamic op-
timizer called DynamoRIO. DynamoRIO is the IA-32 ver-
sion [5] of Dynamo [4]. It is implemented for both IA-32
Windows and Linux, and is capable of running large desk-
top applications.

The goal of DynamoRIO is to observe and potentially
manipulate every single application instruction prior to its
execution. The simplest way to do this is with an inter-
pretation engine. However, interpretation via emulation is
slow, especially on an architecture like IA-32 with a com-
plex instruction set, as shown in Table 1. DynamoRIO uses
a typical trick to avoid emulation overhead: it caches trans-
lations of frequently executed code so they can be directly

executed in the future.
DynamoRIO copies basic blocks (sequences of instruc-

tions ending with a single control transfer instruction) into
a code cache and executes them natively. At the end of
each block the application’s machine state must be saved
and control returned to DynamoRIO (a context switch) to
copy the next basic block. If a target basic block is al-
ready present in the code cache, and is targeted via a direct
branch, DynamoRIO links the two blocks together with a
direct jump. This avoids the cost of a subsequent context
switch.

Indirect branches cannot be linked in the same way be-
cause their targets may vary. To maintain transparency,
original program addresses must be used wherever the ap-
plication stores indirect branch targets (for example, re-
turn addresses for function calls). These addresses must be
translated into their corresponding code cache addresses in
order to jump to the target code. This translation is per-
formed as a fast hashtable lookup.

To improve the efficiency of indirect branches, and to
achieve better code layout, basic blocks that are frequently
executed in sequence are stitched together into a unit called
a trace. When connecting beyond a basic block that ends
in an indirect branch, a check is inserted to ensure that the
actual target of the branch will keep execution on the trace.
This check is much faster than the hashtable lookup, but if
the check fails the full lookup must be performed. The su-
perior code layout of traces goes a long way toward amor-
tizing the overhead of creating them and often speeds up the
program [4, 32].

A flow chart showing the operation of DynamoRIO is
presented in Figure 1. The figure concentrates on the flow
of control in and out of the code cache, which is the bottom
portion of the figure. The copied application code looks
just like the original code with the exception of its control
transfer instructions, which are shown with arrows in the
figure.

Table 1 shows the typical performance improvement of
each enhancement to the basic interpreter design. Caching
is a dramatic performance improvement, and adding direct
links is nearly as dramatic. The final steps of adding a fast
in-cache lookup for indirect branches and building traces
improve the performance significantly as well.

The Windows operating system directly invokes appli-
cation code or changes the program counter for callbacks,
exceptions, asynchronous procedure calls, setjmp, and the
SetThreadContext API routine. These types of control
flow are intercepted in order to ensure that all application
code is executed under DynamoRIO [5]. Signals on Linux
must be similarly intercepted.

DynamoRIO maintains thread-private code caches, each
separated into a basic block cache and a trace cache. It was
found that, in most multi-threaded applications, very little

2

BASIC BLOCK CACHE
non−control−flow

instructions

TRACE CACHE
non−control−flow

instructions

START basic block builder

dispatch

trace selector

context switch

indirect branch lookup indirect branch
stays on trace?

Figure 1. Flow chart of the DynamoRIO system infrastructure. Dark shading indicates application
code. Note that the context switch is simply between the code cache and DynamoRIO; application
code and DynamoRIO code all runs in the same process and address space. Dotted lines indicate
the performance-critical cases where control must leave the code cache and return to DynamoRIO.

Normalized
System Type Execution Time

crafty vpr
Emulation ˜ 300.0 ˜ 300.0
+ Basic block cache 26.1 26.0
+ Link direct branches 5.1 3.0
+ Link indirect branches 2.0 1.2
+ Traces 1.7 1.1

Table 1. Performance achieved when vari-
ous features are added to an interpreter,
measured on two of the SPEC2000 bench-
marks [34], crafty and vpr. Pure emulation
results in a slowdown factor of several hun-
dred. Successively adding caching, linking,
and traces brings the performance down dra-
matically.

code was shared between threads, so the cost of duplicat-
ing the small amount that was shared for each thread was
far outweighed by the savings of not having to synchronize
changes in the cache with all the running threads [5]. Ad-
ditionally, thread-private code caches enable thread-specific
optimizations.

In this paper we will use the term fragment to mean either
a basic block or a trace in the code cache.

3 Client Interface

DynamoRIO exports a rich Application Programming
Interface (API) to the user for building a DynamoRIO
client [16]. A DynamoRIO client is coupled with Dy-
namoRIO in order to jointly operate on an input program. In

addition to using the API, the client supplies specific hook
functions which are called by DynamoRIO.

The client interface supports the development of custom
program transformations. It hides low-level details of Dy-
namoRIO such as cache management, trace building, and
context switching, focusing only on how the application
code is modified when it is placed into the code cache.
The interface also has explicit support for maintaining trans-
parency with respect to the application.

To keep overheads down, the interface restricts all in-
struction sequences to have linear control flow and uses
adaptive levels of detail in representing instructions.

3.1 Instruction Representation

DynamoRIO operates on two kinds of code sequences:
basic blocks and traces. Both have linear control flow, with
a single entrance and potentially multiple exits, but no inter-
nal join points (all transfers of control that originate inside
must exit). Optimizations make use of the linear control
flow present in traces. The single-entry multiple-exit format
simplifies analysis algorithms, which reduces optimization
overheads.

Since DynamoRIO deals only with linear streams of
code, it represents a basic block or trace as a linked list of
instructions called an InstrList. A single instruction, or
a group of bundled un-decoded instructions, is represented
in the list by an Instr data structure.

In any system designed to manipulate machine instruc-
tions, the instruction representation is key. Ease and flex-
ibility of use have been traditional concerns for compiler
writers. Dynamic frameworks add an additional concern
for performance. Since the decoding and encoding of ma-

3

8d 34 01 8b 46 0c 2b 46 1c 0f b7 4e 08 c1 e1 07 3b c1 0f 8d a2 0a 00 00Level 0

8b 46 0c

8d 34 01

2b 46 1c

0f b7 4e 08

c1 e1 07

3b c1

0f 8d a2 0a 00 00

Level 1

Level 2

cmp

shl

movzx

sub

mov

lea

jnl

c1 e1 07

3b c1

0f 8d a2 0a 00 00

WCPAZSO

WCPAZSO

-

WCPAZSO

-

-

RSO

raw bits opcode eflags

raw bits

8b 46 0c

8d 34 01

2b 46 1c

0f b7 4e 08

raw bits

cmp

shl

movzx

sub

mov

lea

jnl

8b 46 0c

8d 34 01

2b 46 1c

0f b7 4e 08

c1 e1 07

3b c1

0f 8d a2 0a 00 00 $0x77f52269

%eax %ecx

$0x07 %ecx -> %ecx

0x8(%esi) -> %ecx

0x1c(%esi) %eax ->%eax

0xc(%esi) -> %eax

(%ecx,%eax,1) -> %esi

WCPAZSO

WCPAZSO

-

WCPAZSO

-

-

RSO

Level 3

$0x77f52269

%eax %ecx

$0x07 %ecx -> %ecx

0x8(%edi) -> %ecx

0x1c(%edi)%eax -> %eax

0xc(%edi) -> %eax

(%ecx,%eax,1) -> %edi

Level 4

cmp

shl

movzx

sub

mov

lea

jnl

c1 e1 07

3b c1

0f 8d a2 0a 00 00

WCPAZSO

WCPAZSO

-

WCPAZSO

-

-

RSO

raw bits opcode operands eflags

raw bits opcode operands eflags

Figure 2. Example sequence of instructions
at each of the five levels of representation.

chine instructions is performed at runtime under a dynamic
framework, many dynamic systems resort to low-level, of-
ten difficult-to-use, representations in the interest of effi-
ciency. The problem is especially pronounced in CISC in-
struction sets such as IA-32, where instructions vary greatly
in length and complexity, and require significant overhead
to fully decode. DynamoRIO addresses this issue by using
an adaptive level-of-detail instruction representation with
five different levels, which are illustrated in Figure 2:

Level 0 – At its lowest level of detail, an Instr holds
the raw instruction bytes of a series of instructions and
only records the final instruction boundary.

Level 1 – A Level 0 Instr is split such that an Instr is
created for each machine instruction. Each Instr still
holds only the un-decoded raw bits for the instruction
it represents.

Level 2 – The instruction is decoded enough to determine
its opcode and effect on the eflags register (which
contains condition codes and status flags) for quick de-
termination of whether the eflags need to be saved or
restored around inserted instructions. Many IA-32 in-
structions modify the eflags register, making them
an important factor to consider in any code transfor-
mation.

Level 3 – A fully-decoded instruction whose raw bits
are valid. Instr has fields for opcode, prefixes, and
eflags effects, plus two dynamically-allocated arrays
of operands, one for sources and one for destinations.
These arrays are dynamically-allocated because IA-
32 instructions may contain between zero and eight
sources and destinations. This level combines quick
encoding (simply copy the raw bits) with high-level
information.

Level 4 – A fully-decoded instruction that has been modi-
fied (or newly created) and does not have a valid copy
of raw instruction bits. This is the only level at which
instructions must be encoded (or re-encoded) to obtain
the machine representation.

The initial level of an Instr is determined by which API
routine is used to build the instruction. Later operations can
change the level, either implicitly or explicitly. For exam-
ple, modifying an operand will cause the raw bytes to be-
come invalid, moving an instruction up to Level 4. This au-
tomatic adjustment makes it easy for an optimization to use
the lowest cost representation possible. Switching incre-
mentally between levels costs no more than a single switch
spanning multiple levels.

To support the multiple Instr levels, multiple decod-
ing strategies are employed. The lowest level simply finds
instruction boundaries (even this is non-trivial for IA-32).
Although the instruction boundaries need to be determined
for both Level 0 and Level 1, the boundary information may
not be needed later. Level 0 avoids storing that information,
and further simplifies encoding by allowing a single mem-
ory copy rather than an iteration over multiple boundaries.
Level 2 decodes just enough to determine the opcode and
the instruction’s effect on the eflags. Finally, for Level 3
and Level 4, a full decode determines all of the operands.

To encode an Instr, first the raw bit pointer is checked.
If it is valid, the instruction is encoded by simply copying
the raw bits. If the raw bits are invalid (Level 4), the in-
struction must be fully encoded from its operands. Encod-
ing an IA-32 instruction is costly, as many instructions have
special forms when the operands have certain values. The
encoder must walk through every operand and find an in-
struction template that matches. Avoiding this by copying
raw bits whenever possible is important.

4

Level Time (µs) Memory (bytes)

0 2.12 64.00
1 12.42 628.95
2 13.01 629.07
3 19.10 791.55
4 61.79 791.55

Table 2. Average time and memory used to
decode and then encode the basic blocks of
the SPEC2000 benchmarks [34].

As an example of the use of various levels of instruc-
tion representation, consider the creation of a basic block
fragment. All that DynamoRIO needs to know about is con-
trol flow instruction terminating the block. Accordingly, the
InstrList for a basic block might contain only two In-

strs. The first Instr (at Level 0) simply points to the raw
bits of an arbitrarily long sequence of non-control flow in-
structions, while the second Instr (at Level 3) holds the
fully decoded state for the block-ending control flow in-
struction, ready for modification. When performing opti-
mizations, DynamoRIO fully decodes all instructions in a
trace’s InstrList, but keeps their raw bit pointers valid
(Level 3). All unmodified instructions can be quickly en-
coded by simply copying the bits.

For a quantitative evaluation of the different levels of in-
struction representation, we measured the time and memory
used to decode and then encode basic blocks at each level of
representation. Table 2 shows the average time and memory
across all blocks for the SPEC2000 benchmarks [34].

3.2 DynamoRIO API

DynamoRIO exports a rich set of functions and data
structures to manipulate IA-32 instructions, using the data
structures discussed in Section 3.1. Instruction generation
is simplified through a set of macros. A macro is provided
for every IA-32 instruction. The macro takes as arguments
only those operands that are explicit and automatically fills
in the implicit operands (many IA-32 instructions have im-
plicit operands). The IA-32 instruction set abstraction level
can also be bypassed by specifying an opcode and complete
list of operands.

To support transparency, DynamoRIO provides routines
for input/output and memory allocation (global and thread-
private) that do not interfere with the application. A client
that instead uses the same buffers or memory allocation rou-
tines as the application has a good chance of affecting pro-
gram correctness.

DynamoRIO uses special thread-local slots to spill reg-
isters. It exports an API routine that will save a register
to one of these slots. Additionally, it provides a generic

thread-local storage field for use by clients. DynamoRIO
also provides a field in the Instr data structure that can
be used by the client for annotations while it is processing
instructions.

Frequently, an optimization will make an assumption in
order to optimize a sequence of code. If the assumption is
violated, some clean-up action is required. To maintain the
linearity of traces, DynamoRIO provides a mechanism for
implementing this kind of clean-up code in the form of cus-
tom exit stubs. Each exit from a trace or basic block has
its own stub. When it is not linked to another trace, con-
trol goes to the stub, which records where the trace was
exited and then performs the context switch back to Dy-
namoRIO. The client can specify a list of instructions to
be pre-pended to the stub corresponding to any exit from a
trace or basic block fragment, and can specify that the exit
should go through the stub even when linked. The body of
the fragment is then optimized for the assumption. Con-
ditional branches direct control flow to the custom stub if
the assumption is violated. Without this direct support, a
client would be forced to add branches targeting the middle
of the trace, destroying the linear control flow which may
be expected by other optimizations.

DynamoRIO also provides routines that identify features
of the underlying processor, making it easy to perform
architecture-specific optimizations.

3.3 DynamoRIO Client

A DynamoRIO client can implement several functions
shown in Table 3 that will be called by DynamoRIO at ap-
propriate moments. The two most important client-supplied
hooks are those for basic block and trace creation, dy-

namorio basic block and dynamorio trace. Through
these hooks the client has the ability to inspect and trans-
form any piece of code that is emitted into the code cache.

DynamoRIO calls dynamorio basic block each time
a block is created. The basic block is passed as a pointer to
an InstrList. This routine is used by clients that need to
operate on every piece of application code.

DynamoRIO calls dynamorio trace each time a trace
is created, just before the trace is placed in the trace cache.
The trace is passed as an InstrList that has already been
completely processed by DynamoRIO. The client sees ex-
actly the code that will execute in the code cache (with the
exception of the exit stubs). Most client optimizations only
operate on traces, restricting themselves to hot code.

dynamorio fragment deleted is called each time a
fragment is deleted from the block or trace cache. Such
information is needed if the client maintains its own data
structures about emitted fragment code that must be kept
consistent across fragment deletions.

dynamorio end trace is described in Section 3.5.

5

Client Routine Description

void dynamorio init() Client initialization

void dynamorio exit() Client finalization

void dynamorio thread init(void *context) Client per-thread initialization

void dynamorio thread exit(void *context) Client per-thread finalization

void dynamorio basic block(void *context,
app pc tag, InstrList *bb)

Client processing of basic block

void dynamorio trace(void *context,
app pc tag, InstrList *trace)

Client processing of trace

void dynamorio fragment deleted(void *context,
app pc tag)

Notifies client when a fragment is deleted from the
code cache

int dynamorio end trace(void *context,
app pc trace tag, app pc next tag)

Asks client whether to end the current trace

Table 3. Client routines imported by DynamoRIO. The client is not expected to inspect or modify the
context parameter, which is an opaque pointer to the current thread context. The tag parameters
serve to uniquely identify fragments by their original application origin.

3.4 Extensions for Adaptive Optimization

Two additional routines are exported by DynamoRIO to
support adaptive optimization:

InstrList* dr decode fragment(
void *context, app pc tag);

bool dr replace fragment(void *context,
app pc tag, InstrList *il);

Clients may wish to re-optimize code after it is placed
in the code cache. To do this, clients need to re-create
the InstrList for a trace from the cache, modify it,
and then replace the old version with the new. For ex-
ample, consider a client that inserts profiling code into
selected traces. Once a threshold is reached, the pro-
filing code calls dr decode fragment and then rewrites
the trace by modifying the InstrList. Once finished,
dr replace fragment is called to install the new version
of the trace.

DynamoRIO is able to perform this replacement while
execution is still inside the old fragment, allowing a trace
to generate a new version of itself. This is accomplished by
delaying the removal of the old fragment until a safe point.
All links targeting and originating from the old fragment
are immediately modified to use the new fragment. This
means that the current thread will continue to execute in
the old fragment only until the next branch. Since there are
no loops except in explicit links, the time spent in the old
fragment is minimal, and all future executions use the new
fragment.

Enabling optimizations to be performed in a separate
thread requires surprisingly few additions to the adaptive
optimization interface. To make fragment replacement pos-

sible from a separate thread, we simply prevent the opti-
mizing thread and the application thread from both being
in DynamoRIO code at the same time. If the application
thread remains in the code cache until after the replacement
is complete, no synchronization cost is incurred. We plan
to investigate using a concurrent thread for “sideline opti-
mization” using this low-overhead trace replacement.

3.5 Extensions for Custom Traces

A client can direct the building of traces through a com-
bination of the client hook dynamorio end trace and this
API routine:

void dr mark trace head(void *context,
app pc tag);

The basic trace building mechanism is similar to the
original Dynamo [4] traces. Certain basic blocks are consid-
ered trace heads. A counter associated with each trace head
is incremented upon each execution of that basic block.
Once the counter exceeds a threshold, DynamoRIO enters
trace generation mode. Each subsequent basic block ex-
ecuted is added to the trace, until a termination point is
reached.

Dynamo only considered targets of backward branches
and exits of existing traces to be trace heads. Our inter-
face allows a client to choose its own traces heads, mark-
ing them with dr mark trace head. When DynamoRIO
is in trace generation mode, it calls the client’s dy-

namorio end trace routine before adding a basic block
to the current trace. The client can direct DynamoRIO to
either end the trace, not end the trace, or use its default test
(which stops at a backward branch or upon reaching an ex-

6

isting trace) for whether to end the trace. For an example of
using this interface, see Section 4.4.

4 Examples

We present four sample optimizations implemented with
the DynamoRIO client interface. Section 5 shows the per-
formance impact of these optimizations.

4.1 Redundant Load Removal

We took a traditional compiler optimization, redundant
load removal, and implemented it dynamically. Because
there are so few registers in IA-32, local variables are fre-
quently loaded from and stored back to the stack. If a vari-
able’s value is already in a register, a subsequent load can be
removed. The compiler should be able to eliminate redun-
dant loads within basic blocks, but we found that gcc at its
highest optimization level still emits a number of redundant
loads within blocks. It also produces redundant loads across
basic block boundaries, which are a little more difficult for
the compiler to identify. This optimization shows that even
code compiled at high optimization levels stands to benefit
from dynamic application of traditional optimizations.

4.2 Strength Reduction

On the Pentium 4 the inc instruction is slower than add

1 (and dec is slower than sub 1). The opposite is true on
the Pentium 3, however. As the code in Figure 3 shows, all
a DynamoRIO client needs to do to perform this strength-
reduction optimization is walk the instructions in each ba-
sic block and look for inc instructions. A simple analysis
needs to be done to determine if the eflags differences
between inc and add are acceptable for this block. If so,
the inc is replaced by add 1. In a similar manner, dec is
replaced with sub 1.

This is a perfect example of an architecture-specific op-
timization that is best performed dynamically, tailoring the
program to the actual processor it is running on. It would
be awkward to try this at load time. The variable-length IA-
32 instruction set makes it difficult or impossible to analyze
binaries statically, because the internal module boundaries
are not known. Furthermore, a loader would have to rewrite
all code in all shared libraries, regardless of how little of
that code is actually run, and would need to specially han-
dle dynamically determined libraries (loaded using dlopen
or LoadLibrary).

4.3 Indirect Branch Dispatch

As an example of adaptive optimization, we perform
value profiling of indirect branch targets. DynamoRIO, like

EXPORT void dynamorio_init() {
enable = (proc_get_family() == FAMILY_PENTIUM_IV);
num_examined = 0;
num_converted = 0; }

EXPORT void dynamorio_exit() {
if (enable) {

dr_printf("converted %d out of %d\n",
num_converted, num_examined); }

else { dr_printf("kept original inc/dec\n"); } }

EXPORT void dynamorio_trace
(void *context, app_pc tag, InstrList *trace) {
Instr *instr, *next_instr;
int opcode;
if (!enable) return;
for (instr = instrlist_first(bb); instr != NULL;

instr = next_instr) {
next_instr = instr_get_next(instr);
opcode = instr_get_opcode(instr);
if (opcode == OP_inc || opcode == OP_dec) {

num_examined++;
if (inc2add(context, instr, trace))
num_converted++; } } }

static bool inc2add
(void *context, Instr *instr, InstrList *trace) {
Instr *in;
uint eflags;
int opcode = instr_get_opcode(instr);
bool ok_to_replace = false;
/* add writes CF, inc does not, check ok! */
for (in=instr; in != NULL; in=instr_get_next(in)) {

eflags = instr_get_eflags(in);
if ((eflags & EFLAGS_READ_CF) != 0) return false;
/* if writes but doesn’t read, we can replace */
if ((eflags & EFLAGS_WRITE_CF) != 0) {

ok_to_replace = true;
break; }

/* simplification: stop at first exit */
if (instr_is_exit_cti(in)) return false; }

if (!ok_to_replace) return false;
if (opcode == OP_inc)

in = INSTR_CREATE_add(context,
instr_get_dst(instr,0),OPND_CREATE_INT8(1));

else
in = INSTR_CREATE_sub(context,

instr_get_dst(instr,0),OPND_CREATE_INT8(1));
instr_set_prefixes(in, instr_get_prefixes(instr));
instrlist_replace(trace, instr, in);
instr_destroy(context, instr);
return true; }

Figure 3. Code for a client implementing an
inc to add 1 strength reduction optimization.

Embra [37] and Dynamo [4], inlines one target of an indi-
rect branch when it builds a trace across the branch. How-
ever, whenever the indirect branch has a target other than the
inlined target, a hashtable lookup is required. This lookup
is the single greatest source of overhead in DynamoRIO. To
mitigate the overhead, a series of compares and conditional
direct branches for each frequent target are inserted prior to
the hashtable lookup. This is similar to the “inline caching”
of virtual call targets in Smalltalk [14] and Self [21], but ap-
plied to returns and indirect jumps as well as indirect calls.

The optimization works as follows: when an indirect
branch inlined in a trace has a target different from that
recorded when the trace was created, it usually transfers

7

call prof routine
jmp hashtable lookup

⇓

cmp real target, hot target 1
je hot target 1
cmp real target, hot target 2
je hot target 2
call prof routine
jmp hashtable lookup

Figure 4. Code transformation by our indi-
rect branch dispatch optimization. A profil-
ing routine rewrites its own trace to insert
dispatches for the hottest targets among its
samples, avoiding a hashtable lookup.

control to the hashtable lookup routine. The optimization
diverts that control transfer to a code sequence at the bot-
tom of the trace. This code sequence consists of a series of
compare-plus-conditional-branch pairs followed by a call to
a profiling routine, as shown in Figure 4. After the call is
a jump to the hashtable lookup routine. Initially there are
no compare-branch pairs and control immediately goes to
the profiling call. The profiling routine records the target of
the indirect branch each time it is called. Once a threshold
is reached in the number of samples collected, the profil-
ing routine rewrites the trace to add compare-branch pairs
for the hottest targets. The profiling call is kept in the trace
but is only reached if none of the hot targets are matched,
adaptively replacing the hashtable lookup with a series of
compares and direct branches.

No profiling is done to determine if the inserted targets
remain hot; once a target is inserted, it is never removed.
Improving this is an area of future work, requiring the devel-
opment of always-on, low-overhead profiling techniques.

4.4 Custom Traces

As an example of our custom trace interface, we built
a client that attempts to inline entire procedure calls into
traces. The standard DynamoRIO traces focus on loops and
often end up with a hot procedure call’s return in a different
trace from the call. This causes many hashtable lookups as
the call is invoked from different call sites and the inlined
return target keeps missing.

Our custom traces simply mark calls as trace heads and
returns as end-of-trace conditions. A trace will be termi-
nated if a maximum size is reached, to prevent too much
unrolling of loops inside calls. Once a return is reached,
the trace is ended after the next basic block. This inlines
the return and nearly guarantees that the inlined target will
match. Our implementation goes ahead and assumes that
the calling convention holds, in which case the return can
be removed entirely.

5 Experimental Results

This section shows the performance results of the op-
timizations from Section 4. All of the results in this sec-
tion are for the SPEC2000 benchmarks [34] (excluding the
FORTRAN 90 benchmarks) on Linux, compiled with full
optimization (gcc -O3) and run with unlimited code cache
space on a Pentium 4 2.2GHz Xeon. The best of four runs
was used for each data point.

Figure 5 shows normalized execution time (the ratio of
our time to native execution time, so smaller is better) for
six data points. The first bar gives the performance of the
base DynamoRIO infrastructure. DynamoRIO breaks even
on many benchmarks, even though it is not performing any
optimizations beyond efficient code layout when creating
traces. For the benchmarks with slowdowns, most of the
overhead comes from handling indirect branches and deal-
ing with eflags changes caused by introduced code. Dy-
namoRIO suffers from more costly indirect branch mispre-
dictions than the native application, as it translates all indi-
rect branches (including returns and indirect calls) into in-
direct jumps. The Pentium processors have return address
predictors, but not indirect jump predictors, penalizing Dy-
namoRIO, which cannot efficiently use the return address
predictor (also, to do so would require storing code cache
addresses on the stack, violating transparency).

Comparing DynamoRIO’s base performance to that of
Dynamo [4], the underlying architecture’s treatment of indi-
rect branches is the key difference, with CISC versus RISC
secondary. Dynamo ran on PA-RISC, which does not have a
return address predictor. Dynamo’s sole goal was optimiza-
tion, and it gave up (returning control to native execution)
if it was not performing well. DynamoRIO is a platform
for dynamic code modification, not just optimization, and
as such it maintains control over the entire application run.

The second bar in Figure 5 gives the performance for
our redundant load removal optimization. This optimiza-
tion achieves a forty percent speedup for mgrid and also
does well on a number of other floating-point benchmarks.
Its effects on the integer benchmarks are less dramatic. The
third bar shows the results for the inc to add 1 transfor-
mation, which is able to speed up a number of benchmarks.
The fourth bar gives the performance of the adaptive indi-
rect branch target optimization. It does quite well on several
of the integer benchmarks. The fifth bar shows the custom
traces optimization of. It speeds up a number of the inte-
ger benchmarks. We have not finished tweaking the custom
trace parameters, and we hope to find trace strategies that
perform well even for benchmarks like perlbmk and gcc.

Our optimizations result in slight slowdowns relative to
base DynamoRIO performance on a few benchmarks. The
largest slowdowns are on perlbmk and gcc. Both of these
consist of multiple short runs with little code re-use. It is

8

har. mean

vpr

vortex

twolf

perlbmk

parser

mcf

gzip

gcc

gap

eon

crafty

bzip2

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75

Integer Benchmarks

Normalized Execution Time

har. mean

wupwise

swim

sixtrack

mgrid

mesa

equake

art

apsi

applu

ammp

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75

Floating-Point Benchmarks

Normalized Execution Time

base

rlr

inc2add

indirect

traces

all

Figure 5. Normalized program execution time (the ratio of our execution time to native execution time)
on the SPEC2000 benchmarks [34]. Six data points are shown: the base DynamoRIO performance,
each of our four sample optimizations applied independently, and all of them applied in combination.

difficult to amortize overheads in such conditions. The time
spent performing the optimizations outweighs any benefits
for these benchmarks.

The final bar in Figure 5 gives the performance of run-
ning all four of our sample optimizations at once. The mean
execution time for the floating-point benchmarks is a 12%
improvement over native. Combining floating-point and in-
teger, the mean performance exactly matches native, a 12%
improvement over the base DynamoRIO performance. We
hope to improve the efficiency of the DynamoRIO infras-
tructure itself in the future, to achieve better end results.

6 Related Work

There are two other systems we know of that export
an API for the creation of custom dynamic optimizations,
DELI [13] and Strata [33]. DELI has hooks for transform-
ing traces as they are built, but has no mechanism for re-
optimizing traces after they have been placed in the code
cache. As with Dynamo [4], profiling is used only up front
to build a trace: once built, a trace is no longer profiled. To
adapt to changes in program behavior, the entire cache must
be flushed, which is too coarse-grained for general adaptive

9

optimizations. Furthermore, DELI’s instruction representa-
tion has a single level of detail.

Strata [33] separates part of its system into a client in-
terface which can be modified to build custom dynamic
code modification tools. The interface includes hooks into
Strata’s fragment creation and emission routines, but has
no support for re-optimizing fragments once they are in the
cache. The instruction representation is not discussed.

API-less dynamic optimization systems include Dy-
namo [4] for PA-RISC; Wiggins/Redstone [12], which
employs program counter sampling to form traces which
are then specialized for a particular Alpha machine; and
Mojo [7], which targets Windows NT running on IA-32, but
has no available information beyond the basic infrastructure
of the system. Kistler [24] proposes “continuous program
optimization” that involves operating system re-design to
support adaptive dynamic optimization.

Hardware dynamic optimization of the instruction
stream is performed in superscalar processors. The Trace
Cache [32] allows such optimizations to be performed off
of the critical path.

Dynamic translation systems resemble dynamic opti-
mizers in that they cache native translations of frequently
executed code. Domains include instruction set emula-
tion [9, 17] and binary compatibility [8, 25]. Recent dy-
namic translation systems such as UQDBT [36] and Dy-
namite [31] separate the source and target architectures to
create extensible systems that can be re-targeted.

Dynamic compilation has proven essential for efficient
implementation of high-level languages [14, 1]. Some just-
in-time compilers perform profiling to identify which meth-
ods to spend more optimization time on [22]. The Jalapeño
Java virtual machine [3, 26] utilizes idle processors in an
SMP system to optimize code at runtime. Jalapeño opti-
mizes all code at an initial low level of optimization, em-
bedding profiling information that is used to trigger re-
optimization of frequently executed code at higher levels.
Self [21] uses a similar adaptive optimization scheme.

Staged dynamic compilers postpone a portion of compi-
lation until runtime, when code can be specialized based on
runtime values [11, 19, 27, 28, 18]. These systems usually
focus on spending as little time as possible in the dynamic
compiler, performing extensive offline pre-computations to
avoid needing any intermediate representation at runtime.

Dynamic instrumentation can be used to build runtime
code analyzers and, to some degree, runtime code modi-
fiers. Both Dyninst [6] and Vulcan [35] can insert code into
running processes. Dyninst is based on dynamic instrumen-
tation technology [20] developed as part of the Paradyn Par-
allel Performance Tools project [29]. Because these tools
modify the original code by inserting trampolines, exten-
sive modification of the code is unwieldy.

Other related fields include link-time optimization [30,

10] and low-overhead profiling [2, 15].

7 Conclusions

This paper presents a flexible yet efficient infrastruc-
ture for the development of adaptive dynamic optimiza-
tions. Dynamic optimization has great potential to solve
the problems of static compilation of modern, dynamic soft-
ware. However, there are few dynamic optimization infras-
tructures, due to the engineering challenges in building the
core system and strict requirements of efficiency and trans-
parency for operating while the program is executing.

The key principles used by our infrastructure to maintain
efficiency are restricting optimization units to linear streams
of code (traces) and using adaptive levels of detail for repre-
senting instructions. Our interface provides direct support
for building customizable traces and custom adaptive op-
timization of traces, while maintaining transparency with
respect to the application.

We have demonstrated the usefulness and effectiveness
of our framework with several example optimizations. We
do not rely on hardware, operating system, or compiler sup-
port, and operate on unmodified binaries on both generic
Linux and Windows IA-32 platforms.

Our infrastructure is general enough to be used for pur-
poses other than optimization. Potential applications are
numerous: instrumentation, profiling, statistics gathering,
sandboxing, intrusion detection, on-the-fly code decom-
pression or decryption, code streaming, dynamic transla-
tion. The benefits are vast for a dynamic code modification
infrastructure that is general while maintaining efficiency.

References

[1] A.-R. Adl-Tabatabai, M. Cierniak, G.-Y. Lueh, V. M. Parikh,
and J. M. Stichnoth. Fast, effective code generation in a just-
in-time Java compiler. In Proceedings of the SIGPLAN’98
Conference on Programming Language Design and Imple-
mentation, June 1998.

[2] J. M. Anderson, L. M. Berc, J. Dean, S. Ghemawat, M. R.
Henzinger, S.-T. A. Leung, R. L. Sites, M. T. Vandevoorde,
C. A. Waldspurger, and W. E. Weihl. Continuous profiling:
Where have all the cycles gone? In 16th ACM Symposium
on Operating System Principles (SOSP ’97), Oct. 1997.

[3] M. Arnold, S. Fink, D. Grove, M. Hind, and P. F. Sweeney.
Adaptive optimization in the Jalapeño JVM. In 2000
ACM SIGPLAN Conference on Object-Oriented Program-
ming Systems, Languages, and Applications (OOPSLA’00),
Oct. 2000.

[4] V. Bala, E. Duesterwald, and S. Banerjia. Dynamo: A trans-
parent runtime optimization system. In Proceedings of the
ACM SIGPLAN Conference on Programming Language De-
sign and Implementation (PLDI ’00), June 2000.

[5] D. Bruening, E. Duesterwald, and S. Amarasinghe. Design
and implementation of a dynamic optimization framework

10

for Windows. In 4th ACM Workshop on Feedback-Directed
and Dynamic Optimization (FDDO-4), Dec. 2001.

[6] B. R. Buck and J. Hollingsworth. An API for runtime code
patching. Journal of High Performance Computing Appli-
cations, 14(4):317–329, Winter 2000.

[7] W.-K. Chen, S. Lerner, R. Chaiken, and D. M. Gillies. Mojo:
A dynamic optimization system. In 3rd ACM Workshop on
Feedback-Directed and Dynamic Optimization (FDDO-3),
Dec. 2000.

[8] A. Chernoff, M. Herdeg, R. Hookway, C. Reeve, N. Rubin,
T. Tye, S. B. Yadavalli, and J. Yates. FX!32: A profile-
directed binary translator. IEEE Micro, 18(2), Mar. 1998.

[9] R. F. Cmelik and D. Keppel. Shade: A fast instruction-set
simulator for execution profiling. In SIGMETRICS, 1994.

[10] R. Cohn and P. G. Lowney. Hot cold optimization of large
Windows/NT applications. In 29th Annual International
Symposium on Microarchitecture (MICRO ’96), Dec. 1996.

[11] C. Consel and F. Nöel. A general approach for run-time
specialization and its application to C. In ACM Symposium
on Principles of Programming Languages (POPL ’96), Jan.
1996.

[12] D. Deaver, R. Gorton, and N. Rubin. Wiggins/Restone: An
on-line program specializer. In Proceedings of Hot Chips
11, Aug. 1999.

[13] G. Desoli, N. Mateev, E. Duesterwald, P. Faraboschi, and
J. A. Fisher. DELI: A new run-time control point. In 35th
Annual International Symposium on Microarchitecture (MI-
CRO ’02), Nov. 2002.

[14] L. P. Deutsch and A. M. Schiffman. Efficient implemen-
tation of the Smalltalk-80 system. In ACM Symposium on
Principles of Programming Languages (POPL ’84), Jan.
1984.

[15] E. Duesterwald and V. Bala. Software profiling for hot path
prediction: Less is more. In Proceedings of the 12th Inter-
national Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS ’00), Oct.
2000.

[16] DynamoRIO dynamic code modification system binary
package release. MIT and Hewlett-Packard, June 2002.
http://www.cag.lcs.mit.edu/dynamorio/.

[17] K. Ebcioglu and E. Altman. DAISY: Dynamic compilation
for 100% architectural compatibility. In 24th Annual Inter-
national Symposium on Microarchitecture (ISCA ’97), June
1997.

[18] E. Feigin. A Case for Automatic Run-Time Code
Optimization. Senior thesis, Harvard College, Divi-
sion of Engineering and Applied Sciences, Apr. 1999.
http://www.eecs.harvard.edu/hube/
publications/feigin-thesis.pdf.

[19] B. Grant, M. Philipose, M. Mock, C. Chambers, and S. Eg-
gers. An evaluation of staged run-time optimizations in
DyC. In Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI
’99), May 1999.

[20] J. Hollingsworth, B. Miller, and J. Cargille. Dynamic pro-
gram instrumentation for scalable performance tools. In
Proceedings of the 1994 Scalable High-Performance Com-
puting Conference, May 1994.

[21] U. Hölzle. Adaptive Optimization for Self: Rec-
onciling High Performance with Exploratory Pro-
gramming. PhD thesis, Stanford University, 1994.

http://www.cs.ucsb.edu/oocsb/papers/urs-
thesis.html.

[22] The Java HotSpot performance engine architecture.
http://java.sun.com/products/hotspot/
whitepaper.html.

[23] V. Kiriansky, D. Bruening, and S. Amarasinghe. Secure ex-
ecution via program shepherding. In 11th USENIX Security
Symposium, Aug. 2002.

[24] T. Kistler and M. Franz. Continuous program optimization:
Design and evaluation. IEEE Transactions on Computers,
50(6), June 2001.

[25] A. Klaiber. The technology behind Crusoe pro-
cessors. Transmeta Corporation, Jan. 2000.
http://www.transmeta.com/crusoe/download/
pdf/crusoetechwp.pdf.

[26] C. Krintz, D. Grove, V. Sarkar, and B. Calder. Reducing the
overhead of dynamic compilation. Software: Practice and
Experience, 31(8), Mar. 2001.

[27] P. Lee and M. Leone. Optimizing ML with run-time code
generation. In Proceedings of the ACM SIGPLAN Confer-
ence on Programming Language Design and Implementa-
tion (PLDI ’96), May 1996.

[28] M. Leone and R. K. Dybvig. Dynamo: A staged compiler
architecture for dynamic program optimization. Technical
Report 490, Department of Computer Science, Indiana Uni-
versity, Sept. 1997.

[29] B. P. Miller, M. D. Callaghan, J. M. Cargille, J. K.
Hollingsworth, R. B. Irvin, K. L. Karavanic, K. Kunchitha-
padam, and T. Newhall. The Paradyn parallel performance
measurement tools. IEEE Computer, 28(11):37–46, Nov.
1995.

[30] R. Muth, S. Debray, S. Watterson, and K. D. Bosschere. alto
: A link-time optimizer for the Compaq Alpha. Software
Practice and Experience, 31:67–101, Jan. 2001.

[31] A. Robinson. Why dynamic translation?
Transitive Technologies Ltd., May 2001.
http://www.transitive.com/documents/
Why_Dynamic_Translation1.pdf.

[32] E. Rotenberg, S. Bennett, and J. E. Smith. Trace cache: A
low latency approach to high bandwidth instruction fetching.
In 29th Annual International Symposium on Microarchitec-
ture (MICRO ’96), Dec. 1996.

[33] K. Scott and J. Davidson. Strata: A software dynamic trans-
lation infrastructure. In Proceedings of the IEEE 2001 Work-
shop on Binary Translation, July 2001.

[34] SPEC CPU2000 benchmark suite. Stan-
dard Performance Evaluation Corporation.
http://www.spec.org/osg/cpu2000/.

[35] A. Srivastava, A. Edwards, and H. Vo. Vulcan: Binary trans-
formation in a distributed environment. Technical Report
MSR-TR-2001-50, Microsoft Research, Apr. 2001.

[36] D. Ung and C. Cifuentes. Machine-adaptable dynamic bi-
nary translation. In Proceedings of the ACM SIGPLAN
Workshop on Dynamic and Adaptive Compilation and Opti-
mization, Jan. 2000.

[37] E. Witchel and M. Rosenblum. Embra: Fast and flexible ma-
chine simulation. In Proceedings of the 1996 ACM SIGMET-
RICS Conference on Measurement and Modeling of Com-
puter Systems, May 1996.

11

