
7

Design of the Java HotSpotTM Client
Compiler for Java 6

THOMAS KOTZMANN, CHRISTIAN WIMMER
and HANSPETER MÖSSENBÖCK

Johannes Kepler University Linz

and

THOMAS RODRIGUEZ, KENNETH RUSSELL, and DAVID COX

Sun Microsystems, Inc.

Version 6 of Sun Microsystems’ Java HotSpotTM VM ships with a redesigned version of the client
just-in-time compiler that includes several research results of the last years. The client compiler
is at the heart of the VM configuration used by default for interactive desktop applications. For
such applications, low startup and pause times are more important than peak performance. This
paper outlines the new architecture of the client compiler and shows how it interacts with the
VM. It presents the intermediate representation that now uses static single-assignment (SSA)
form and the linear scan algorithm for global register allocation. Efficient support for exception
handling and deoptimization fulfills the demands that are imposed by the dynamic features of
the Java programming language. The evaluation shows that the new client compiler generates
better code in less time. The popular SPECjvm98 benchmark suite is executed 45% faster, while
the compilation speed is also up to 40% better. This indicates that a carefully selected set of global
optimizations can also be integrated in just-in-time compilers that focus on compilation speed and
not on peak performance. In addition, the paper presents the impact of several optimizations on
execution and compilation speed. As the source code is freely available, the Java HotSpotTM VM and
the client compiler are the ideal basis for experiments with new feedback-directed optimizations
in a production-level Java just-in-time compiler. The paper outlines research projects that add fast
algorithms for escape analysis, automatic object inlining, and array bounds check elimination.

Categories and Subject Descriptors: D.3.4 [Programming Languages]: Processors—Compilers,
Optimization, Code generation

General Terms: Algorithms, Languages, Performance

Additional Key Words and Phrases: Java, compiler, just-in-time compilation, optimization,
intermediate representation, register allocation, deoptimization

Authors’ addresses: Thomas Kotzmann, Christian Wimmer, and Hanspeter Mössenböck, Institute
for System Software, Christian Doppler Laboratory for Automated Software Engineering, Johannes
Kepler University Linz, Austria; email: {kotzmann, wimmer, moessenboeck}@ssw.jku.at.
Thomas Rodriguez, Kenneth Russell, and David Cox, Sun Microsystems, Inc., 4140 Network Circle,
Santa Clara, CA 95054; email: {thomas.rodriguez, kenneth.russell, david.cox}@sun.com.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2008 ACM 1544-3566/2008/05-ART7 $5.00 DOI 10.1145/1369396.1370017 http://doi.acm.org/
10.1145/1369396.1370017

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 1, Article 7, Publication date: May 2008.

7:2 • T. Kotzmann et al.

ACM Reference Format:

Kotzmann, T., Wimmer, C., Mössenböck, H., Rodriguez, T., Russell, K., and Cox, D. 2008.
Design of the Java HotSpotTM client compiler for Java 6. ACM Trans. Architec. Code
Optim. 5, 1, Article 7 (May 2008), 32 pages. DOI = 10.1145/1369396.1370017 http://doi.acm.org/
10.1145/1369396.1370017.

1. INTRODUCTION

About 2 years after the release of Java SE 5.0, Sun Microsystems completed
version 6 of the Java platform. In contrast to the previous version, it did not in-
troduce any changes in the language, but provided a lot of improvements behind
the scenes [Coward 2006]. Especially the Java HotSpotTM client compiler, one
of the two just-in-time compilers in Sun Microsystems’ virtual machine, was
subject to several modifications and promises a notable gain in performance.

Even Sun’s development process differs from previous releases. For the first
time in the history of Java, weekly source snapshots of the project have been
published on the Internet [Sun Microsystems, Inc. 2006b]. This approach is part
of Sun’s new ambitions in the open-source area [OpenJDK 2007] and encourages
developers throughout the world to submit their contributions and bugfixes.

The collaboration on this project requires a thorough understanding of the
virtual machine, so it is more important than ever to describe and explain its
parts and their functionality. At the current point in time, however, the available
documentation of internals is rather sparse and incomplete. This paper gives
an insight into those parts of the virtual machine that are responsible for or af-
fected by the just-in-time compilation of bytecodes. It contributes the following:

—It starts with an overview of how just-in-time compilation is embedded in the
virtual machine and when it is invoked.

—It describes the structure of the client compiler and its compilation phases.
—It explains the different intermediate representations and the operations

that are performed on them.
—It discusses ongoing research on advanced compiler optimizations and details

how these optimizations are affected by just-in-time compilation.
—It evaluates the performance gains both compared to the previous version of

Sun’s JDK and to competitive products.

Despite the fact that this paper focuses on characteristics of Sun’s VM and
presupposes some knowledge about compilers, it not only addresses people who
are actually confronted with the source code but everybody who is interested
in the internals of the JVM or in compiler optimization research. Therefore, it
will give both a general insight into involved algorithms and describe how they
are implemented in Sun’s VM.

1.1 Architecture of the Java HotSpotTM VM

Java achieves portability by translating source code [Gosling et al. 2005] into
platform-independent bytecodes. To run Java programs on a particular plat-
form, a Java virtual machine [Lindholm and Yellin 1999] must exist for that

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 1, Article 7, Publication date: May 2008.

Design of the Java HotSpot Client Compiler for Java 6 • 7:3

client compiler
server compiler

JIT compiler

interpreter

stop & copy
mark & compact

...

garbage collector

bytecodes

native method

debugging info
object maps

machine code

compiles

interprets

generates uses

heapstacksmethod

young generation
old generation

permanent generation

thread
1

thread
n...

collectsaccesses accesses

Fig. 1. Architecture of the Java HotSpotTM VM.

platform. It executes bytecodes after checking that they do not compromise
the security or reliability of the underlying machine. Sun Microsystems’
implementation of such a virtual machine is called Java HotSpotTM VM [Sun
Microsystems, Inc. 2006a].

The overall architecture is shown in Figure 1. The execution of a Java pro-
gram starts in the interpreter, which steps through the bytecodes of a method
and executes a code template for each instruction. Only the most frequently
called methods, referred to as hot spots, are scheduled for just-in-time (JIT)
compilation. As most classes used in a method are loaded during interpreta-
tion, information about them is already available at the time of JIT compilation.
This information allows the compiler to inline more methods and to generate
better optimized machine code.

If a method contains a long-running loop, it may be compiled regardless
of its invocation frequency. The VM counts the number of backward branches
taken and, when a threshold is reached, it suspends interpretation and compiles
the running method. A new stack frame for the native method is set up and
initialized to match the interpreter’s stack frame. Execution of the method
then continues using the machine code of the native method. Switching from
interpreted to compiled code in the middle of a running method is called on-
stack-replacement (OSR) [Hölzle and Ungar 1994; Fink and Qian 2003].

The Java HotSpotTM VM has two alternative just-in-time compilers: the
server and the client compiler. The server compiler [Paleczny et al. 2001] is
a highly optimizing compiler tuned for peak performance at the cost of com-
pilation speed. Low compilation speed is acceptable for long-running server
applications, because compilation impairs performance only during the warm-
up phase and can usually be done in the background if multiple processors are
available.

For interactive client programs with graphical user interfaces, however, re-
sponse time is more important than peak performance. For this purpose, the
client compiler was designed to achieve a trade-off between the performance
of the generated machine code and compilation speed [Griesemer and Mitrovic
2000]. This paper presents the architecture of the revised client compiler in the
JDK 6.

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 1, Article 7, Publication date: May 2008.

7:4 • T. Kotzmann et al.

All modern Java virtual machines implement synchronization with a thin
lock scheme [Agesen et al. 1999; Bacon et al. 1998]. Sun’s JDK 6 extends
this concept by biased locking [Russell and Detlefs 2006], which uses concepts
similar to Kawachiya et al. [2002]. Previously, an object was locked always
atomically just in case that two threads synchronize on it at the same time. In
the context of biased locking, a pointer to the current thread is stored in the
header of an object when it is locked for the first time. The object is then said
to be biased toward the thread. As long as the object is locked and unlocked by
the same thread, synchronizations need not be atomic.

The generational garbage collector [Ungar 1984] of the Java HotSpotTM VM
manages dynamically allocated memory. It uses exact garbage collection tech-
niques, so every object and every pointer to an object must be precisely known at
GC time. This is essential for supporting compacting collection algorithms. The
memory is split into three generations: a young generation for newly allocated
objects, an old generation for long-lived objects, and a permanent generation
for internal data structures.

New objects are allocated sequentially in the young generation. Since each
thread has a separate thread-local allocation buffer (TLAB), allocation opera-
tions are multithread-safe without any locking. When the young generation fills
up, a stop-and-copy garbage collection is initiated. When objects have survived
a certain number of collection cycles, they are promoted to the old generation,
which is collected by a mark-and-compact algorithm [Jones and Lins 1996].

The Java HotSpotTM VM also provides various other garbage collectors [Sun
Microsystems, Inc. 2006c]. Parallel garbage collectors for server machines with
large physical memories and multiple CPUs distribute the work among mul-
tiple threads, thus decreasing the garbage collection overhead and increasing
the application throughput. A concurrent mark-and-sweep algorithm [Boehm
et al. 1991; Printezis and Detlefs 2000] allows the user program to continue its
execution while dead objects are reclaimed.

Exact garbage collection requires information about pointers to heap objects.
For machine code, this information is contained in object maps (also called oop
maps) created by the JIT compiler. Besides, the compiler creates debugging
information that maps the state of a compiled method back to the state of the
interpreter. This enables aggressive compiler optimizations, because the VM
can deoptimize [Hölzle et al. 1992] back to a safe state when the assumptions
under which an optimization was performed are invalidated (see Section 2.6).
The machine code, the object maps, and the debugging information are stored
together in a so-called native method object. Garbage collection and deoptimiza-
tion are allowed to occur only at some discrete points in the program, called
safepoints, such as backward branches, method calls, return instructions, and
operations that may throw an exception.

Apart from advanced JIT compilers, sophisticated mechanisms for synchro-
nization, and state-of-the-art garbage collectors, the new Java HotSpotTM VM
also features object packing functionality to minimize the wasted space be-
tween data types of different sizes, on-the-fly class redefinition, and full-speed
debugging. It is available in 32-bit and 64-bit editions for the Solaris operating
system on SPARC and Intel platforms, for Linux, and for Microsoft Windows.

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 1, Article 7, Publication date: May 2008.

Design of the Java HotSpot Client Compiler for Java 6 • 7:5

front end back end

LIR generationHIR generation code generation
bytecodes HIR LIR machine code

optimization register allocation

Fig. 2. Structure of the Java HotSpotTM client compiler.

1.2 Design Changes of the Client Compiler

The design changes of the client compiler for version 6 focus on a more aggres-
sive optimization of the machine code. In its original design, the client compiler
implemented only a few high-impact optimizations, whereas the server com-
piler performed global optimizations across basic block boundaries, such as
global value numbering or loop unrolling. The goal for Java 6 was to adopt
some of these optimizations for the client compiler.

Before Java 6, the high-level intermediate representation (HIR) of the client
compiler was not suitable for global optimizations. It was not in static single-
assignment (SSA) form [Cytron et al. 1991] and required local variables to
be explicitly loaded and stored. The new HIR is in SSA form. Load and store
instructions for local variables are eliminated by keeping track of the virtual
registers that contain the variables’ current values [Mössenböck 2000].

Another major design change was the implementation of a linear scan regis-
ter allocator [Mössenböck and Pfeiffer 2002; Wimmer and Mössenböck 2005].
The previous approach was to allocate a register immediately before an in-
struction and free it after the instruction has been processed. Only if a register
remained unassigned throughout a method, it was used to cache the value of
a frequently accessed local variable. This algorithm was simple and fast, but
resulted in a large number of memory loads and stores. The linear scan regis-
ter allocation produces more efficient machine code and is still faster than the
graph coloring algorithm used by the server compiler.

The design changes and the SSA form, in particular, facilitate a new family
of global optimizations. Ongoing research projects deal with escape analysis
and automatic object inlining to reduce the costs associated with memory man-
agement. These projects are described in Section 3.

2. STRUCTURE OF THE CLIENT COMPILER

The client compiler is a just-in-time compiler that aims at a low startup time and
a small memory footprint. The compilation of a method is split into three phases,
allowing more optimizations to be done than in a single pass over the bytecodes.
All information communicated between the phases is stored in intermediate
representations of the program.

Figure 2 shows the structure of the client compiler. First, a high-level inter-
mediate representation (HIR) of the compiled method is built via an abstract
interpretation of the bytecodes. It consists of a control-flow graph (CFG), whose
basic blocks are singly linked lists of instructions. The HIR is in static single-
assignment (SSA) form, which means that for every variable there is just a

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 1, Article 7, Publication date: May 2008.

7:6 • T. Kotzmann et al.

single point in the program where a value is assigned to it. An instruction that
loads or computes a value represents both the operation and its result, so that
operands can be represented as pointers to previous instructions. Both during
and after generation of the HIR, several optimizations are performed, such as
constant folding, value numbering, method inlining, and null check elimination.
They benefit from the simple structure of the HIR and the SSA form.

The back end of the compiler translates the optimized HIR into a low-level
intermediate representation (LIR). The LIR is conceptually similar to machine
code, but still mostly platform-independent. In contrast to HIR instructions,
LIR operations operate on virtual registers instead of references to previous
instructions. The LIR facilitates various low-level optimizations and is the input
for the linear scan register allocator, which maps virtual registers to physical
ones.

After register allocation, machine code can be generated in a rather simple
and straightforward way. The compiler traverses the LIR, operation by opera-
tion, and emits appropriate machine instructions into a code buffer. This process
also yields object maps and debugging information.

2.1 High-Level Intermediate Representation

The high-level intermediate representation (HIR) is a graph-based represen-
tation of the method using SSA form [Cytron et al. 1991]. It is platform-
independent and represents the method at a high level where global optimiza-
tions are easy to apply. We build the SSA form at parse time of the bytecodes,
similarly to Click and Paleczny [1995]. The modeling of instruction types as a
C++ class hierarchy and the representation of operands are other similarities
to this intermediate representation.

The control flow is modeled using an explicit CFG, whose nodes represent
basic blocks, i.e. longest possible sequences of instructions without jumps or
jump targets in the middle. Only the last instruction can be a jump to one or
more successor blocks or represent the end of the method. Because instructions
that can throw exceptions do not terminate a basic block, control can also be
transferred to an exception handler in the middle of a block (see Section 2.5).

The instruction types of the HIR are represented by a class hierarchy with a
subclass for each kind of instruction. The instruction nodes also form the data
flow: Instructions refer to their arguments via pointers to other instructions.
This way, an instruction represents both the computation of a result and the
result itself. Because of this equivalence, an instruction is often referred to as
a value. The argument need not be defined in the same block, but can also be
defined in a dominator, i.e. a common predecessor on all input paths. Instead of
explicit instructions for accessing local variables, instructions reference those
instructions that compute the most recent value of the variables. Figure 3 shows
an example for the control and data flow of a short loop.

The HIR is constructed in two passes over the bytecodes. The first pass de-
tects the boundaries of all basic blocks and performs a simple loop analysis
to mark loop header blocks. Backward-branch targets of irreducible loops are
are also treated as loop headers. The basic blocks are created, but not linked

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 1, Article 7, Publication date: May 2008.

Design of the Java HotSpot Client Compiler for Java 6 • 7:7

constant "1"

add

invoke "f"

jump if "<"

phi

exception handler

control flow

data flow (inverse)

int i = 1;
do {

i++;
} while (i < f())

exception edge

basic block

instruction

Java code fragment:

10: iconst_1
11: istore_0
12: iinc 0, 1
15: iload_0
16: invokestatic f()
19: if_icmplt 12

Bytecodes:

B2

B1

B3

Fig. 3. HIR example with control and data flow.

together. The second pass creates the instructions by abstract interpretation of
the bytecodes, appends them to their basic block, and links the blocks to build
the CFG.

Inlining of methods is embedded into the analysis: When the bytecodes con-
tain a call to a short method that can be statically bound, the HIR construction is
called recursively for the callee and the resulting basic blocks and instructions
are appended to the CFG.

The SSA form requires a single point of assignment for each variable. When
control flow joins, so-called phi functions merge different values of the same
variable. In the example, the phi function merges the initial value 1 and the
result of the addition for the loop variable i. If a block has more than one pre-
decessor, phi functions might be necessary at the beginning of this block. They
are created before the instructions of the block are inserted using the following
strategy that does not require data-flow analysis. The server compiler [Paleczny
et al. 2001] uses a similar approach.

—When the block is no loop header, all predecessors are already filled with
instructions. If a variable has different values at the end of the predecessors,
a phi function is created. If the value is equal in all predecessors, no phi
function is necessary and the value is used directly.

—For loop headers, the state of the variables for the backward branch is not yet
known. Therefore, phi functions are created conservatively for all variables.

The loop analysis of the first pass is used for further optimizations: If a vari-
able is never assigned a value inside a loop, the phi function for this variable
can also be omitted in loop headers. With this, no phi functions are created for
method parameters that are not changed inside the method, e.g. for the fre-
quently accessed this pointer. This simplifies optimizations that are applied
during HIR construction because the type of parameters and loop-invariant in-
structions is not hidden behind a phi function. Nevertheless, the conservative

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 1, Article 7, Publication date: May 2008.

7:8 • T. Kotzmann et al.

creation can lead to phi functions where all operands are equal. Such phi func-
tions are eliminated after the HIR is constructed.

2.2 Optimizations

Local optimizations are performed during the generation of the HIR: Constant
folding simplifies arithmetic instructions with constant operands, as well as
branches where the condition is always true or false. Local value numbering
eliminates common subexpressions within a basic block. Method inlining re-
places a method call by a copy of the method body.

Method inlining eliminates the overhead of method dispatching. The client
compiler uses a static inlining strategy: Methods with a size less than 35 bytes
are inlined. This size is decreased for each nested inlining because the number
of inlining candidates grows at each level. However, the method must be bound
statically to be inlined, i.e. the compiler must be able to unambiguously deter-
mine the actual target method, which is complicated because most methods in
Java are virtual methods. A class hierarchy analysis (CHA) [Dean et al. 1995] is
used to detect virtual call sites where currently only one suitable method exists.
This method is then optimistically inlined. If a class is loaded later that adds
another suitable method and, therefore, the optimistic assumption no longer
holds, the method is deoptimized (see Section 2.6).

After the generation of the HIR, global optimizations are performed. Null-
check elimination (see e.g. [Kawahito et al. 2000]) removes null checks if the
compiler can prove that an accessed object is non null. Conditional expression
elimination replaces the common code pattern of a branch that loads one of
two values by a conditional move instruction. Global value numbering (see
e.g. Briggs et al. [1997]) eliminates common subexpressions across basic block
boundaries.

Global value numbering is an example for an optimization that was simpli-
fied by the introduction of SSA form. Our implementation builds on a scoped
hash table and requires only a single pass over the CFG in reverse postorder.
The processing of a basic block starts with the state of the hash table at the
end of its immediate dominator. At the beginning of the block, a new scope of
the hash table is opened to keep newly inserted instructions separate from the
instructions that were added in previous blocks.

Two instructions are equivalent if they perform the same operation on the
same operands. If an equivalent old instruction is found for a new instruction,
the new instruction is deleted and uses are changed to the old instruction.
Otherwise, the instruction is added to the hash table.

Value numbering of field and array loads requires an additional analysis:
Two loads of the same field for the same object are not necessarily redundant
because a store to the field can be in between. The field store is said to kill
all previous loads of the same field. Some instructions, e.g. method calls, kill
all memory loads because their exact memory behavior is unknown. The set of
killed instructions is propagated down the control flow. Before a basic block is
processed, the killed sets of all predecessors are used to remove instructions
from the hash table of the dominator.

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 1, Article 7, Publication date: May 2008.

Design of the Java HotSpot Client Compiler for Java 6 • 7:9

When a predecessor has not yet been processed, e.g. because it contains the
backward branch of a loop, all memory loads must be killed. To avoid this for
short loops consisting of only a few basic blocks, we analyze these blocks and
kill only the necessary loads if the loop contains no method calls.

2.3 Low-Level Intermediate Representation

The low-level intermediate representation (LIR) is close to a three-operand
machine code, augmented with some higher level instructions, e.g. for object
allocation and locking. The data structures are shared between all target plat-
forms, but the LIR generation already contains platform-dependent code. The
LIR reuses the control flow of the HIR, so it contains no new data structures
for basic blocks.

LIR instructions use explicit operands that can be virtual registers, physical
registers, memory addresses, stack slots, or constants. The LIR is more suitable
for low-level optimizations such as register allocation than the HIR, because
all operands requiring a machine register are explicitly visible. Constraints
of the target architecture, such as machine instructions that require a specific
register, are already modeled in the LIR using physical register operands. After
the register allocator has replaced all virtual registers by physical registers or
stack slots, each LIR instruction can be mapped to a pattern of one or more
machine instructions. The LIR does not use SSA form, so the phi functions of
the HIR are resolved by register moves.

Many LIR instructions can be divided into a common and an uncommon case.
Examples for uncommon cases are calling the garbage collector for memory al-
locations or throwing bounds-check exceptions for array accesses. Following the
focus on the common case principle, the machine instructions for the common
case are emitted in-line, while the instructions for the uncommon case are put
out-of-line at the end of the method.

2.4 Linear Scan Register Allocation

Register allocation is the task of assigning physical registers to local variables
and temporary values. The most commonly used approach is based on graph-
coloring algorithms (see for example [Briggs et al. 1994]). In comparison, the
linear-scan algorithm is simpler and faster. The basic algorithm of Poletto and
Sarkar [1999] assigns registers to values in a single linear pass. Our imple-
mentation is influenced by the extended version of Traub et al. [1998].

For register allocation, all basic blocks of the LIR are topologically sorted
into a linear order. All blocks belonging to a loop are consecutively emitted and
rarely executed blocks, such as exception handlers, are placed at the end of the
method or the loop.

For each virtual register of the LIR, a lifetime interval is constructed that
stores the lifetime of the register as a list of disjoint ranges. Fixed intervals
are built for physical register operands to model register constraints of the
target architecture and method calls. Use positions of an interval refer to the
instructions where the register is read or written. Depending on the kind of
the use position, our register allocation algorithm either guarantees that the
interval has a register assigned at this position, or at least tries to assign a

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 1, Article 7, Publication date: May 2008.

7:10 • T. Kotzmann et al.

i2

i3

10 12 14 16 18 20 22 24 26 28 30 32

10 move v1 = 1
12 label B2
14 move v2 = v1
16 add v2 = v2 + 1
18 call eax = f()
20 move v3 = eax
22 cmp v2, v3
24 branch GE, B3
26 label B4
28 move v1 = v2
30 branch AL, B2
32 label B3

i1

eax
ebx,ecx,

edx,esi,edi

3B2B1B B4

fixed
intervals

Fig. 4. LIR example with lifetime intervals and use positions.

register. Between two use positions, the algorithm can freely decide if the value
is kept in a register or spilled to the stack frame. The spilling and reloading of
a value is implemented by splitting the interval.

Figure 4 continues the example started in Figure 3 and shows the slightly
simplified LIR and the lifetime intervals for the code fragment. The virtual reg-
isters v1–v3 are represented by the intervals i1–i3. Use positions are denoted
by black bars. According to typical IA-32 calling conventions, the method call
at instruction 18 returns its value in the fixed register eax. The fixed intervals
of all other registers are merged to a single line. To allow live ranges that do
not extend to the next instruction, the instruction numbers are incremented
by 2. The phi function of the HIR has been resolved to the move instructions
14 and 28. The block B4 was created to place the move instruction 28 at the
backward branch.

The allocation algorithm processes all lifetime intervals in the order of in-
creasing start positions. Each interval gets a register assigned that is not
used by another, simultaneously live interval. The algorithm is documented in
Wimmer [2004]. When more intervals are live than physical registers are avail-
able, a heuristic is used to select an interval for being spilled to the stack frame.
Usually, this interval is split twice to get three shorter intervals: The first part
remains in the assigned register, the second part is spilled, and the third part,
which must start after the current position, is processed when the algorithm
advances to its start position.

The decision which interval is spilled and where this interval is split affects
the performance of the resulting machine code. Because finding the optimal
solution would be too time consuming, we apply several heuristics. In general,
the interval that is not used for the longest time after the current position is
spilled. If spilling has to occur inside a loop, intervals that are not used in this
loop are spilled first and their split positions are moved out of the loop.

Other optimizations implemented in our register allocator are register hints,
which are a lightweight replacement for interval coalescing used by other reg-
ister allocators, and spill store elimination, which eliminates redundant stores
to the same spill slot. Both optimizations reduce the number of move instruc-
tions necessary to copy values between registers and spill slots. In the example
of Figure 4, the intervals i1 and i2 get the same register assigned, because
they are connected by a register hint and do not overlap. This eliminates the
instructions 14 and 28.

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 1, Article 7, Publication date: May 2008.

Design of the Java HotSpot Client Compiler for Java 6 • 7:11

The interval i2 must be split before instruction 18: Because this call in-
struction destroys all registers, i2 must be spilled to memory. The splitting
and spilling is automatically enforced by the fixed intervals at instruction 18.
Interval i2 is reloaded before instruction 22, because the use position requires
a register. The optimizations are described in more detail in Wimmer and
Mössenböck [2005].

Because the linear scan algorithm operates on a flattened CFG, the splitting
of intervals can cause conflicts at control-flow edges: For example, if an interval
is in a register at the end of a block, but expected to be on the stack at the start
of a successor block, a move instruction must be inserted to resolve the conflict.
This can happen if an interval flows into a block via two branches and is split
in one of them. To have a safe location for these moves, all critical edges of the
CFG, i.e. edges from blocks with multiple successors to blocks with multiple
predecessors, are split by inserting blocks before register allocation.

2.5 Exception Handling

In the HIR, instructions that can throw exceptions do not end a basic block
because that would fragment the nonexceptional control flow and lead to a large
number of short basic blocks. Our concept is similar to the factored control-flow
graphs of Choi et al. [1999]. At the beginning of an exception handler, a phi
function for a local variable is created if the variable has different values at
two or more throwing instructions that lead to this handler. These phi functions
are not resolved by moves when the LIR is constructed, because adapter blocks
would have to be created for each edge from an instruction to an exception
handler. Instead, the phi functions are resolved after register allocation: If the
register of an input operand differs from the register of the output operand of
such a phi function, a new adapter block is created for the necessary register
move. All exception handler entries are collected in a table and stored in the
meta data together with the machine code.

When an exception is thrown by the generated machine code at runtime, the
corresponding exception handler entry is searched by a runtime function using
these tables. This frees the compiler from generating the dispatch logic that
searches the correct exception handler using the dynamic type of the exception.

The compiler can add exception handlers that are not present in the byte-
codes. This allows the inlining of synchronized methods: The lock that is ac-
quired before the method is executed must be released both at normal returns
and at exceptional exits of the method. To catch exceptional exits, the inlined
method is surrounded by a synthetic exception handler that catches all excep-
tions, unlocks the receiver, and then rethrows the exception.

2.6 Deoptimization

Although inlining is an important optimization, it has traditionally been very
difficult to perform for dynamic object-oriented languages like Java. A method
can only be inlined if the compiler identifies the called method statically despite
polymorphism and dynamic method binding. Apart from static and final callees,
this is possible if class hierarchy analysis (CHA) [Dean et al. 1995] can prove

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 1, Article 7, Publication date: May 2008.

7:12 • T. Kotzmann et al.

class
void

class extends
void

A {
bar() { ... }

}

B A {
bar() { ... }

}

A create() {
(...) {

A();
} {

B();
}

}

if
return new
else
return new

void foo() {
A p = create();
p.bar();

}

Fig. 5. Example for a situation where deoptimization is required.

that only one suitable method exists. If, however, a class is loaded later that
overrides that method, possibly the wrong implementation was inlined.

Assume that class B has not been loaded yet when machine code for the
method foo, shown in Figure 5, is generated. The compiler optimistically as-
sumes that there is only one implementation of the method bar and inlines
A.bar into foo. If the method create later loads class B and returns an instance
of it, the inlining decision turns out to be wrong and the machine code for foo
is invalidated. In this situation, the Java HotSpotTM VM is forced to stop the
machine code, undo the compiler optimizations and continue execution of the
method in the interpreter. This process is called deoptimization [Hölzle et al.
1992; Paleczny et al. 2001].

Every time the compiler makes an inlining decision based on class hierarchy
information, it records a dependency between the caller and the class that
defines the callee. When the VM loads a class later, it examines its superclasses,
and marks dependent methods for deoptimization. It also iterates over the
interfaces implemented by the new class and looks for methods depending on
the fact that an interface had only one implementor.

Since interpreter and machine code use different stack frame layouts, a new
stack frame must be set up before execution of a marked method can be con-
tinued in the interpreter. Instead of immediately deoptimizing a frame when
a class is loaded, the machine instruction that will be executed next for this
frame is patched to invoke a runtime stub. The actual deoptimization takes
place when the frame is reactivated after all callees have returned (lazy deop-
timization). The entry point of the native method is also modified so that new
invocations are redirected to the interpreter.

In contrast to machine code, interpreted methods do not inline other meth-
ods. Therefore, a stack frame of a native method may correspond to multiple
interpreter frames. The runtime stub that is called by the patched machine code
first creates an array of virtual stack frames, one for the method to be deopti-
mized and one for each currently active inlined callee. A virtual frame does not
exist on the stack, but stores the local variables, the operand stack, and moni-
tors of a particular method. The debugging information, which is generated by
the compiler and describes the stack frames from the interpreter’s point of view,
is used to fill the virtual frames with the correct values from registers and mem-
ory. This complicates some compiler optimizations because values needed for
deoptimization must be kept alive even if they are not used by optimized code.
This is accomplished by extending the lifetime intervals of the register allocator.

In the next phase of deoptimization, the method stack is adjusted, as shown
in Figure 6. The frames of the runtime stub and the method to be deoptimized

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 1, Article 7, Publication date: May 2008.

Design of the Java HotSpot Client Compiler for Java 6 • 7:13

caller frame

frame of
method to be deoptimized

frame of runtime stub

caller frame

interpreter frame for
deoptimized method

interpreter frame for
inlined method

frame of runtime stub

Fig. 6. Unpacking of virtual frames.

are removed and the virtual frames are unpacked onto the stack. Finally, a
frame for the continuation of the runtime stub is pushed back onto the stack.

During unpacking of a virtual frame, the bytecode to be executed next is
looked up in the debugging information. The address of the interpreter code
that handles the bytecode is pushed onto the stack as the return address. This
way, execution automatically continues in the interpreter when the runtime
stub has completed deoptimization and returns.

Converting a compiled frame to interpreted frames is an expensive operation.
It could be avoided if the compiler inlined virtual calls only when the receiver
is preexisting [Detlefs and Agesen 1999], i.e. allocated before execution of the
caller begins. However, deoptimization occurs very rarely: For all benchmarks
presented in Section 4, no running methods are deoptimized. Therefore, the
runtime costs of deoptimization are irrelevant in practice.

3. ONGOING RESEARCH PROJECTS

The relatively simple structure of the client compiler makes it an ideal plat-
form for experiments with compiler optimizations in a production-level Java
VM. The challenge is to develop optimizations that improve the quality of the
generated code without degrading compilation speed significantly. The projects
of this section are not part of the JDK 6, but possible candidates for a future
version.

3.1 Escape Analysis

Escape analysis is a modern compiler optimization technique for the identifica-
tion and optimization of objects that are accessible only within one method or
thread [Choi et al. 2003; Blanchet 2003]. Such objects are said to not escape the
method or thread. In the context of a research project, the Java HotSpotTM client
compiler was extended by an escape analysis algorithm that is fast enough
for just-in-time compilation and capable of coping with dynamic class load-
ing [Kotzmann and Mössenböck 2005; Kotzmann 2005].

Escape analysis is performed in parallel with the construction of the HIR. Ob-
jects whose escape states depend on each other are inserted into so-called equi-
escape sets, which are implemented as instruction trees based on the union-find
algorithm [Sedgewick 1988]. If one of the objects escapes, only the escape state

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 1, Article 7, Publication date: May 2008.

7:14 • T. Kotzmann et al.

of the set and not of all contained objects must be adjusted. After completion of
the HIR, three different optimizations are applied:

—Scalar replacement: If an object does not escape the creating method, its
fields can be replaced by scalar variables. The compiler can eliminate both
the allocation of memory on the heap and the initialization of the object. The
access of a scalar variable is cheaper than the access of a field, because it
does not require any dereferencing.

—Stack allocation: An object that is accessed only by one method and its callees
can be allocated on the stack instead of the heap. Stack objects reduce the
burden of the garbage collector, because they are implicitly deallocated at the
end of the method when the stack frame is removed. Their fields can usually
be accessed relative to the base of the current stack frame.

—Synchronization removal: If an object does not escape a thread, synchroniza-
tion on it can safely be omitted because it will never be locked by another
thread.

When objects are passed to another method, the compiler uses interproce-
dural escape information to determine if the objects escape in the callee. This
information is computed during the compilation of a method and stored together
with the machine code to avoid reanalyzing the method at each call site. The
interprocedural analysis not only allows allocating actual parameters in the
stack frame of the caller, but also supports the compiler in inlining decisions:
Even if a callee is too large to be inlined by default, the compiler may decide to
inline it if this opens new opportunities for scalar replacement.

As long as a method is still interpreted, no interprocedural escape informa-
tion is available for it. When the compiler reaches a call of a method that has
not yet been compiled, it does a quick analysis of the method’s bytecodes to
determine if a parameter escapes. The bytecode analysis considers each ba-
sic block separately and checks if it lets one of the parameters escape. This is
more conservative than full escape analysis, but faster to compute because con-
trol flow is ignored. When the method is compiled later, the provisional escape
information is replaced with more precise data.

Figure 7 gives an example for the escape analysis and the optimizations
described above. A point is specified by two floating-point coordinates and a
line stores the four coordinates of the start and the end point (Figure 7a). After
inlining the constructors (Figure 7b), the object p2 does not escape the method,
so its allocation can be eliminated. The fields are replaced by scalar variables
and are probably mapped to registers later (Figure 7c). The length method is
too large to be inlined. Assume that interprocedural escape information yields
that the object l does not escape from it and can thus be allocated on the stack.

Since objects for the concatenation of strings are usually not shared among
threads, Java 5.0 introduced the unsynchronized class StringBuilder for this
purpose. Older programs, however, still use the synchronized StringBuffer
class. Escape analysis and synchronization removal optimize these programs
during just-in-time compilation and thus achieve the same performance as if a
StringBuilder had been chosen.

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 1, Article 7, Publication date: May 2008.

Design of the Java HotSpot Client Compiler for Java 6 • 7:15

float
new

new
return

foo(Point p1) {
Point p2 = Point(3, 4);
Line l = Line(p1, p2);

l.length();
}

(a) original method

float
new

new

return

foo(Point p1) {
Point p2 = Point();
p2.x = 3; p2.y = 4;
Line l = Line();
l.x1 = p1.x; l.y1 = p1.y;
l.x2 = p2.x; l.y2 = p2.y;

l.length();
}

(b) after inlining

float
float

new

return

foo(Point p1) {
x2 = 3, y2 = 4;

Line l = Line(); // on stack
l.x1 = p1.x; l.y1 = p1.y;
l.x2 = x2; l.y2 = y2;

l.length();
}

(c) optimized method

Fig. 7. Example for scalar replacement and stack allocation.

Escape analysis relies heavily on inlining to prevent objects from escaping
the allocating method. Therefore, the compiler inlines methods whose size ex-
ceeds the usual threshold if it thus expects to optimize more objects and it uses
class hierarchy information to inline methods. If dynamic class loading inval-
idates an inlining decision of the compiler, the optimizations based on escape
analysis must be undone. The debugging information was extended to describe
optimized objects and their fields. This enables the deoptimization framework
to reallocate scalar-replaced and stack-allocated objects on the heap and relock
them if synchronization on them was removed [Kotzmann and Mössenböck
2007]. If the VM runs out of memory during reallocation, it terminates because
the program does not expect an exception at this point. This situation is rare
though and could be avoided by guaranteeing at method entries that enough
heap memory is free to cover a potential reallocation.

3.2 Automatic Object Colocation and Inlining

Automatic object inlining reduces the access costs of fields and arrays by im-
proving the cache behavior and by eliminating unnecessary field loads. The
order of objects on the heap is changed in such a way that objects accessed
together are consecutively placed in memory, so that their relative position is
fixed. Object inlining for static compilers is already well studied (see for ex-
ample [Dolby and Chien 2000] and [Lhoták and Hendren 2005]), but applying
it dynamically at runtime is complicated, because dynamic class loading and
time constraints preclude a global data-flow analysis.

Changing the order of objects at runtime is called object colocation [Wim-
mer and Mössenböck 2006]. We integrated it into garbage collection where live
objects are moved to new locations. Thereby, a parent object and those child
objects that are referenced by the parent’s most frequently accessed fields are
placed next to each other. When a parent and a child object are colocated, i.e.
when the memory offset between the parent and the child is fixed, the child can
be treated as a part of the parent (object inlining [Wimmer and Mössenböck

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 1, Article 7, Publication date: May 2008.

7:16 • T. Kotzmann et al.

read barriers

client compiler

garbage collector

object inlining system

co-allocation
field store guards

optimized field loads

object colocation

try object inlining

fill

apply object inlining

detect hot fields
insert

class loading

deoptimize

check preconditions

recompile methods

compiler feedback
runtime system

use

precondition
invalidated

reflection

hot-field tables

requires

Fig. 8. System structure of automatic object inlining.

2007]). Dereferencing operations for field accesses can be replaced by address
arithmetic.

Figure 8 shows the structure of our feedback-directed object inlining sys-
tem that optimizes an application automatically at runtime and requires no
actions on the part of the programmer. It uses the client compiler both to collect
information necessary for the optimization and to apply the optimization.

Because the field access pattern depends on how the program is used and
which classes are dynamically loaded, the most frequently accessed hot fields
must be detected at runtime. We use read barriers that are inserted by the
client compiler: For each field, a separate counter is incremented when the field
is loaded. Because the compiler has all information about an accessed field, the
read barrier can be implemented efficiently with a single increment instruction
using a fixed counter address. To reduce the runtime overhead, read barriers
that are no longer necessary are removed by recompiling methods.

If the counter of a field reaches a threshold, the field is worth for optimizations
and added to the hot-field tables. The table for a parent class stores a list of
child entries for its hot fields. The garbage collector uses these tables for object
colocation. The hot fields are also candidates for object inlining. However, a
safe execution requires strong guarantees: The objects must stay colocated from
allocation until deallocation. To ensure this, we check the following sufficient
preconditions for each hot field:

—Co-allocation of objects: A parent object and its child objects must be allocated
in the same compiled method. Together with the field stores that install the
child objects into the parent, these allocations form a single co-allocation.

—No subsequent field stores: We do not allow the modification of fields that
reference inlined objects after the co-allocation. If the field were overwritten
later with a new value, the new object would not be colocated to the parent and
the optimized field load would still access the old child object. Such field stores

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 1, Article 7, Publication date: May 2008.

Design of the Java HotSpot Client Compiler for Java 6 • 7:17

are guarded with a runtime call that triggers deoptimization (see Section 2.6)
before the field is changed.

Instead of performing a global data-flow analysis that checks these precondi-
tions, we compile all methods that are relevant for a certain field, i.e. methods
that allocate the parent object or store the field. The client compiler reports
feedback data if the co-allocation was possible and if all other field stores are
guarded.

In this case, object inlining is possible from the current point of view and we
apply it optimistically: Methods loading the hot field are recompiled and the
access to inlined objects is optimized, i.e. it is replaced by address arithmetic.
If a precondition is later invalidated, e.g. by class loading or a field store using
reflection, we use deoptimization to undo the changes.

Even if object inlining of a field is not possible, object colocation during
garbage collection improves the cache behavior. Therefore, object colocation in
the garbage collector processes all hot fields regardless of their object inlining
state.

3.3 Array Bounds Check Elimination

Array bounds check elimination removes checks of array indices that are proven
to be within the valid range. In contrast to other approaches that perform an ex-
tensive analysis to eliminate as many bounds checks as possible (see e.g. Bodík
et al. [2000] and Qian et al. [2002]), we adhere to the design principle of the
client compiler to optimize only the common case. Our algorithm takes advan-
tage of the SSA form and requires only a single iteration over the dominator
tree [Würthinger et al. 2007].

The bounds, i.e. the minimum and maximum value, of all HIR instructions
that compute an integer result are inferred from the values of constants, the
conditions of branches, and arithmetic invariants. Bounds are propagated down
the dominator tree: A block inherits all bounds of its immediate dominator. For
loops, we focus on the common pattern where a loop variable is incremented
by a constant. When the loop variable is not checked against the array length,
as in the code fragment of Figure 9, the bounds check cannot be eliminated
completely, but it is possible to check the bounds once before the loop.

Figure 9 shows the HIR instructions created for the code fragment and the
bounds that are necessary to eliminate the bounds check of the array access
inside the loop. The bounds of the initial value of i are trivially known to be
[0, 0]. Because i is modified in the loop, a phi function is created in the loop
header block. The phi function is part of a simple cycle that only involves an
addition with the constant 1. Therefore, the value can only increase and the
lower bound of the start value is still guaranteed, and the bounds are [0, ?[.
The upper bound is not known at this time. It is inferred from the comparison
instruction: At the beginning of the loop body block, the upper bound must be
cnt, because the loop is exited otherwise. Therefore, the bounds of i are [0, cnt[.

The upper bound cnt is not related to the length of the array val, but it is
loop-invariant. Therefore, a range check that compares cnt to the array length
can be inserted before the loop. This eliminates the bounds check in each loop

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 1, Article 7, Publication date: May 2008.

7:18 • T. Kotzmann et al.

char[] val = ...
int cnt = ...
int i = 0;
while (i < cnt) {
 ... = val[i];
 i++;
}

Java code fragment:

const "0"

cnt

phi

add

const "1"

jump if "<"

val

load array
[0, cnt[

[0, 0]

[0, ?[

bounds of i
data flow (inverse)
instruction

block boundary

Fig. 9. Example for array bounds check elimination.

iteration. However, it is not allowed to throw an exception in front of the loop
because Java requires strict exception semantics. Instead of applying loop ver-
sioning and producing an optimized and an unoptimized version of the loop,
we trigger a deoptimization (see Section 2.6) when the new bounds check fails.
Execution continues in the interpreter that throws the exception in the correct
loop iteration.

4. EVALUATION

This section first evaluates the product version of the Java HotSpotTM client
compiler that was described in Section 2. Section 4.7 then presents benchmark
results for the research projects that were described in Section 3. In general,
the impact of the just-in-time compiler is difficult to isolate because other parts
of the virtual machine, such as the garbage collector and the runtime library,
affect the overall performance. However, it is possible to draw conclusions from
the comparison of the Java HotSpotTM client and server VMs, because they
share the same runtime library and large parts of the virtual machine.

4.1 Benchmark Methodology

We evaluate the JVMs using three standard benchmarks that cover different
areas: SPECjvm98 [SPEC 1998] evaluates the performance for client applica-
tion, SPECjbb2005 [SPEC 2005] for server applications, and SciMark 2.0 [Pozo
and Miller 1999] for mathematical computations.

The SPECjvm98 benchmark suite consists of seven benchmarks derived from
real-world client applications. They are executed several times and the slow-
est and the fastest runs are reported. The slowest run, usually the first one,
indicates the startup speed of a JVM, while the fastest run measures the peak
performance after all JVM optimizations have been applied. The reported met-
ric is the speedup compared to a reference platform.

SPECjbb2005 emulates a client/server application and reports the executed
number of transactions per second. Since the default heap size of the Java
HotSpotTM client VM is too small for this benchmark, the heap was enlarged to

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 1, Article 7, Publication date: May 2008.

Design of the Java HotSpot Client Compiler for Java 6 • 7:19

69
% 74

% 80
%

10
0%

10
0%

10
0%

10
0%

75
%

10
4%

13
9%

11
3%

88
%

13
2% 14

2%

85
%

11
2%

89
%

12
9%

90
%

11
1%

10
3%

14
7%

71
%

15
0%

0%

50%

100%

150%

SPECjvm98 slowest SPECjvm98 fastest SciMark 2.0 SPECjbb2005

Sun 5.0 client
Sun 6 client
Sun 5.0 server
Sun 6 server
IBM 5.0
BEA 6

Fig. 10. Out-of-the-box performance comparison of JDKs (taller bars are better).

Sun 5.0 client:

Sun 5.0 server:
Sun 6 client:

Sun 6 server:
IBM 5.0:
BEA 6:

IBM J9 VM (build 2.3, J2RE 1.5.0 IBM J9 2.3 Windows XP x86-32 j9vmwi3223-20070426 (JIT enabled))

Java HotSpot(TM) Client VM (build 1.5.0_12-b04, mixed mode, sharing)

BEA JRockit(R) (build R27.3.1-1-85830-1.6.0_01-20070716-1248-windows-ia32, compiled mode)

Java HotSpot(TM) Client VM (build 1.6.0_02-b06, mixed mode, sharing)
Java HotSpot(TM) Server VM (build 1.5.0_12-b04, mixed mode)
Java HotSpot(TM) Server VM (build 1.6.0_02-b06, mixed mode)

Fig. 11. Version numbers of the different virtual machines (output of java -version).

512 MB via a VM flag. To make the results comparable, this heap size was also
used for all other JVMs, even though their default heap size is sufficient. Sci-
Mark 2.0 consists of five numerical kernels that perform floating-point compu-
tations on arrays and reports a score in Mflops. We use the flag -large because
we believe that this better reflects actual scientific applications.

All measurements except the architecture comparisons were performed on an
Intel Pentium D processor 830 with two cores at 3.0 GHz and 2 GB main mem-
ory, running Microsoft Windows XP Professional. The results of SPECjvm98
and SPECjbb2005 are no approved metrics, but adhere to the run rules for
research use. The input size 100 was used for SPECjvm98, and SPECjbb2005
was measured with one JVM instance. All results were obtained using 32-bit
JVMs.

4.2 Out-of-the-Box Performance

Figure 10 compares the out-of-the-box performance of the Sun JDKs, the IBM
Developer Kit, Java 2 Technology Edition, Version 5.0, and BEA JRockit 5.0. For
the Sun JDKs, we compare the client and the server configuration of both the
current version JDK 6 (the new version) and the previous version JDK 5.0 (the
old version). The baseline for the comparison is the new client configuration.
Figure 11 shows the version numbers of the virtual machines. These were the
most recent versions available for download at the time of writing. Because of
the different runtime systems and garbage collectors, this is not a comparison
of the just-in-time compilers, but reflects the performance a user gets from a
JVM.

The new Java HotSpotTM client VM shows the best performance for the slow-
est run of SPECjvm98. The other JVMs achieve a better peak performance for

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 1, Article 7, Publication date: May 2008.

7:20 • T. Kotzmann et al.

the fastest run of SPECjvm98 and SPECjbb2005. In contrast, the server com-
piler has a high startup overhead for compilation, therefore, the slowest run of
SPECjvm98 shows bad performance. This matches the compilation policies of
the two configurations: The client compiler performs only high-impact compiler
optimizations to achieve low compilation overhead, while the server compiler
is a slower, but more aggressively optimizing compiler. The JVMs of IBM and
BEA apply a dynamic optimization schema with different levels of compiler op-
timizations. They rank between the client and the server compiler with respect
to the startup performance.

The peak performance of JVMs is an active area of development. The results
shown in Figure 10 represent only a snapshot of a particular version on a
particular platform, so the results can be different in future versions or on
different platforms. It is not possible to conclude from the results that one JVM
is better than another.

The comparison of the Sun JDK 5.0 and JDK 6 results shows that the client
VM has a higher speedup than the server VM: For SPECjvm98, the new client
VM is 45% faster than the old client VM, while the new server VM is about 25%
faster. This difference is a result of the new architecture of the client compiler.
It is also notable that the speedup of the client VM is equal for the slowest and
the fastest run of SPECjvm98. The new client compiler reduces the gap in peak
performance to the server compiler, but retains the excellent startup behavior.

The IBM JVM shows an unusually low performance for SciMark. We suppose
that the optimized compilation of some methods with long running loops comes
too late. When executing SciMark without the -large flag and, therefore, fewer
loop iterations, or when lowering the compilation threshold of the IBM JVM,
the performance of the IBM compiler is about 22% better than the new client
VM. The performance of the Sun JVMs is not affected by long running loops
because of on-stack-replacement (see Section 1.1).

All JVMs offer command line flags that select different garbage collectors,
enable additional optimizations, or tune the algorithms for specific types of
applications. Enabling such flags can improve the speed of some benchmarks,
especially SPECjbb2005, but also degrade the speed of other benchmarks. We
believe that the out-of-the-box performance is important because many Java
users have neither the time nor the knowledge to discover the optimal tuning
flags for their application. Therefore, the numbers of this section do not claim to
show the maximum possible peak performance of the JVMs. For such numbers,
we refer to the benchmark homepages where vendors submit results for tuned
JVMs [SPEC 2005, 1998].

4.3 Architecture Comparison

This section compares the old and new Java HotSpotTM client and server com-
piler using two additional configurations: an AMD Athlon 64 at 2.2 GHz and
1 GB main memory, running Debian GNU/Linux 4.0, representing a single
core configuration, and a Sun Fire V440 Server with four 1.6 GHz UltraSPARC
IIIi processors and 16 GB main memory, running Sun Solaris 10, showing the
performance when multiple cores are available.

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 1, Article 7, Publication date: May 2008.

Design of the Java HotSpot Client Compiler for Java 6 • 7:21

Fig. 12. Client and server compiler on different architectures (taller bars are better).

The server VM selects the garbage collection algorithm based on heuristics
that include the processor count and the size of the main memory. To eliminate
this impact, we forced all configurations to use the same garbage collector.
This also affects the result on the dual-core Intel configuration. Therefore, the
difference between the client and the server configuration in Figure 12 is lower
than the difference in Figure 10.

In comparison to the previous section, the composite result of SPECjvm98 is
split into the seven benchmark applications in Figure 12 to show the individual
behaviors. The slowest and the fastest runs of SPECjvm98 are shown on top
of each other: The grey bars refer to the fastest runs, and the white bars to
the slowest. Both runs are shown relative to the same baseline, i.e. the fastest

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 1, Article 7, Publication date: May 2008.

7:22 • T. Kotzmann et al.

Fig. 13. Compilation speed of the client and the server compiler (taller bars are better).

run of the new client compiler. Therefore, a big grey fraction indicates a high
compilation overhead at startup.

Two results can be inferred when comparing the speed of the old and the
new client compiler: First, the speedup for the single core AMD configuration
is lower than for the dual-core Intel configuration. Biased locking is not effec-
tive on single core architectures, because no atomic instructions are necessary.
Second, the speedup of the SPARC configuration is lower than the Intel config-
uration because the new client compiler includes optimizations specifically for
the IA-32 architecture. It uses the SSE2 instruction set for scalar floating-point
arithmetic that better matches the semantics required by the Java specifica-
tion.

The gap between the client and the server configuration depends on the ar-
chitecture and the number of cores. The server compiler benefits from multiple
cores, because the expensive compilation can be done in parallel, and from the
better instruction scheduling. Therefore, the gap is lower for the AMD con-
figuration and bigger for the SPARC configuration. Similarly, the difference
between the slowest and fastest runs of SPECjvm98 is lower when more cores
are available.

4.4 Compilation Speed

Figure 13 compares the compilation speed of the different compilers, i.e. the
time spent in the compiler divided by the physical size of compiled bytecodes.
It shows that the new client compiler is up to 40% faster than the old client
compiler, and between 9 to 16 times faster than the server compiler.

An analysis of the compilation phases of the old and the new client compiler
shows that the time spent in the front end is similar for all benchmarks: The
overhead introduced by the new phi functions is compensated by the removal
of instructions that load and store local variables.

However, the global register allocation is faster than the old heuristics: The
old compiler executes the same code generator twice, first to detect registers
that are unused in a method and then to assign these registers to the most fre-
quently used local variables. Peephole optimizations remove unnecessary LIR
instructions. The linear scan algorithm for global register allocation replaces
these phases and produces better code in less time.

Figure 14 shows the distribution of the compilation phases for the new
client compiler. About 33–51% of the time is spent in the front end. This

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 1, Article 7, Publication date: May 2008.

Design of the Java HotSpot Client Compiler for Java 6 • 7:23

Fig. 14. Compilation phases of the new client compiler.

includes abstract interpretation of the bytecodes and global optimizations on
the HIR. Linear scan register allocation takes 29–44% of the time. This in-
cludes also the preparation of the meta data for garbage collection and deopti-
mization. The generation of the LIR and the final code generation are both
fast because they are straightforward mapping phases, where one instruc-
tion is mapped to one or more other instructions and no optimizations are
applied.

The distribution of the compilation phases in the SPECjbb2005 benchmark,
about 1/2 of the time for the front end and 1/3 of the time for register allocation,
represents the average distribution for most applications. Only for SciMark,
the distribution is significantly different: The front end requires less time be-
cause only few methods are inlined, and register allocation requires more time
because of the high amount of floating-point operations.

4.5 Impact of Optimizations

Most compiler optimizations affect both the compilation time and the execution
speed of the resulting code. Figure 15 shows the impact of optimizations on
the new client compiler when selectively disabling them. The baseline for the
relative numbers is the unmodified new client compiler. Note that shorter bars
in Figure 15a mean that the execution speed decreases without an optimization,
i.e. it increases with this optimization. Shorter bars in Figure 15b mean that
the compilation time improves if an optimization is disabled, i.e. it deteriorates
if it is enabled.

Null check elimination has a low impact on the execution speed on IA-32
architectures because most null checks are implicitly integrated in a memory
access. However, it improves compilation time: The low overhead in the front
end for the analysis is superseded by less work in the back end because no
meta data must be generated for eliminated null checks. Value numbering, as
introduced in Section 2.2, improves some benchmarks by up to 15%, with a
fairly low compilation overhead of 5% or below.

The optimizations for the linear scan register allocator that were mentioned
in Section 2.4 (optimization of split positions, register hints, and spill store
elimination) are effective for scientific applications with a large amount of com-
putations such as SciMark: A 10% slower compilation leads to a 30% faster
execution speed. Completely disabling the linear scan-register allocation is not
possible. The old heuristics for register allocation have been removed from the
source code for Java 6, because they are incompatible with the new SSA form
of the HIR.

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 1, Article 7, Publication date: May 2008.

7:24 • T. Kotzmann et al.

Fig. 15. Impact of compiler optimizations of the new client compiler.

Method inlining is the most expensive, but also the most profitable optimiza-
tion. The three rightmost bars of Figure 15 show that the inlining strategy de-
scribed in Section 2.2 is a good compromise: Increasing the inlining size from
35 to 50 bytes degrades compilation time by up to 24% without a significantly
better execution speed. Inlining only trivial methods with a maximum size of 6
bytes improves the compilation time, but at the cost of an up to 20% degraded
execution speed. Disabling inlining is no reasonable option, because it reduces
the execution speed without a further reduction of compilation time.

4.6 Summary

Our evaluation showed that the new client compiler achieves good peak perfor-
mance with remarkably low compilation overhead. Both criteria were improved
by the new design: The comparison of the old and the new client compiler shows
that the execution speed is 45% higher and that also the compilation speed is
up to 40% higher for the popular SPECjvm98 benchmark suite that represents
typical client applications.

For JDK 6, not only the client compiler, but also the server compiler, was
updated. Both execution and compilation speed improved for most bench-
marks. There are no architectural changes or new optimization phases, but
internal data structures were optimized. However, the improvements of the
server compiler are below the client compiler. For example, SPECjvm98 shows
a speedup of about 25% for the server compiler, compared to 45% for the client
compiler.

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 1, Article 7, Publication date: May 2008.

Design of the Java HotSpot Client Compiler for Java 6 • 7:25

Fig. 16. Benchmark results for ongoing research projects (taller bars are better).

4.7 Ongoing Research Projects

Figure 16 presents the benchmark results for the research projects that were
described in Section 3. All implementations are based on the client com-
piler of the JDK 6, but not part of the product version. They are split up in
different development workspaces, so the optimizations and the results are
independent.

Escape analysis, i.e. scalar replacement, stack allocation, and synchroniza-
tion removal, optimizes programs that allocate a lot of short-lived objects. The
mtrt benchmark, for example, is accelerated by about 19%. Scientific applica-
tions usually operate on large arrays that cannot be eliminated. However, the
Monte Carlo benchmark that is a part of SciMark makes heavy use of synchro-
nization on thread local objects that can be eliminated by our escape analysis,
leading to a speedup of nearly 50% for this benchmark. Escape analysis im-
poses a compilation overhead, but this overhead is more than outweighed by
the additional optimizations, so that even the slowest runs of SPECjvm98 show
a speedup.

Object inlining is orthogonal to escape analysis, because it optimizes long-
living data structures. The maximum speedup measured is more than 50%
for the object-intensive db benchmark. The mtrt and the mpegaudio bench-
marks are improved as well. The better peak performance justifies the startup
overhead that is caused by the read barriers and the additional compilation of
methods.

Array bounds check elimination is especially effective for scientific applica-
tions, so there is a high speedup for SciMark that comes close to the theoret-
ical maximum when array bounds checks are completely omitted. The array-
intensive mpegaudio benchmark also shows a significant speedup. The compi-
lation overhead is low, so there is no negative impact on the slowest runs of the
benchmarks.

5. RELATED WORK

This section compares the compilation policies of different production-quality
and research Java virtual machines. It summarizes the intermediate represen-
tations of their just-in-time compilers and evaluates the suitability for research
projects and the availability of the source code.

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 1, Article 7, Publication date: May 2008.

7:26 • T. Kotzmann et al.

The IBM Development Kit for Java uses a dynamic optimization framework
that consists of an interpreter and a dynamic compiler with different optimiza-
tion levels [Suganuma et al. 2004]. When the invocation counter of an inter-
preted method reaches a threshold, the method is compiled at the lowest opti-
mization level with only basic optimizations. Later, a recompilation controller,
which uses information from a sampling profiler, recompiles hot methods at
higher optimization levels. The source code of this production-quality system is
not available, but research results on new adaptive and dynamic optimizations
are published [Suganuma et al. 2005].

The compiler uses three different intermediate representations that all have
a basic block structure [Ishizaki et al. 2003]: The stack-based extended bytecode
representation is similar to bytecodes, but augmented with explicit type infor-
mation. It is used, e.g. for method inlining. The register-based quadruple rep-
resentation uses a tuple format where an operation has several operands. Its
operations are platform independent, but platform-dependent code generates
different sequences of operations, similar to our LIR. In the directed acyclic
graph, which uses SSA form, nodes correspond to these operations and edges
represent data dependencies. The register allocation mechanism depends on the
platform: Either a local heuristic, a linear scan algorithm, or a graph-coloring
algorithm is used.

BEA JRockit is a production-quality JVM that uses the compile-only ap-
proach [Shiv et al. 2003]: A fast just-in-time compiler generates machine code
before a method is executed the first time. Based on sampling profiles, fre-
quently executed methods are recompiled by an optimizing compiler. To our
knowledge, the intermediate representations of the compilers are not published
and the source code of the VM is not available.

The Jikes RVM, previously called Jalapeño [Alpern et al. 2000], is a research
Java VM developed by IBM. Because it is written in Java and available as
open source, it is used as the basis for many research project. The Jikes home-
page [Jikes 2007] lists more than 150 publications that are related to Jikes. It
follows the compile-only approach with different compilers. The baseline com-
piler assembles code patterns for each bytecode similar to an interpreter. The
quick compiler also generates code directly from the bytecodes, but prior to that,
it annotates the bytecodes with the results of optimizations.

Jikes’ optimizing compiler [Burke et al. 1999] is activated by an adaptive
optimization system [Arnold et al. 2000] that uses a sampling profiler to detect
hot methods. It uses a high-level, a low-level, and a machine-specific intermedi-
ate representation. All three share the same structure: They are register-based
n-tuple representations, where each instruction consists of an operator and
some operands. High-level instructions that are generated from the bytecodes
are successively expanded to sequences of simpler instructions when the inter-
mediate representations are lowered. The structure is similar to the LIR of the
client compiler, but there is no graph-based intermediate representation such
as our HIR. The register allocator uses a linear scan algorithm, similar to our
client compiler.

The Open-Runtime Platform [Cierniak et al. 2005] developed by Intel is a
research VM targeted not only toward multiple architectures, but also toward

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 1, Article 7, Publication date: May 2008.

Design of the Java HotSpot Client Compiler for Java 6 • 7:27

multiple languages. It can run either Java or Common Language Infrastruc-
ture (CLI) applications by applying the compile-only approach. It is available
as open source from ORP [2007], but this version seems to be quite old and does
not reflect the current development version of Intel.

Originally, ORP was designed with two just-in-time compilers: The fast O1
JIT [Adl-Tabatabai et al. 1998] does not use an intermediate representation, but
generates code directly from the bytecodes. The O3 JIT [Cierniak et al. 2000] ap-
plies aggressive optimizations and can also use profile information collected by
O1 compiled methods. Because ORP offers a flexible compiler interface, differ-
ent other compilers were developed. An example is the StarJIT compiler [Adl-
Tabatabai et al. 2003] that generates aggressively optimized code for the Intel
IA-32 and Itanium architectures. It uses an intermediate representation based
on a control-flow graph and instruction triples, as well as architecture-specific
intermediate representations and register allocation algorithms.

The Java HotSpotTM server compiler [Paleczny et al. 2001] focuses on peak
performance for long-running server applications. It shares no code with the
client compiler, but is embedded in the same runtime system. Methods start be-
ing executed by the interpreter that collects profile information. When a method
activation counter reaches a threshold, the method is compiled by the server
compiler using the profile information. The source code of the Sun JDK that is
available for research [Sun Microsystems, Inc. 2006b] and as open source [Open-
JDK 2007] includes both the client and the server compiler.

The server compiler uses a graph-based intermediate representation in static
single assignment form where both control flow and data flow are modeled
by edges between instruction nodes [Click and Paleczny 1995]. The instruc-
tions form a “sea of nodes” without explicit block boundaries. The architecture-
specific low-level intermediate representation uses the same graph-based struc-
ture. Global register allocation is performed by a graph-coloring register
allocator.

6. CONCLUSIONS

We presented the architecture of the Java HotSpotTM client compiler of Sun Mi-
crosystems that is part of the Sun JDK 6. In comparison to previous versions
of the JDK, the architecture has changed substantially: The high-level inter-
mediate representation of the front end now uses SSA form, which facilitates
data-flow optimizations, such as global value numbering. The back end uses the
linear scan algorithm for global value numbering, which produces better code
in less time compared to the old heuristics. Our evaluation demonstrates sig-
nificant speedups for a variety of applications on a multitude of architectures.

We expect that the research of just-in-time compiler optimizations advances
in two directions: Feedback-directed optimizations [Arnold et al. 2005] that
build on profiling data collected at runtime will allow virtual machines to adapt
to the actual workload of applications. Second, the general availability of cheap
multicore processors will probably lead to a revival of long-known algorithms
for automatic parallelization [Allen and Kennedy 2002], with the challenging
problem of making them suitable for just-in-time compilers.

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 1, Article 7, Publication date: May 2008.

7:28 • T. Kotzmann et al.

The client compiler is not only a fast production-quality compiler that is ideal
for desktop applications, but also an excellent basis for research projects. Exem-
plary, this paper presented an overview of dynamic optimizations for the client
compiler that perform escape analysis, object inlining, or array bounds check
elimination. These optimizations make use of the deoptimization framework of
the Java HotSpotTM VM, which allows to undo optimistic optimizations if class
loading invalidates assumptions of the compiler.

APPENDIX SOURCE CODE HINTS

The source code of the Java HotSpotTM VM is available as part of the Java SE 6
Source Snapshot Releases [Sun Microsystems, Inc. 2006b]. This appendix pro-
vides a link between the concepts presented in our paper and the source code
of the virtual machine. The complete VM is contained in one project, which is
located in the directory hotspot/src/ of the download bundle. More details on
the source code as well as compilation examples that show the HIR and LIR
can be found in Wimmer [2004] and Kotzmann [2005].

The source-code files of the client compiler start with the prefix c1 .
All instructions of the HIR (see Section 2.1) are subclasses of the class
Instruction (more than 50 in total). A basic block consists of a linked list of
instructions. The first instruction is always of class BlockBegin and represents
the block itself. The last instruction is a subclass of BlockEnd. For historic rea-
sons, the HIR is mostly referred to as IR in the source code. The instructions of
the HIR can be processed following the visitor design pattern by implementing
a subclass of InstructionVisitor.

During abstract interpretation in the GraphBuilder, the current values of
the local variables and the operand stack are stored in a ValueStack object. All
instructions that can throw an exception or may cause deoptimization maintain
a copy of the value stack. This information is serialized and saved as meta data
of the machine code. It allows the reconstruction of an interpreter stack frame
when deoptimization is necessary at runtime.

The LIR (see Section 2.3) is constructed by the instruction visitor
LIRGenerator. The list of LIR operations, which are subclasses of LIR Op, is
stored in BlockBegin. The LIR operands are encoded efficiently using a mix-
ture of objects and direct representation: Physical registers, virtual registers,
and stack slots are encoded as bit fields, whereas addresses and constants are
represented as objects because they are too large to be encoded in a single in-
teger value. To allow a consistent use of both kinds, the bit fields are directly
encoded as a mock pointer.

Register allocation (see Section 2.4) is implemented in the class LinearScan.
After this, machine code is created by the class LIR Assembler with the help
of a MacroAssembler. To separate the platform-independent code from the code
for a specific platform, the file name of platform-specific files is marked with a
suffix, e.g. i486 or sparc.

A tool that shows the control flow and data flow of the intermediate represen-
tations as well as the lifetime intervals of the register allocator is available as
an open-source project [C1Visualizer 2007]. It parses a log file that is written by

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 1, Article 7, Publication date: May 2008.

Design of the Java HotSpot Client Compiler for Java 6 • 7:29

a special debug version of the Java HotSpotTM VM and visualizes all methods
that are compiled during the execution of a Java application.

All phases of deoptimization (see Section 2.6) are implemented in the class
Deoptimization. It converts a physical stack frame, wrapped by the class frame,
to multiple virtual frames of the class vframe, which represent invocations of
individual Java methods. To interpret the layout of a physical frame and to
determine the inlined methods that it combines, the deoptimization framework
uses the meta data created by the compiler, which consists of ScopeValue objects.

ACKNOWLEDGMENTS

We would like to thank Robert Griesemer and Srdjan Mitrovic for their ini-
tial design of the client compiler and for establishing and supporting the long-
standing research collaboration between Sun Microsystems and the Institute
for System Software, and Thomas Würthinger for the work on array bounds
check elimination. We also thank Robert Griesemer, as well as the anonymous
reviewers, for helpful comments on the paper.

REFERENCES

ADL-TABATABAI, A.-R., CIERNIAK, M., LUEH, G.-Y., PARIKH, V. M., AND STICHNOTH, J. M. 1998. Fast,
effective code generation in a just-in-time Java compiler. In Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and Implementation. ACM Press, New York. 280–
290.

ADL-TABATABAI, A.-R., BHARADWAJ, J., CHEN, D.-Y., GHULOUM, A., MENON, V., MURPHY, B., SERRANO,
M., AND SHPEISMAN, T. 2003. The StarJIT compiler: A dynamic compiler for managed runtime
environments. Intel Tech. J. 7, 1, 19–31.

AGESEN, O., DETLEFS, D., GARTHWAITE, A., KNIPPEL, R., RAMAKRISHNA, Y. S., AND WHITE, D. 1999. An
efficient meta-lock for implementing ubiquitous synchronization. In Proceedings of the ACM
SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications.
ACM Press, New York. 207–222.

ALLEN, J. R. AND KENNEDY, K. 2002. Optimizing compilers for modern architectures. Morgan
Kaufmann Publi., Burlington, MA.

ALPERN, B., ATTANASIO, C.BURLINGTON, MA. R., BARTON, J. J., BURKE, M. G., P.CHENG, CHOI, J.-D.,
COCCHI, A., FINK, S. J., GROVE, D., HIND, M., HUMMEL, S. F., LIEBER, D., LITVINOV, V., MERGEN, M. F.,
NGO, T., RUSSELL, J. R., SARKAR, V., SERRANO, M. J., SHEPHERD, J. C., SMITH, S. E., SREEDHAR, V. C.,
SRINIVASAN, H., AND WHALEY, J. 2000. The Jalapeño virtual machine. IBM Sys. J. 39, 1, 211–
238.

ARNOLD, M., FINK, S. J., GROVE, D., HIND, M., AND SWEENEY, P. F. 2000. Adaptive optimization in the
Jalapeño JVM. In Proceedings of the ACM SIGPLAN Conference on Object-Oriented Programing,
Systems, Languages, and Applications. ACM Press, New York. 47–65.

ARNOLD, M., FINK, S. J., GROVE, D., HIND, M., AND SWEENEY, P. F. 2005. A survey of adaptive opti-
mization in virtual machines. Proc. IEEE 93, 2, 449–466.

BACON, D. F., KONURU, R., MURTHY, C., AND SERRANO, M. 1998. Thin locks: Featherweight synchro-
nization for Java. In Proceedings of the ACM SIGPLAN Conference on Programming Language
Design and Implementation. ACM Press, New York. 258–268.

BLANCHET, B. 2003. Escape analysis for Java: Theory and practice. ACM Trans. Programming
Languages Syst. 25, 6, 713–775.

BODÍK, R., GUPTA, R., AND SARKAR, V. 2000. ABCD: Eliminating array bounds checks on demand.
In Proceedings of the ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation. ACM Press, New York. 321–333.

BOEHM, H.-J., DEMERS, A. J., AND SHENKER, S. 1991. Mostly parallel garbage collection. In Proceed-
ings of the ACM SIGPLAN Conference on Programming Language Design and Implementation.
ACM Press, New York. 157–164.

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 1, Article 7, Publication date: May 2008.

7:30 • T. Kotzmann et al.

BRIGGS, P., COOPER, K. D., AND TORCZON, L. 1994. Improvements to graph coloring register alloca-
tion. ACM Trans. Programming Languages Sys. 16, 3, 428–455.

BRIGGS, P., COOPER, K. D., and SIMPSON, L. T. 1997. Value numbering. Softw. Practice Exp. 27, 6,
701–724.

BURKE, M. G., CHOI, J.-D., FINK, S. J., GROVE, D., HIND, M., SARKAR, V., SERRANO, M. J., SREEDHAR, V. C.,
SRINIVASAN, H., AND WHALEY, J. 1999. The Jalapeño dynamic optimizing compiler for Java. In
Proceedings of the ACM Conference on Java Grande. ACM Press, New York. 129–141.

C1Visualizer 2007. Java HotSpotTM Client Compiler Visualizer. https://c1visualizer.dev.java.
net/.

CHOI, J.-D., GROVE, D., HIND, M., AND SARKAR, V. 1999. Efficient and precise modeling of exceptions
for the analysis of Java programs. In Proceedings of the ACM SIGPLAN-SIGSOFT Workshop on
Program Analysis for Software Tools and Engineering. ACM Press, New York. 21–31.

CHOI, J.-D., GUPTA, M., SERRANO, M. J., SREEDHAR, V. C., AND MIDKIFF, S. P. 2003. Stack allocation
and synchronization optimizations for Java using escape analysis. ACM Trans. Programming
Languages Sys. 25, 6, 876–910.

CIERNIAK, M., LUEH, G.-Y., AND STICHNOTH, J. M. 2000. Practicing JUDO: Java under dynamic op-
timizations. In Proceedings of the ACM SIGPLAN Conference on Programming Language Design
and Implementation. ACM Press, New York. 13–26.

CIERNIAK, M., ENG, M., GLEW, N., LEWIS, B., AND STICHNOTH, J. 2005. The open runtime plat-
form: a flexible high-performance managed runtime environment. Concurrency Comput. Practice
Exp. 17, 5–6, 617–637.

CLICK, C. AND PALECZNY, M. 1995. A simple graph-based intermediate representation. In Papers
from the ACM SIGPLAN Workshop on Intermediate Representations. ACM Press, New York.
35–49.

COWARD, D. 2006. What’s New in Java SE 6. http://java.sun.com/developer/technicalArticles/J2SE/
Desktop/javase6/beta2.html.

CYTRON, R., FERRANTE, J., ROSEN, B. K., WEGMAN, M. N., AND ZADECK, F. K. 1991. Efficiently comput-
ing static single assignment form and the control dependence graph. ACM Trans. Programming
Languages Sys. 13, 4, 451–490.

DEAN, J., GROVE, D., AND CHAMBERS, C. 1995. Optimization of object-oriented programs using static
class hierarchy analysis. In Proceedings of the European Conference on Object-Oriented Program-
ming. LNCS 952, Springer-Verlag, New York. 77–101.

DETLEFS, D. AND AGESEN, O. 1999. Inlining of virtual methods. In Proceedings of the European
Conference on Object-Oriented Programming. LNCS 1628, Springer-Verlag, New York. 258–277.

DOLBY, J. AND CHIEN, A. 2000. An automatic object inlining optimization and its evaluation. In
Proceedings of the ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation. ACM Press, New York. 345–357.

FINK, S. J. AND QIAN, F. 2003. Design, implementation and evaluation of adaptive recompilation
with on-stack replacement. In Proceedings of the International Symposium on Code Generation
and Optimization. IEEE Computer Society, Los Alamitos, CA. 241–252.

GOSLING, J., JOY, B., STEELE, G., AND BRACHA, G. 2005. The Java Language Specification, 3rd ed.
Addison-Wesley, Reading, MA.

GRIESEMER, R. AND MITROVIC, S. 2000. A compiler for the Java HotSpotTM virtual machine. In The
School of Niklaus Wirth: The Art of Simplicity, L. Böszörményi, J. Gutknecht, and G. Pomberger,
Eds. dpunkt.verlag. Heidelberg, Germany, 133–152.

HÖLZLE, U. AND UNGAR, D. 1994. Optimizing dynamically-dispatched calls with runtime type
feedback. In Proceedings of the ACM SIGPLAN Conference on Programming Language Design
and Implementation. ACM Press, New York. 326–336.

HÖLZLE, U., CHAMBERS, C., AND UNGAR, D. 1992. Debugging optimized code with dynamic deopti-
mization. In Proceedings of the ACM SIGPLAN Conference on Programming Language Design
and Implementation. ACM Press, New York. 32–43.

ISHIZAKI, K., TAKEUCHI, M., KAWACHIYA, K., SUGANUMA, T., GOHDA, O., INAGAKI, T., KOSEKI, A., OGATA, K.,
KAWAHITO, M., YASUE, T., OGASAWARA, T., ONODERA, T., KOMATSU, H., AND NAKATANI, T. 2003. Effec-
tiveness of cross-platform optimizations for a Java just-in-time compiler. In Proceedings of the
ACM SIGPLAN Conference on Object-Oriented Programing, Systems, Languages, and Applica-
tions. ACM Press, New York. 187–204.

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 1, Article 7, Publication date: May 2008.

Design of the Java HotSpot Client Compiler for Java 6 • 7:31

Jikes 2007. Jikes RVM. http://jikesrvm.org/.
JONES, R. AND LINS, R. 1996. Garbage Collection: Algorithms for Automatic Dynamic Memory

Management. Wiley, New York.
KAWACHIYA, K., KOSEKI, A., AND ONODERA, T. 2002. Lock reservation: Java locks can mostly do

without atomic operations. In Proceedings of the ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications. ACM Press, New York. 130–141.

KAWAHITO, M., KOMATSU, H., AND NAKATANI, T. 2000. Effective null pointer check elimination uti-
lizing hardware trap. In Proceedings of the International Conference on Architectural Support for
Programming Languages and Operating Systems. ACM Press, New York. 139–149.

KOTZMANN, T. 2005. Escape analysis in the context of dynamic compilation and deoptimization.
Ph.D. thesis, Johannes Kepler University Linz.

KOTZMANN, T. AND MÖSSENBÖCK, H. 2005. Escape analysis in the context of dynamic compilation
and deoptimization. In Proceedings of the ACM/USENIX International Conference on Virtual
Execution Environments. ACM Press, New York. 111–120.

KOTZMANN, T. AND MÖSSENBÖCK, H. 2007. Runtime support for optimizations based on escape
analysis. In Proceedings of the International Symposium on Code Generation and Optimization.
IEEE Computer Society, Los Alamitos, CA. 49–60.

LHOTÁK, O. AND HENDREN, L. 2005. Runtime evaluation of opportunities for object inlining in Java.
Concurrency Comput. Practice Exp. 17, 5–6, 515–537.

LINDHOLM, T. AND YELLIN, F. 1999. The Java Virtual Machine Specification, 2nd ed. Addison-
Wesley, Reading, MA.

MÖSSENBÖCK, H. 2000. Adding static single assignment form and a graph coloring register al-
locator to the Java HotSpotTM client compiler. Tech. Rept. 15, Institute for Practical Computer
Science, Johannes Kepler University Linz.

MÖSSENBÖCK, H. AND PFEIFFER, M. 2002. Linear scan register allocation in the context of SSA form
and register constraints. In Proceedings of the International Conference on Compiler Construc-
tion. LNCS 2304, Springer-Verlag, New York. 229–246.

OpenJDK 2007. Homepage of the Open-Source JDK Community. Sun Microsystems, Inc.
http://openjdk.java.net/.

ORP 2007. Open Runtime Platform. Intel Corp. http://sourceforge.net/projects/orp/.
PALECZNY, M., VICK, C., AND CLICK, C. 2001. The Java HotSpotTM server compiler. In Proceedings

of the Java Virtual Machine Research and Technology Symposium. USENIX. 1–12.
POLETTO, M. AND SARKAR, V. 1999. Linear scan register allocation. ACM Trans. Programming

Languages Sys. 21, 5, 895–913.
POZO, R. AND MILLER, B. 1999. SciMark 2.0. http://math.nist.gov/scimark2/.
PRINTEZIS, T. AND DETLEFS, D. 2000. A generational mostly-concurrent garbage collector. In Pro-

ceedings of the International Symposium on Memory Management. ACM Press, New York. 143–
154.

QIAN, F., HENDREN, L. J., AND VERBRUGGE, C. 2002. A comprehensive approach to array bounds
check elimination for Java. In Proceedings of the International Conference on Compiler Construc-
tion. LNCS 2304. Springer-Verlag, New York. 325–342.

RUSSELL, K. AND DETLEFS, D. 2006. Eliminating synchronization-related atomic operations with
biased locking and bulk rebiasing. In Proceedings of the ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications. ACM Press, New York. 263–272.

SEDGEWICK, R. 1988. Algorithms, 2nd ed. Addison-Wesley, Reading, MA. 441–449.
SHIV, K., IYER, R., NEWBURN, C., DAHLSTEDT, J., LAGERGREN, M., AND LINDHOLM, O. 2003. Impact of

JIT/JVM optimizations on Java application performance. In Proceedings of the 7th workshop
on Interaction Between Compilers and Computer Architectures. IEEE Computer Society, Los
Alamitos, 5–13.

SPEC 1998. The SPECjvm98 Benchmarks. Standard Performance Evaluation Corporation.
http://www.spec.org/jvm98/.

SPEC 2005. The SPECjbb2005 Benchmark. Standard Performance Evaluation Corporation.
http://www.spec.org/jbb2005/.

SUGANUMA, T., OGASAWARA, T., KAWACHIYA, K., TAKEUCHI, M., ISHIZAKI, K., KOSEKI, A., INAGAKI, T., YASUE,
T., KAWAHITO, M., ONODERA, T., KOMATSU, H., AND NAKATANI, T. 2004. Evolution of a Java just-in-
time compiler for IA-32 platforms. IBM J. Res. Develop. 48, 5/6, 767–795.

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 1, Article 7, Publication date: May 2008.

7:32 • T. Kotzmann et al.

SUGANUMA, T., YASUE, T., KAWAHITO, M., KOMATSU, H., AND NAKATANI, T. 2005. Design and evaluation
of dynamic optimizations for a Java just-in-time compiler. ACM Trans. Programming Languages
Sys. 27, 4, 732–785.

Sun Microsystems, Inc. 2006a. The Java HotSpotTM Performance Engine Architecture. Sun Mi-
crosystems, Inc. http://java.sun.com/products/hotspot/whitepaper.html.

Sun Microsystems, Inc. 2006b. Java Platform, Standard Edition 6 Source Snapshot Releases.
Sun Microsystems, Inc. http://download.java.net/jdk6/.

Sun Microsystems, Inc. 2006c. Memory Management in the Java HotSpotTM Virtual Machine.
Sun Microsystems, Inc. http://java.sun.com/j2se/reference/whitepapers/memorymanagement
whitepa per.pdf.

TRAUB, O., HOLLOWAY, G., AND SMITH, M. D. 1998. Quality and speed in linear-scan register allo-
cation. In Proceedings of the ACM SIGPLAN Conference on Programming Language Design and
Implementation. ACM Press, New York. 142–151.

UNGAR, D. 1984. Generation scavenging: A non-disruptive high performance storage reclamation
algorithm. In Proceedings of the ACM SIGSOFT/SIGPLAN Software Engineering Symposium
on Practical Software Development Environments. ACM Press, New York. 157–167.

WIMMER, C. 2004. Linear scan register allocation for the Java HotSpotTM client compiler. M.S.
thesis, Johannes Kepler University Linz.

WIMMER, C. AND MÖSSENBÖCK, H. 2005. Optimized interval splitting in a linear scan register
allocator. In Proceedings of the ACM/USENIX International Conference on Virtual Execution
Environments. ACM Press, New York. 132–141.

WIMMER, C. AND MÖSSENBÖCK, H. 2006. Automatic object colocation based on read barriers. In
Proceedings of the Joint Modular Languages Conference. LNCS 4228, Springer-Verlag, New York.
326–345.

WIMMER, C. AND MÖSSENBÖCK, H. 2007. Automatic feedback-directed object inlining in the Java
HotSpotTM virtual machine. In Proceedings of the ACM/USENIX International Conference on
Virtual Execution Environments. ACM Press, New York. 12–21.

WÜRTHINGER, T., WIMMER, C., AND MÖSSENBÖCK, H. 2007. Array bounds check elimination for the
Java HotSpotTM client compiler. In Proceedings of the International Conference on Principles and
Practice of Programming in Java. ACM Press, New York. 125–133.

Received December 7 2006; revised May 3, 2007 and August 8, 2007; accepted Septmber 8, 2007

ACM Transactions on Architecture and Code Optimization, Vol. 5, No. 1, Article 7, Publication date: May 2008.

