
  

Virtual Machine Showdown:
Stack versus Registers

David Gregg
Software Systems Lab

Yunhe Shi, Kevin Casey (TCD), Anton Ertl (TU Wien)



  

Virtual Machines (VM)
• High-level language VMs

– Popular for implementing programming languages
• Java, C#, Pascal, Perl, Lua

• Program is compiled to virtual machine code
– Similar to real machine code
– But architecture neutral

• VM implemented on all target architectures
– Using interpreter and/or JIT compiler
– Same VM code then runs on all machines



  

Virtual Machines (VM)

• Interpreter is 
program that 
emulates VM

• Just-in-time 
(JIT) compiler 
translates 
bytecode to 
real machine 
code

Java source file

javac compiler

Java bytecode file

Java VM

interpreter JIT compiler



  

Why use interpreters?

• Huge advances in JIT compilers in 
last 15 years
– Faster compilation
– Better optimization

• But interpreters are still hugely 
popular for implementing VMs
– Why do engineers still build 

interpreters?



  

Why build interpreters?
• Speed

– Hybrid JIT/interpreter implementations
– Real-time systems

• Memory
– Size of VM and generated code
– Hybrids, embedded systems, code compression

• Software engineering
– Portability
– Simplicity: cost, correctness
– Safety: sandboxing of executing code
– Tools: debugger, profiler
– Dynamic language features



  

Stack Architecture

• Almost all real computers 
use a register architecture
– Values loaded to registers
– Operated on in registers

• But most popular VMs use 
stack architecture
– Java VM, .NET VM, Pascal P-

code, Perl 5 13
25
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Why stack VMs?

• Code density
– No need to specify register numbers

• Easy to generate stack code
– No register allocation

• No assumptions about number of registers
– ????

• Speed
– May be easier to JIT compile
– May be faster to interpret

• Or maybe not…



  

Which VM interpreter is faster?

• Stack VM interpreters
– Operands are located on stack
– No need to specify location of operands
– No need to load operand locations

• Register VM interpreters
– Fewer VM instructions needed

• Less shuffling of data onto/off stack
– Each VM instruction is more expensive



  

Which VM interpreter is faster? 

• Question debated repeatedly over the 
years
– Many arguments, small examples
– No hard numbers

• Some are confident that answer is 
obvious
– But which answer?



  

VM Interpreters 
• Emulate a virtual instruction set
• Track state of virtual machine

– Virtual instruction pointer (IP)
– Virtual stack

• Array in memory
• With virtual stack pointer (SP)

– Virtual registers
• Array in memory
• No easy way to map virtual registers to real registers in 

an interpreter



  

VM Interpreters
while ( 1 ) {
  ip++;
  opcode = *ip;
  switch ( opcode ) {
    case IADD: *(sp-1) = *sp + *(sp-1); sp--; break;
    case ISUB: *(sp-1) = *sp – *(sp-1); sp--; break;
    case ILOAD_0: *(sp+1) = locals[0]; sp++; break;
    case ISTORE_0: locals[0] = *sp; sp--; break;
    ………
  }
}



  

VM Interpreters
• Dispatch

– Fetch opcode & jump to implementation
– Usually most expensive part of execution
– Unpredictable indirect branch
– Similar cost for both VM types
– But register VM needs fewer dispatches

• Fetch operands
– Locations are explicit in stack machine

• Perform the operation
– Often cheapest part of execution



  

Stack versus registers

• Our register VM
– Simple translation from JVM bytecode
– One byte register numbers

Source code Stack code Register code
a  = b + c; iload b; iadd a, b, c

iload c;
iadd;
istore a;



  

Operand Access
• Stack machine

– Virtual stack in array
– Operands on top of stack
– Stack pointer updates

• Register machine
– Virtual registers in array
– Must fetch operand locations (1-3 extra bytes)

• More loads per VM instruction



  

From Stack to Register
• Translated JVM code to register VM
• Local variables mapped directly

– Local 0 → Register 0
• Stack locations

– Mapped to virtual registers
– Height of stack is always known statically
– Assign numbers to stack locations



  

From Stack to Register

Stack Register Code Comment
Code
iload 4 imove r10, r4 ; load local variable 4
bipush 57 biload r11, 57 ; push immediate 57
iadd iadd r10, r10, r11 ; integer add
istore 6 imove r6, r10 ; store TOS to local 6
iload 6 imove r10, r6 ; load local variable 6
ifeq 7 ifeq r10, 7 ; branch by 7 if TOS==0



  

From Stack to Register
• Clean up register code with classical 

optimizations
– Copy propagation to remove unnecessary 

move operations
– Simple redundancy elimination

• Re-use constants already in registers
• Stack VM consumes its operands so must load 

constants every time it uses them



  

Experimental Setup
• Implemented in Cacao VM
• Method is JIT compiled to register code on 

first invocation
– Results include only executed methods

• Standard benchmarks
– SPECjvm98, Java Grande

• Real implementation wouldn’t translate
– Better generate register code from source
– But translation allows fairer comparison

• Except for translation time



  

Executed VM Instructions
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Increase in bytecode loads



  

Ratio of additional loads to 
eliminated instructions



  

Real machine memory ops
Source Code Stack Code
a = b + c; /* iload c */

*(++sp) = locals[c];

Register Code /* iload b */
/* iadd a, b, c */ *(++sp) = locals[b];
reg[a] = reg[b] + reg[c];

/* iadd */
*(sp-1) = *(sp-1) + *sp;
sp--;

/* istore a */
locals[a] = *(sp--);



  

Reduction in “real machine” loads/stores 
compared with dispatches eliminated



  

Real Running Times
• Hardware platforms

• AMD 64
• Intel P4
• Intel Core 2 Duo
• Digital Alpha
• IBM PowerPC



  

Interpreter Dispatch
• Switch dispatch

• Large case statement in a loop
• Token Threaded dispatch

• Interpreter is set of routines that jump from one 
to another

• Requires table of machine code addresses
• Direct threaded dispatch

• Replace bytecode with sequence of machine code 
addresses

• Inline threaded dispatch
• Simple macro-expanding JIT compiler



  

Speedup of Register VM – AMD64
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AMD64 Event Counters - Compress
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Eliminating more redundant 
expressions

• Stack operations consume their operands
– So very difficult to re-use existing values
– Stack machine must load constants, loop 

invariants repeatedly
– Register machine can store constants, simple 

loop invariants in registers
• What about more complex invariants?

– Repeated loads from the heap
– Requires very sophisticated pointer analysis

• But what if we could do it?



  

Eliminating more redundant expressions 
– speedup on AMD 64
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These results 
are not safe!



  

Summary
• Detailed quantitative results

– 46% reduction in executed VM instructions
– 26% increase in bytecode size
– 25% increase in bytecode loads

• Speedup depends on dispatch scheme
– Speedup 1.48 with switch dispatch on AMD64
– Even with the most efficient dispatch,  1.15 

speedup can still be achieved



  

Real world VMs
• Register vs. stack debate ongoing for 

many years
– Perl 6 VM started in 2000

• Version 1.0 March 2009
• Partially motivated our work

• Some newish register VMs
– Lua 5 VM
– SquirrelFish
– Google Dalvik VM in Android
– Unladen Swallow (??)



  

Conclusions
• Register VM offers faster execution 

of the VM interpreter at the cost of 
greater bytecode size

• Detailed results can be found in  
ACMTACO, January 2008



  

Thank you.



  

Dispatch Comparison – AMD 64
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