

Virtual Machine Showdown:
Stack versus Registers

David Gregg
Software Systems Lab

Yunhe Shi, Kevin Casey (TCD), Anton Ertl (TU Wien)

Virtual Machines (VM)
• High-level language VMs

– Popular for implementing programming languages
• Java, C#, Pascal, Perl, Lua

• Program is compiled to virtual machine code
– Similar to real machine code
– But architecture neutral

• VM implemented on all target architectures
– Using interpreter and/or JIT compiler
– Same VM code then runs on all machines

Virtual Machines (VM)

• Interpreter is
program that
emulates VM

• Just-in-time
(JIT) compiler
translates
bytecode to
real machine
code

Java source file

javac compiler

Java bytecode file

Java VM

interpreter JIT compiler

Why use interpreters?

• Huge advances in JIT compilers in
last 15 years
– Faster compilation
– Better optimization

• But interpreters are still hugely
popular for implementing VMs
– Why do engineers still build

interpreters?

Why build interpreters?
• Speed

– Hybrid JIT/interpreter implementations
– Real-time systems

• Memory
– Size of VM and generated code
– Hybrids, embedded systems, code compression

• Software engineering
– Portability
– Simplicity: cost, correctness
– Safety: sandboxing of executing code
– Tools: debugger, profiler
– Dynamic language features

Stack Architecture

• Almost all real computers
use a register architecture
– Values loaded to registers
– Operated on in registers

• But most popular VMs use
stack architecture
– Java VM, .NET VM, Pascal P-

code, Perl 5 13
25

iadd

sp

iadd r0, r1, r2

r2
1325

r3r1r0 r4

Stack Architecture

• Almost all real computers
use a register architecture
– Values loaded to registers
– Operated on in registers

• But most popular VMs use
stack architecture
– Java VM, .NET VM, Pascal P-

code, Perl 5 38

iadd

sp

iadd r0, r1, r2

r2
1325

r3r1r0 r4
38

Why stack VMs?

• Code density
– No need to specify register numbers

• Easy to generate stack code
– No register allocation

• No assumptions about number of registers
– ????

• Speed
– May be easier to JIT compile
– May be faster to interpret

• Or maybe not…

Which VM interpreter is faster?

• Stack VM interpreters
– Operands are located on stack
– No need to specify location of operands
– No need to load operand locations

• Register VM interpreters
– Fewer VM instructions needed

• Less shuffling of data onto/off stack
– Each VM instruction is more expensive

Which VM interpreter is faster?

• Question debated repeatedly over the
years
– Many arguments, small examples
– No hard numbers

• Some are confident that answer is
obvious
– But which answer?

VM Interpreters
• Emulate a virtual instruction set
• Track state of virtual machine

– Virtual instruction pointer (IP)
– Virtual stack

• Array in memory
• With virtual stack pointer (SP)

– Virtual registers
• Array in memory
• No easy way to map virtual registers to real registers in

an interpreter

VM Interpreters
while (1) {
 ip++;
 opcode = *ip;
 switch (opcode) {
 case IADD: *(sp-1) = *sp + *(sp-1); sp--; break;
 case ISUB: *(sp-1) = *sp – *(sp-1); sp--; break;
 case ILOAD_0: *(sp+1) = locals[0]; sp++; break;
 case ISTORE_0: locals[0] = *sp; sp--; break;
 ………
 }
}

VM Interpreters
• Dispatch

– Fetch opcode & jump to implementation
– Usually most expensive part of execution
– Unpredictable indirect branch
– Similar cost for both VM types
– But register VM needs fewer dispatches

• Fetch operands
– Locations are explicit in stack machine

• Perform the operation
– Often cheapest part of execution

Stack versus registers

• Our register VM
– Simple translation from JVM bytecode
– One byte register numbers

Source code Stack code Register code
a = b + c; iload b; iadd a, b, c

iload c;
iadd;
istore a;

Operand Access
• Stack machine

– Virtual stack in array
– Operands on top of stack
– Stack pointer updates

• Register machine
– Virtual registers in array
– Must fetch operand locations (1-3 extra bytes)

• More loads per VM instruction

From Stack to Register
• Translated JVM code to register VM
• Local variables mapped directly

– Local 0 → Register 0
• Stack locations

– Mapped to virtual registers
– Height of stack is always known statically
– Assign numbers to stack locations

From Stack to Register

Stack Register Code Comment
Code
iload 4 imove r10, r4 ; load local variable 4
bipush 57 biload r11, 57 ; push immediate 57
iadd iadd r10, r10, r11 ; integer add
istore 6 imove r6, r10 ; store TOS to local 6
iload 6 imove r10, r6 ; load local variable 6
ifeq 7 ifeq r10, 7 ; branch by 7 if TOS==0

From Stack to Register
• Clean up register code with classical

optimizations
– Copy propagation to remove unnecessary

move operations
– Simple redundancy elimination

• Re-use constants already in registers
• Stack VM consumes its operands so must load

constants every time it uses them

Experimental Setup
• Implemented in Cacao VM
• Method is JIT compiled to register code on

first invocation
– Results include only executed methods

• Standard benchmarks
– SPECjvm98, Java Grande

• Real implementation wouldn’t translate
– Better generate register code from source
– But translation allows fairer comparison

• Except for translation time

Executed VM Instructions

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Compress

Jess

Db

Javac

Mpegaudio

Mtrt

Jack

MolDyn

RayTracer

Euler

MonteCarlo

Search

Average

Pop Move Eliminated Constant Eliminated Others Eliminated Move Remaining Constant Remaining Others Remaining

Increase in bytecode loads

Ratio of additional loads to
eliminated instructions

Real machine memory ops
Source Code Stack Code
a = b + c; /* iload c */

*(++sp) = locals[c];

Register Code /* iload b */
/* iadd a, b, c */ *(++sp) = locals[b];
reg[a] = reg[b] + reg[c];

/* iadd */
*(sp-1) = *(sp-1) + *sp;
sp--;

/* istore a */
locals[a] = *(sp--);

Reduction in “real machine” loads/stores
compared with dispatches eliminated

Real Running Times
• Hardware platforms

• AMD 64
• Intel P4
• Intel Core 2 Duo
• Digital Alpha
• IBM PowerPC

Interpreter Dispatch
• Switch dispatch

• Large case statement in a loop
• Token Threaded dispatch

• Interpreter is set of routines that jump from one
to another

• Requires table of machine code addresses
• Direct threaded dispatch

• Replace bytecode with sequence of machine code
addresses

• Inline threaded dispatch
• Simple macro-expanding JIT compiler

Speedup of Register VM – AMD64

0.50

1.00

1.50

2.00

Com
pr

es
s

Je
ss Db

Ja
va

c

M
pe

ga
ud

io
M

trt
Ja

ck

M
olD

yn

Ray
Tr

ac
er

Eule
r

M
on

te
Car

lo

Sea
rc

h

Ave
ra

ge

Inline Threaded Direct Threaded Token Threaded Switch

AMD64 Event Counters - Compress

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Data cache
accesses
(*100B)

Data cache
misses (*200M)

Instruction cache
fetches (*200B)

Instruction cache
misses (*2M)

Retired taken
branches (*25B)

Retired taken
branches

mispredicted
(*25B)

Retired
instructions

(*160B)

Register Inline Threaded Stack Inline Threaded Register Direct Threaded

Stack Direct Threaded Register Switch Stack Switch

Eliminating more redundant
expressions

• Stack operations consume their operands
– So very difficult to re-use existing values
– Stack machine must load constants, loop

invariants repeatedly
– Register machine can store constants, simple

loop invariants in registers
• What about more complex invariants?

– Repeated loads from the heap
– Requires very sophisticated pointer analysis

• But what if we could do it?

Eliminating more redundant expressions
– speedup on AMD 64

0.50

1.00

1.50

2.00

2.50

3.00

Com
pr

es
s

Je
ss Db

Ja
va

c

M
pe

ga
ud

io
M

trt
Ja

ck

M
olD

yn

Ray
Tr

ac
er

Eule
r

M
on

te
Car

lo

Sea
rc

h

Ave
ra

ge

Inline Threaded Direct Threaded Token Threaded Switch

These results
are not safe!

Summary
• Detailed quantitative results

– 46% reduction in executed VM instructions
– 26% increase in bytecode size
– 25% increase in bytecode loads

• Speedup depends on dispatch scheme
– Speedup 1.48 with switch dispatch on AMD64
– Even with the most efficient dispatch, 1.15

speedup can still be achieved

Real world VMs
• Register vs. stack debate ongoing for

many years
– Perl 6 VM started in 2000

• Version 1.0 March 2009
• Partially motivated our work

• Some newish register VMs
– Lua 5 VM
– SquirrelFish
– Google Dalvik VM in Android
– Unladen Swallow (??)

Conclusions
• Register VM offers faster execution

of the VM interpreter at the cost of
greater bytecode size

• Detailed results can be found in
ACMTACO, January 2008

Thank you.

Dispatch Comparison – AMD 64

0.0

1.0

2.0

3.0

4.0

5.0

6.0

Com
pr

es
s

Je
ss Db

Ja
va

c

M
pe

ga
ud

io
M

trt
Ja

ck

M
olD

yn

Ray
Tr

ac
er

Eule
r

M
on

te
Car

lo

Sea
rc

h

Ave
ra

ge

Register inline-threaded Register direct-threaded Register token-threaded

Register switch Stack inline-threaded Stack direct-threaded

Stack token-threaded Stack switch SUN JDK 1.6.0 (Intrp. Only)

