Virtual Machine Showdown:
Stack versus Registers

David Gregg

Software Systems Lab

Yunhe Shi, Kevin Casey (TCD), Anton Ertl (TU Wien)

Virtual Machines (VM)

* High-level language VMs

- Popular for implementing programming languages
- Java, C#, Pascal, Perl, Lua

* Program is compiled to virtual machine code
- Similar to real machine code
- But architecture neutral

* VM implemented on all target architectures
- Using interpreter and/or JIT compiler
- Same VM code then runs on all machines

Virtual Machines (VM)

Java source file

'

javac compiler

!

Java byirecode file

Java VM

éi”*e'"P'“eTeP JIT compileré

* Interpreter is

program that
emulates VM

- Just-in-time

(JIT) compiler
translates
bytecode to
real machine
code

Why use interpreters?

* Huge advances in JIT compilers in
last 15 years

- Faster compilation

- Better optimization

» But interpreters are still hugely
popular for implementing VMs

- Why do engineers still build
Interpreters?

Why build interpreters?

+ Speed
- Hybrid JIT/interpreter implementations
- Real-time systems

* Memory
- Size of VM and generated code
- Hybrids, embedded systems, code compression

+ Software engineering

- Portability

- Simplicity: cost, correctness

- Safety: sandboxing of executing code
- Tools: debugger, profiler

- Dynamic language features

Stack Architecture

+ Almost all real computers
use a register architecture
- Values loaded to registers

- Operated on in registers

» But most popular VMs use
stack architecture

- Java VM, .NET VM, Pascal P-
code, Perl 5

rOrl r2 r3 r4

25

13

iadd rO, rl, r2

13

iadd

“— Sp

25

Stack Architecture

+ Almost all real computers
use a register architecture
- Values loaded to registers

- Operated on in registers

» But most popular VMs use
stack architecture

- Java VM, .NET VM, Pascal P-
code, Perl 5

rOrl r2 r3 r4

38

25

13

iadd rO, rl, r2

38

iadd

<+ Sp

Why stack VMs?

» Code density
- No need to specify register numbers

+ Easy to generate stack code
- No register allocation

* No assumptions about number of registers
- 2777

+ Speed

- May be easier to JIT compile

- May be faster to interpret
- Or maybe not...

Which VM interpreter is faster?

+ Stack VM interpreters
- Operands are located on stack
- No need to specify location of operands
- No need to load operand locations

* Register VM interpreters

- Fewer VM instructions needed
+ Less shuffling of data onto/off stack

- Each VM instruction is more expensive

Which VM interpreter is faster?

* Question debated repeatedly over the
years

- Many arguments, small examples
- No hard numbers
- Some are confident that answer is
obvious
- But which answer?

VM Interpreters

- Emulate a virtual instruction set

* Track state of virtual machine
- Virtual instruction pointer (IP)

- Virtual stack
* Array in memory
+ With virtual stack pointer (SP)

- Virtual registers

 Array in memory

* No easy way to map virtual registers to real registers in
an interpreter

VM Interpreters

while (1) {

ip++;

opcode = *ip;

switch (opcode) {
case IADD: *(sp-1) = *sp + *(sp-1); sp--; break;
case ISUB: *(sp-1) = *sp — *(sp-1); sp--; break;
case ILOAD_O: *(sp+1) = locals[0]; sp++; break;
case ISTORE_O0: locals[0] = *sp; sp--; break;

VM Interpreters
- Dispatch

- Fetch opcode & jump to implementation

- Usually most expensive part of execution
- Unpredictable indirect branch

- Similar cost for both VM types

- But register VM needs fewer dispatches

» Fetch operands
- Locations are explicit in stack machine

* Perform the operation
- Often cheapest part of execution

Stack versus registers

* Our register VM

- Simple translation from JVM bytecode
- One byte register numbers

Source code Stack code Register code
a =b+c; iload b; iadd a, b, ¢
iload c;
iadd;

Istore q;

Operand Access

- Stack machine

- Virtual stack in array
- Operands on top of stack
- Stack pointer updates

* Register machine
- Virtual registers in array

- Must fetch operand locations (1-3 extra bytes)
* More loads per VM instruction

From Stack to Register

» Translated JVM code to register VM
* Local variables mapped directly

- Local 0 — Register O

» Stack locations

- Mapped to virtual registers

- Height of stack is always known statically
- Assign numbers to stack locations

From Stack to Register

Stack
Code
iload 4
bipush 57
iadd
istore 6
iload 6
ifeq 7

Register Code

imove rl10, r4
biload r11, 57
iadd r10, r10, rl11
imove ré6, rl10
imove rl0, ré
ifeq r10,7

Comment

; load local variable 4

; push immediate 57

; integer add

; store TOS to local 6

; load local variable 6

; branch by 7 if TOS==0

From Stack to Register

» Clean up register code with classical
optimizations
- Copy propagation to remove unnecessary
move operations

- Simple redundancy elimination

* Re-use constants already in registers

- Stack VM consumes its operands so must load
constants every time it uses them

Experimental Setup

+ Implemented in Cacao VM

* Method is JIT compiled to register code on
first invocation

- Results include only executed methods

- Standard benchmarks

- SPECjvm98, Java Grande

* Real implementation wouldn't translate
- Better generate register code from source

- But translation allows fairer comparison
- Except for translation time

Executed VM Instructions

Average

Search N |

MonteCarlo

Euler
RayTracer
MolDyn
Jack

Mtrt

Mpegaudio [1

Javac

Db

Jess

Compress

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

OPop EMove Eliminated O Constant Eliminated O Others Eliminated B Move Remaining O Constant Remaining B Others Remaining

1.6

Increase in bytecode loads

1.4

1.2 Il

0.8 +

&
KR 2l o
~ < N

\D Code Size H Bytecode Load \

Ratio of additional loads to
eliminated instructions

2.50

2.00

1.50

1.00

0.50 —

0.00

Real machine memory ops

Source Code
a=b+c;

Register Code
/*iadd a, b, c */
reg[a] = reg[b] + reg[c]

Stack Code
/* iload ¢ */
*(++sp) = locals[c];

/* iload b */
*(++sp) = locals[b];

/* iadd */
*(sp-1) = *(sp-1) + *sp;
sp--;

/* istore a */
locals[a] = *(sp--):

Reduction in “real machine" loads/stores
compared with dispatches eliminated

2.50

2.00 -

1.50 -
1.00 -
0.50 -+ I
0.00 -

] ¢ 3 o

o »N
()o @Q Q~0 @0

Real Running Times

» Hardware platforms
+ AMD 64
* Intel P4
* Intel Core 2 Duo
+ Digital Alpha
»+ IBM PowerPC

Interpreter Dispatch

» Switch dispatch
* Large case statement in a loop

+ Token Threaded dispatch

+ Interpreter is set of routines that jump from one
to another

* Requires table of machine code addresses

* Direct threaded dispatch

* Replace bytecode with sequence of machine code
addresses

* Inline threaded dispatch
- Simple macro-expanding JIT compiler

Speedup of Register VM - AMD64

2.00

1.50

1.00

> \O N & ¢ \Q} N\
5@ q{o\)b A\ N O\Q* Y Q/\) &4
Q

@Q Q_ﬁb @O(\

\I:l Inline Threaded M Direct Threaded O Token Threaded O Switch ‘

AMD64 Event Counters - Compress

1.2

1.0 [] — —

0.8 |7 |_

0.6

0.4 -

0.2 +

0.0 ‘ ‘ ’7
Data cache Data cache Instruction cache Instruction cache Retired taken Retired taken Retired
accesses misses (*200M) fetches (*200B) misses (*2M) branches (*25B) branches instructions

(*100B) mispredicted (*160B)
(*25B)

O Register Inline Threaded B Stack Inline Threaded O Register Direct Threaded
OStack Direct Threaded B Register Switch O Stack Switch

Eliminating more redundant

expressions

+ Stack operations consume their operands
- So very difficult to re-use existing values

- Stack machine must load constants, loop
invariants repeatedly

- Register machine can store constants, simple
loop invariants in registers

* What about more complex invariants?
- Repeated loads from the heap

- Requires very sophisticated pointer analysis
* But what if we could do it?

Eliminating more redundant expressions
- speedup on AMD 64

| The%e results
arejno -

t safe!

1.50 —
) 7 7 7 7 7 ﬂ 7 7 7 7 7 7
O 50 T T T T T T T T T T T
& e) & O < & NS & &
¢ N N T S
Q@ %) Q)
Q
O lnli 1]

Summary

» Detailed quantitative results
- 46% reduction in executed VM instructions
- 26% increase in bytecode size
- 25% increase in bytecode loads

» Speedup depends on dispatch scheme

- Speedup 1.48 with switch dispatch on AMD64

- Even with the most efficient dispatch, 1.15
speedup can still be achieved

Real world VMs

» Register vs. stack debate ongoing for
many years

- Perl 6 VM started in 2000
* Version 1.0 March 2009
* Partially motivated our work

+ Some newish register VMs
- Lua 5 VM

- SquirrelFish

- Google Dalvik VM in Android
- Unladen Swallow (??)

Conclusions

+ Register VM offers faster execution
of the VM interpreter at the cost of
greater bytecode size

- Detailed results can be found in
ACMTACO, January 2008

Thank you.

6.0

Dispatch Comparison - AMD 64

5.0

3.0

2.0

O ’bo WO
Q 5@4 006
D

@Q

N
O\Q\

O Register inline-threaded
O Register switch
B Stack token-threaded

B Register direct-threaded
B Stack inline-threaded
O Stack switch

O Register token-threaded
O Stack direct-threaded
B SUN JDK 1.6.0 (Intrp. Only)

