Compilation Techniques for Multimedia Processors

Andreas Krall and Sylvain Lelait

Institut für Computersprachen
Technische Universität Wien
Argentinierstraße 8
A-1040 Wien, Austria

{andi, sylvain}@complang.tuwien.ac.at

Abstract

The huge processing power needed by multimedia applications has led to multimedia extensions in the instruction set of microprocessors which exploit subword parallelism. Examples of these extended instruction sets are the Visual Instruction Set of the UltraSPARC processor, the AltiVec instruction set of the PowerPC processor, the MMX and ISS extensions of the Pentium processors, and the MAX-2 instruction set of the HP PA-RISC processor. Currently, these extensions can only be used by programs written in assembly language, through system libraries or by calling specialized macros in a high-level language. Therefore, these instructions are not used by most applications.

We propose two code generation techniques to produce native code using these multimedia extensions for programs written in a high level language: classical vectorization and vectorization by unrolling. Vectorization by unrolling is simpler than classical vectorization since data dependence analysis is reduced to acyclic control flow graph analysis. Furthermore, we address the problem of unaligned memory accesses. This can be handled by both static analysis and dynamic run time checking. Preliminary experimental results for a code generator for the UltraSPARC VIS instruction set show that speedups of up to a factor of 4.8 are possible, and that vectorization by unrolling is much simpler but as effective as classical vectorization.