CACAO - A 64 bit JavaVM Just-in-Time Compiler

Andreas Krall and Reinhard Grafl
Institut fiir Computersprachen
Technische Universitat Wien
Argentinierstrafie 8
A-1040 Wien
http://www.complang.tuwien.ac.at/andi/

Abstract

This article describes the design and implementation of
CACAQ, ajust in time compiler for Java. The CACAO
system translates Java byte code on demand into native
code for the ALPHA processor. During this transla-
tion process the stack oriented Java byte code 1s trans-
formed into a register oriented intermediate code. Lo-
cal variables and stack locations are replaced by pseudo
registers eliminating the 32 bit restriction on address
types. A fast register allocation algorithm is applied to
map the pseudo registers to machine registers. During
code generation, field offsets are computed for proper
alignment on 64 bit architectures. Even though the
CACAQ system has to incur loading and compilation
time, it executes Java programs up to 85 times faster
than the JDK interpreter, up to 7 times faster than the
kaffe JIT compiler. It is slightly slower than equivalent
C programs compiled at the highest optimization level.

1 Introduction

Java’s [AGI6] success as a programming language re-
sults from its role as an Internet programming lan-
guage. The basis for this success i1s the machine inde-
pendent distribution format of programs with the Java
virtual machine [LY96]. The standard interpretive im-
plementation of the Java virtual machine makes execu-
tion of programs slow. This does not matter if small
applications are executed in a browser, but becomes
intolerable if big applications are executed. There are
two solutions to solve this problem:

e specialized JavaVM processors,

e compilation of byte code to the native code of a
standard processor.

SUN took both paths and is developing both Java
processors and native code compilers. We chose to go

for native code compilation since it is more portable
and gives more opportunities for improving the execu-
tion speed. Compiling to native code can be done in
two different ways: compilation of the complete pro-
gram in advance or compilation on demand of only the
functions which are executed (just in time compiler,
JIT). Our JIT compiler is described in detail in [Gra97]
(in German) and is freely available via the world wide
web.

1.1 Previous Work

The idea of machine independent program represen-
tations is quite old and goes back to the year 1960
[TBS61]. An intermediate language UNCOL (UNiver-
sal Computer Oriented Language) was proposed for
use 1n compilers to reduce the development effort of
compiling many different languages to many different
architectures. The design of the JavaVM has been
strongly influenced by P code, the abstract machine
used by many Pascal implementations [PD82]. P code
is well known from its use in the UCSD Pascal system.
There have even been efforts to develop microproces-
sors which execute P code directly.

The Amsterdam compiler kit [TvSKS83] [TKLJ89]
uses a stack oriented intermediate language. This lan-
guage has been designed for fast compilers which emit
efficient code. The intermediate representation of the
Gardens Point compiler project is also based on a stack
machine called Deode [Gou97]. Dcode was influenced
by Pascal P code. Both Dcode interpreters and code
generators for different architectures exist.

The problems of compiling a stack oriented abstract
machine code to native code are well known from the
programming language Forth. In [Ert92] and his thesis
[Ert96] Ertl describes RAFTS, a Forth system that gen-
erates native code at run time. Translating the stack
operations to native code is done by translating the
operations back to expressions represented as directed
acyclic graphs as an intermediate step. In [EM95] he



translates Forth to native code using C as an interme-
diate language. In this system the stack slots are trans-
lated to local variables of a function. Optimization and
code generation are performed by the C compiler.

In his thesis [Fra94], Franz claims that generating
native code on the fly at load time 1s faster than loading
a much bigger native code image from a floppy or hard
disk. Franz uses a compressed representation of the
abstract syntax tree as an intermediate representation.
Generating native code is so fast that this idea has been
extended to dynamic run time reoptimization [Kis97].
Specializing and optimizing code at run time is also
performed in the Self system [US87] and in some Prolog
systems [KB95].

The first implementations of JIT compilers became
available last year for the browsers from Netscape and
Microsoft on PCs. They were followed by Syman-
tec’s development environment. Recently SUN released
a JIT compiler for the Sparc and PowerPC proces-
sors. Silicon Graphics developed a JIT compiler for
the MIPS processor.

A public domain JIT compiler for several architec-
tures is the kaffe system developed by Tim Wilkinson
(http://wuw.kaffe.org/). For all the above men-
tioned systems, no publicly available description of the
compilation techniques exists.

The translation scheme of the Caffeine system is de-
scribed in [HGmWH96]. Tt supports both a simple
translation scheme which emulates the stack architec-
ture and a more sophisticated one which eliminates the
stack completely and uses registers instead. Caffeine is
not intended as a JIT compiler. It compiles a complete
program in advance. DAISY (Dynamically Architected
Instruction Set from Yorktown) is a VLIW architecture
developed at IBM for fast execution of x86, PowerPC,
S/390 and JavaVM code. Compatibility with different
old architectures is achieved by using a JIT compila-
tion technique. The JIT compilation scheme for the

JavaVM is described in [EAH9T].

2 The Java Virtual Machine

The JavaVM is a typed stack architecture [LY96].
There are different instructions for integer, long inte-
ger, floating point and address types. Byte and charac-
ter types have only special memory access instructions
and are treated as integers for arithmetic operations.
The main instruction set consists of arithmetic/logical
and load/store/constant instructions. There are spe-
cial instructions for array access and for accessing the
fields of objects (memory access), for method invoca-
tion, function call and type checking. A JavaVM has
to check the program for type correctness and executes

only correct programs. The following examples show
some important JavaVM instructions and how a Java
program is represented by these instructions.

iconstx push integer constant with value x
iload n  load contents of local variable n
istore n store stack top in local variable n
iadd sum of two topmost stack elements
imul product of 2 topmost stack elements

The Java assignment statement a = b + ¢ is trans-
lated into

iload b ; load contents of variable b
iload ¢ ; load contents of variable c
iadd ; compute b + ¢

istore a ; store stack top in variable a

Figure 1 shows the contents of the stack before and
after execution of each instruction. Prior to the first
instruction, and after the last instruction, the stack is
empty.

b b b+ ¢
iload ¢ iadd

iload b istore a

Figure 1: JavaVM stack operations

The iload b instruction pushes the contents of the
local variable b onto the stack. iload ¢ works in a
similar way. iadd adds the two elements at the top of
the stack, pops these two values and pushes the sum
onto the stack. The istore a writes the value at the
topmost stack position into the local variable a and
pops this value.

Accessing the fields of objects 1s handled by the in-
structions getfield and putfield. getfield expects
an object reference on the stack and has an index into
the constant pool as an operand. The index into the
constant pool must be a reference to a pair contain-
ing the class name and a field name. The types of the
classes referenced by the constant pool index and by
the object reference must be compatible, a fact which
is usually checked statically at load time. The object
reference has to be different from the null pointer, a
fact which must usually be checked at run time.

Array access is handled by the aload and astore
instructions. Separate versions of these instructions
exist for each of the basic types (byte, int, float,
ref, etc.). The aload instruction expects a reference



to an array and an index (of type int) on the stack.
The array reference must not be the null pointer. The
index must be greater than or equal to zero and less
than the array length.

The Java method invocation o.print(a + 3); is
translated into

aload o ; load object pointer o

iload a ; load contents of variable a
iconst_3 ; push constant 3

iadd ; compute a + 3

invokevirtual print ; call o.print

a a a+ 3

o o o o

aload o iload a iconst_3 iadd invoke

Figure 2: JavaVM method invocation

Figure 2 shows the contents of the stack for a method
invocation. Each method has its own virtual stack and
an area for local variables. After the method invoca-
tion, the stack of the caller is empty and the arguments
are copied into the first local variables of the called
method. After execution of a return instruction, the
called method returns to its caller. If the called method
is a function, it pops the return value from its own stack
and pushes it onto the stack of the caller.

Only the behavior of the invoke and return instruc-
tions has been described. The concrete implementation
is defined by the implementor of the abstract machine.
One possible approach is to pass arguments via the
stack and, instead of copying the arguments to the lo-
cal variables, simply to adjust the stack pointer accord-
ingly. Another solution is to pass the arguments via a
register interface and use register windows or register
coloring to achieve efficient parameter passing.

The instanceof and checkcast instructions are
used for subtype testing. Both expect a reference to
an object on the stack and have an index into the con-
stant pool as operand. The index must reference a
class, array or interface type. The two instructions dif-
fer in their result and in their behavior if the object
reference is null.

The Java compiler computes the variable slots for
local variables. Variables which are not simultaneously
active are allowed to share the same slot. Variables of
type long use two 32 bit sized slots. All other types
including addresses use one slot.

3 Translation to Register Form

The architecture of a RISC processor is completely dif-
ferent from the stack architecture of the JavaVM. RISC
processors have large sets of registers. (The Alpha has
32 integer registers and 32 floating point registers which
are both 64 bits wide.) They execute arithmetic and
logic operations only on values which are held in regis-
ters. Load and store instructions are provided to move
data between memory and registers. Local variables
of methods usually reside in registers and are saved in
memory only during a method call or if there are too
few registers.

If JavaVM code is translated to machine code, the
stack is eliminated and temporary registers replace the
stack slots.

3.1 Machine code translation examples

The example expression a = b * ¢ + d has the

JavaVM code

iload b ; load contents of variable b
iload ¢ ; load contents of variable ¢
imul ; compute b * ¢

iload d ; load contents of variable d
iadd ; compute (b * ¢) + d

istore a ; store stack top in variable a

and will be translated to the following two Alpha in-
structions (the variables a, b, ¢ and d reside in regis-
ters):

MULL b,c,tmp0 ; tmp0 = b * ¢
ADDL tmpO,d,a ; a = tmp0 + d

3.2 Intermediate representation

The CACAO system does the translation to machine
code 1n four steps. First, basic blocks are determined.
Then, the JavaVM is translated into a register oriented
intermediate representation, the registers are allocated,
and finally machine code is generated. The intermedi-
ate representation is oriented towards a RISC archi-
tecture target and assumes that all operands are in
registers (assuming an unlimited number of registers).
In the following, all the intermediate code instructions
are covered.

LOADCONST (type) #value —> dest
writes a constant value of the specified type (int,
long, float, double, address) into the destination
register.



MOVE (type) src => dest
copies the source register into the destination reg-
ister.

OP1 (operator) src => dest
executes an operation with one source and one des-
tination register. The operator defines the kind
and type of operation (e.g. INEG).

0P2 (operator) srcl, src2 => dest
is similar to OP1, but with 2 source registers (e.g.
TADD).

OP3 (operator) srcl, src2, srcd —> source
is similar to OP1, but with 3 source registers.

MEM (LOAD) (type) offset (src) —> dest

MEM (STORE) (type) src2 > offset (srcl)
loads a value from memory into a register or stores
a register into memory. The type specifies the type
of the memory operation.

BRA (operator) address srcl src2 => dest
1s used for all kinds of branch and jump instruc-
tions, as specified by operator. The address refer-
ences a target basic block.

TABLEJUMP (table) src
is used for branching via a jump table.

METHOD (op) (descriptor) srcl, ... => dest, exception
is used for all kind of method invocations as
specified by op (INVOKESTATIC, INVOKESPECIAL,
INVOKEVIRTUAL,INVOKEINTERFACE) Parameters
for the method are passed using an unlimited num-
ber of registers. The return value of the method
is written into the destination register.

DROP register
is a pseudo instruction telling the register allocator
that the register is no longer used.

ACTIVATE register
1s the opposite instruction to DROP.

3.3 Translation scheme

The second pass of the compiler translates each
JavaVM load or store instruction into a correspond-
ing intermediate code MOVE instruction using a new reg-
ister as the destination register in the case of a load.
Always using a new register yields code in a simi-
lar form to static single assignment form [CFR*91],
which is commonly used for compiler optimizations. A
JavaVM iadd instruction is translated into a OP2 in-
struction, again using a new destination register.

This naive translation scheme would generate many
MOVE instructions. Therefore MOVE instructions are gen-
erated lazily. The translator keeps a table which tracks
which registers should contain the same values. Instead
of generating a MOVE instruction, the translator enters
the register into the table. If the translator should later
generate a DROP instruction, it deletes the register from
the table. When the end of a basic block is reached,
the corresponding MOVE instruction is generated for all
registers remaining in the table. But for most basic
blocks, the stack, and therefore the register table, is
empty at the end or else the registers are compatible
with the dependent basic blocks.

The example expression a = b * ¢ + d with the

JavaVM code

iload b ; load contents of variable b
iload ¢ ; load contents of variable ¢
imul ; compute b * ¢

iload d ; load contents of variable d
iadd ; compute (b * ¢) + d

istore a ; store stack top in variable a

will be translated into the following intermediate code:

OP2(IMUL) b, c, t2 ; t0 == b, t1 == ¢
OP2(IADD) t2, d, a ; t3 == d, t4 == a

The iload b instruction does not generate a MOVE
instruction for moving local variable b to stack location
t0. It just marks in the register table that register
t0 and b are equal. Similarly the iload c instruction
marks the equivalence of t1 and ¢. In this example, all
load and store instructions are eliminated. Registers
t0, t1, t2, t3 and t4 may have existed in the register
table for some time, but no MOVE instruction has been
generated.

At a control flow join of two basic blocks where the
stack 1s not empty and the stack slots are represented
by different registers, a MOVE instruction is generated
in one of the basic blocks. The register allocator tries
to assign the same hardware register to the same stack
slots so that the MOVE instruction can be eliminated.

3.4 Register allocation

Because a just in time compiler generates code at run
time, it must be fast. Expensive register allocation
algorithms, like graph coloring, cannot be used. We
therefore designed a simple and fast scheme.

There are two different sets of registers: registers
for stack slots and registers for local variables. First,
registers for stack slots are assigned. Afterwards, the



object pointer

object

class

code

winterfaces

method pointer

method code

method pointer

wnstance data

method pointer

method code

class info

method pointer

winterface pointer

method pointer |—

class pointer

|

winterface pointer

method code

method pointer

—

Figure 3: CACAO object and compact class descriptor layout

code

class

method code

object

wnstance data

method pointer

method pointer

method pointer

method code

class info

object pointer

|

class pointer

tfmethod pointer

tfmethod pointer

method code

Figure 4: CACAOQ object and fast class descriptor layout

remaining registers are assigned to the local variables
which are active in the complete method.

All registers are assigned to a CPU register at the
beginning of a basic block. An existing allocation is
left unchanged. The allocator scans the instructions
and, for each instruction which activates a register and
to which no CPU register has been assigned, a new
CPU register is selected. If the allocator has run out
of CPU registers, the register is spilled to memory.

There exist some conventions for the assignment of
registers when calling methods. To prevent unneces-
sary copy instructions at a method call prior to the
allocation pass, pseudo registers which are method pa-
rameters or return values are assigned the correct reg-
ister (pre-coloring).

4 The Complete System

Generation of native code is only a small part of the
complete CACAQ system. The run time system is a
major part. The run time system of the JDK is writ-
ten mainly in Java and is distributed as class files. The
Java methods call some native functions which we im-
plemented for the ALPHA and which are contained

in the CACAO system. The following subsections de-
scribe concepts of CACAQO which are not directly re-
lated to code generation.

4.1 Object layout

The CACAO object and class descriptor layout has
been designed for fast access and low memory con-
sumption (see fig. 3). The SUN JDK represents an
object by a cell with two pointers: the first points to
the instance data of the object, the second to the class
descriptor [HGmWH96]. Our representation eliminates
one unnecessary indirection by having the object itself
contain the pointer to the class descriptor and the in-
stance data. The Alpha architecture requires pointers
to be 64 bits. Therefore field offsets in objects are com-
puted to obtain correct 64 bit alignment of references,
long integers and double floating point values. Since
Alpha processors do not support 8 bit and 16 bit loads
or stores, bytes and shorts are stored as 32 bit quanti-
ties aligned on 32 bit boundaries. Only byte, character
and short arrays are stored in a compact representation
since they can be large, and the saving in memory is
worth the more expensive access.

In addition to other information, the class descrip-



tion contains the virtual function table. To call a
method, two memory access instructions are necessary
(load the class pointer, load the method pointer) fol-
lowed by the call instruction. Java supports multiple
subtyping via interfaces. Currently we are changing
the representation for interfaces. The original repre-
sentation (see fig. 3) needs one additional indirection,
but usually consumes less space. In this compact lay-
out scheme, the class table contains, at negative offsets,
the interface table containing pointers to the interface
virtual function tables.

In the faster scheme, we store interface methods in
an additional table at negative offsets from the class
pointer (see fig. 4). Segregating the interface virtual
function table keeps the standard virtual function ta-
ble small and allows interface methods to be called with
just two memory accesses. The memory consumption
of virtual function tables containing interface and class
methods would be number of (classes + interfaces) *
number of distinct methods. The memory consumption
of the interface tables is only number of classes which
implement interfaces * number of interface methods.
We use coloring to reduce the number of distinct off-
sets for interface methods further. Compaction meth-
ods which reduce the size of the interface tables as
described in [VH96] would increase the interface call
overhead.

4.2 Method layout

The code of a method needs access to constants (mostly
address constants). Since a global constant table would
be too large for short addressing ranges and, because
methods are compiled on demand, every method has
its own constant area which is allocated directly before
the start of the method code (see fig. 5). A register
is reserved which contains the method pointer. The
constants are addressed relative to the method pointer.

code

method pointer
constants

Figure 5: CACAO method layout

During a method call, the method pointer of the
calling method 1s destroyed, but the return address is
stored in a register which is preserved during execution
of the called method and has to be used for returning
from the method. After a method return, the method
pointer of the calling method is recomputed using the

return address. The following code for a method call
demonstrates the method calling convention:

LDQ cp, (obj) ; load class pointer
LDQ mp,met(cp) ; load method pointer
JSR ra, (mp) ; call method

LDA mp=ratoffset ; recompute method pointer

4.3 Just in time compilation

Machine code can be generated at either load time or
at run time when a method is called. Compilation at
load time simplifies the compiler and gives more oppor-
tunities for optimization. The drawback 1s that many
methods are compiled which are never used. Therefore,
CACAQ translates methods just in time when they are
called.

When class files are loaded, the virtual function
tables and the interface tables are initialised with a
pointer to a stub routine which invokes the compiler.
This stub routine can determine its caller and invokes
the compiler with the corresponding data. After the
compiler has finished translating the method, it up-
dates the method pointer in the virtual function table.
The same method can be reached by different virtual
function tables. The compiler only updates the table
entry of the caller. But if the compiler is invoked, it
determines if code has already been generated. In that
case, it only updates the pointer in the virtual func-
tion table. Thereafter, the newly generated code is
executed.

For static functions the address of the function is
stored in the constant area of a method. Neither the
address of a virtual function, nor a static function are
stored in the code area. This makes the updating of the
address easy and prevents performance degradation of
instruction caches.

4.4 Exception handling

The use of exception handling is quite common in
Java. Typical exceptions are references to the null
pointer, array index out of bounds or division by zero.
To achieve portability across different architectures,
checks are inserted at appropriate places. For exam-
ple, before accessing a field of an object, the object
reference 1s checked against zero. This is implemented
by a single branch instruction which branches to the
exception code. Because the branch is easy to predict,
it executes very fast on modern processors. An array
bound check is an unsigned comparison of the index



| Javal.ex | javac | espresso | Toba | java_cup

runtime on SparcStation 20 (in seconds)

JDK 176.3 45.0 24.9 59.8 8.3
GUAVA 80.8 17.8 - 36.8 6.2
TOBA 38.8 12.8 4.9 20.1 2.9

runtime on 21064A 300MHz (in seconds)
JDK 29.8 18.5 8.7 32.1 3.5
kaffe 9.9 17.8 12.5 - 2.98
CACAQ total 2.65 4.74 3.17 4.58 1.52
load 0.18 0.61 0.38 0.18 0.21
compile 0.39 1.21 0.91 0.55 0.81
run 2.08 2.92 1.88 3.85 0.50

number of compiled JavaVM instructions
| 13412 [ 34759 | 27281 | 14430 [ 17489

speedup with respect to interpreter

speedup JDK/GUAVA 2.18 2.53 - 1.62 1.34
speedup JDK/TOBA 4.54 3.51 5.08 2.98 2.86
speedup JDK /kaffe 3.01 1.04 0.7 - 1.17
speedup JDK/CACAO 11.24 3.90 2.74 7.01 2.30

Table 1: comparison between JDK, GUAVA, TOBA and CACAO

against the array length. These checks are quite fre-
quent, but can be eliminated in many cases. It is pos-
sible to move a loop invariant null pointer check before
the loop or to eliminate a bound check.

Exception handlers are usually implemented by cre-
ating a linked list exception handling data structure
when entering a try block and by discarding the struc-
ture when leaving the protected block. Since the use of
exceptions is common in Java, we implemented a dif-
ferent scheme. Our exceptions are functions with two
return values: one is the result value, the second is the
exception value. After each method call, the exception
register is checked and, if it is non-zero, the exception
handling code is executed. Since an exception is rarely
raised, the branch is easy to predict and cheap. Enter-
ing and leaving a try block has no associated cost.

4.5 Run time type checking

A type inclusion test is a procedure to decide whether
two types are related by a given subtype relationship.
In Java, a run time type check results either from type
casts or from explicit type checks (instanceof). In the
JavaVM, the instructions instanceof and checkcast
are used for subtype testing. Since Java currently does
not support parametric polymorphism, type casts are
used frequently. Therefore, the implementation of type
checks has some affect on the performance of Java pro-
grams.

In [VHKO97], we describe four different fast constant
time type check methods. The fastest and most com-
pact 1s not suited for the Alpha processor because it
requires byte sized memory access. We therefore im-
plemented a run time type check as a bit test in a bit
matrix which contains the subtype relation.

5 Results

To evaluate the performance of CACAO we compared
it with Sun’s JDK and with kaffe version 0.8 (see sec-
tion 1.1). In the last minute we got access to the JIT
compiler from Digital (version 1.1.1 beta). We assume
that the beta release has some problems because in one
example it is 3 times slower than the JDK interpreter.
Therefore we included only results where we believe
they are correct. We also compared CACAQO with two
other JavaVM to native code compilers for the SPARC
processor:

e Guava 1s a just in time compiler like CACAO
which translates class files at run time into ma-
chine code

e Tobais a system which translates JavaVM instruc-
tions into C code. A standard C compiler is used
to generate machine code. The measured time for
Toba does not include compilation time, giving
better results for Toba.



| sieve | addition | linpack

runtime on 21064A 300MHz (in seconds)
JDK | 83.2 138.76 1.6
kaffe | 9.14 12.2 0.34
Digital JIT | 7.27 5.33 -
GCC -03 2.0 1.40 -
CACAQ total | 4.57 1.69 0.81
run | 4.31 1.42 0.58
CACAQ -cbnf total | 3.46 1.62 0.33
run | 3.31 1.42 0.13

relation of runtime

speedup JDK /kaffe | 9.10 11.8 4.7
speedup JDK/Digital JIT | 11.4 26.0 -
speedup JDK/CACAO | 18.2 82.1 2.0
speedup JDK/CACAOQO -cbnf | 24.1 85.7 4.8
speedup JDK/GCC | 41.6 99.1 -
CACAQ -cbnf run/GCC | 1.66 1.01 -

Table 2: comparison between JDK, CACAO and GCC

Neither system is available for the ALPHA, whereas
CACAQ currently supports only the ALPHA. We
therefore compared all systems against the JDK in-
terpreter, assuming that a SPARC processor and an
ALPHA processor are similar and that the implemen-
tation of the JDK interpreter is similar.

The benchmark programs and the run time data for
Guava and Toba were taken from the Toba homepage.
We tested CACAQO with exactly the same programs
and the same data. Javalex is a scanner generator,
javac is the Java compiler from the JDK compiling
the Toba sources, espresso is another Java compiler,
Toba is a JavaVM to C compiler and java_cup is a
parser generator.

Table 1 gives the run times. For CACAQ, it also
shows the load time and the compile time for each
benchmark on a SparcStation 20 and an ALPHA work-
station with a 300MHz 21064a processor. The CACAO
system is between 2 and 7 times faster than the kaffe
system. In nearly all cases, it is faster than Guava and
Toba. Only when the compile time is high i1s the Toba
system faster.

Table 2 compares the CACAQO system with the Dig-
ital JIT compiler and a C compiler. sieve is the well
known prime number computation program, addition
is a loop with a simple addition and linpack is a float-
ing point intensive program. The option —cbnf of CA-
CAOQ disables array bound checks and precise floating
point exceptions. Since C does not do implement these
checks, it is fairer to make the comparisons with check-
ing disabled. The CACAO system is only a factor of
1.66 slower than C and up to 7 times faster than kaffe.

6 Conclusion and further work

We presented an efficient layout for objects and classes
in Java, a technique for translating the JavaVM to ef-
ficient native code for RISC processors and a novel
implementation of exceptions. The CACAO system
uses these techniques and executes Java programs up
to 85 times faster than the JDK interpreter. It is
only 1.01 to 1.66 times slower than an equivalent C
program compiled with maximum optimization. CA-
CAQO can be obtained via the world wide web at
http://wuw.complang.tuwien.ac.at/java/cacao/.

We plan to add instruction scheduling to the code
generator assuming that this will help close the gap in
speed with C. We will also split up code generation
for method invocation to give the instruction scheduler
more possibilities for moving instructions. We will inte-
grate data flow analysis with safe bound check removal.
Furthermore we will reduce compilation time by using
state machines for code generation. Code generators
for the MIPS architecture and the PowerPC are being
developed.

Acknowledgement

We express our thanks to Nigel Horspool and Franz
Puntigam for their comments on earlier drafts of this
paper. We would also like to thank the reviewers for
their helpful suggestions.



References

[AGI6]

[CFR*91]

[EAHO97]

[EM95]

[Ert92]

[Ert96]

[Fra94]

[Gou97]

[Gra97]

[HGmWHY6]

Ken Arnold and James Gosling. The
Java Programming Language. Addison-

Wesley, 1996.

Ron Cytron, Jeanne Ferrante, Barry K.
Rosen, Mark N. Wegman, and F. Ken-
neth Zadeck. Efficiently computing
static single assignment form and the
control flow graph. ACM Transactions
on Programming Languages and Sys-

tems, 13(4):451-490, October 1991.

Kemal Ebcioglu, Erik Altman, and Er-
dem Hokenek. A Java ILP machine
based on fast dynamic compilation. In
MASCOTS 97 - International Workshop
on Security and Efficiency Aspects of
Java, 1997.

M. Anton Ertl and Martin Maierhofer.
Translating Forth to native C. In Euro-
Forth "95, 1995.

M. Anton Ertl. A new approach to Forth
native code generation. In FEuroForth

92, 1992.

M. Anton Ertl. Implementation of
Stack-Based Languages on Register Ma-
chines. PhD thesis, Technische Univer-
sitat Wien, April 1996.

Michael Franz. Code Generation On the
Fly: A Key for Portable Software. PhD
thesis, ETH Zurich, 1994.

K. John Gough. Multi-language, multi-
target compiler development: FEvolu-
tion of the Gardens Point compiler
project. In Hanspeter Mossenbock, ed-
itor, JMLC’97 - Joint Modular Lan-
guages Conference, Linz, 1997. LNCS
1204.

Reinhard Grafl. CACAO: Ein 64Bit
JavaVM Just-in-Time Compiler. Mas-
ter’s thesis, Technische Universitat

Wien, January 1997.

Cheng-Hsueh A. Hsieh, John C. Gyl-
lenhaal, and Wen mei W. Hwu. Java
bytecode to native code translation: The
caffeine prototype and preliminary re-
sults. In 29th Annual IEEE/ACM In-
ternational Symposium on Microarchi-
tecture, 1996.

[KBY5]

[Kis97]

[LY96]

[PD82]

[TBS61]

[TKLJ8Y]

[TvSKS83]

[US87]

[VHI6]

[VHKO7]

Andreas Krall and Thomas Berger. In-
cremental global compilation of Pro-
log with the Vienna Abstract Machine.
In Leon Sterling, editor, Twelfth Inter-
national Conference on Logic Program-
ming, pages 333-347, Tokyo, 1995. MIT

Press.

Thomas Kistler. Dynamic runtime op-
timization. In Hanspeter Mossenbock,
editor, JMLC"97 - Joint Modular Lan-
guages Conference, Linz, 1997. LNCS
1204.

Tim Lindholm and Frank Yellin. The
Java  Virtual Machine Specification.
Addison-Wesley, 1996.

Steven Pemberton and Martin C.
Daniels. Pascal Implementation, The P4

Compiler. Ellis Horwood, 1982.

Jr. T. B. Steel. A first version of UN-
COL. 1In Proceedings of the Western
Joint IRE-AIEE-ACM Computer Con-
ference, pages 371 — 377, 1961.

A. S. Tanenbaum, M. F. Kaashoek,
K. G. Langendoen, and C. J. H. Ja-
cobs. The design of very fast portable
compilers.  ACM SIGPLAN Notices,
24(11):125-131, November 1989.

Andrew S. Tanenbaum, Hans van
Staveren, E. G. Keizer, and Johan W.
Stevenson. A practical tool kit for mak-
ing portable compilers. Communications
of the ACM, 16(9):654-660, September
1983.

David Ungar and Randall B. Smith.
SELF: The power of simplicity. In OOP-
SLA 87 Proceedings, pages 227 — 242,
1987.

Jan Vitek and R. Nigel Horspool. Com-
pact dispatch tables for dynamically
typed object oriented languages. In 6th
International Conference CC ’96, pages
307 — 325, 1996.

Jan Vitek, Nigel Horspool, and An-
dreas Krall. Efficient type inclusion
tests. In Toby Bloom, editor, Conference
on Object Oriented Programming Sys-
tems, Languages & Applications (OOP-
SLA’97), Atlanta, October 1997. ACM.



