
CACAO - A 64 bit JavaVM Just-in-Time CompilerAndreas Krall and Reinhard Gra
Institut f�ur ComputersprachenTechnische Universit�at WienArgentinierstra�e 8A-1040 Wienhttp://www.complang.tuwien.ac.at/andi/AbstractThis article describes the design and implementation ofCACAO, a just in time compiler for Java. The CACAOsystem translates Java byte code on demand into nativecode for the ALPHA processor. During this transla-tion process the stack oriented Java byte code is trans-formed into a register oriented intermediate code. Lo-cal variables and stack locations are replaced by pseudoregisters eliminating the 32 bit restriction on addresstypes. A fast register allocation algorithm is applied tomap the pseudo registers to machine registers. Duringcode generation, �eld o�sets are computed for properalignment on 64 bit architectures. Even though theCACAO system has to incur loading and compilationtime, it executes Java programs up to 85 times fasterthan the JDK interpreter, up to 7 times faster than theka�e JIT compiler. It is slightly slower than equivalentC programs compiled at the highest optimization level.1 IntroductionJava's [AG96] success as a programming language re-sults from its role as an Internet programming lan-guage. The basis for this success is the machine inde-pendent distribution format of programs with the Javavirtual machine [LY96]. The standard interpretive im-plementation of the Java virtual machine makes execu-tion of programs slow. This does not matter if smallapplications are executed in a browser, but becomesintolerable if big applications are executed. There aretwo solutions to solve this problem:� specialized JavaVM processors,� compilation of byte code to the native code of astandard processor.SUN took both paths and is developing both Javaprocessors and native code compilers. We chose to go

for native code compilation since it is more portableand gives more opportunities for improving the execu-tion speed. Compiling to native code can be done intwo di�erent ways: compilation of the complete pro-gram in advance or compilation on demand of only thefunctions which are executed (just in time compiler,JIT). Our JIT compiler is described in detail in [Gra97](in German) and is freely available via the world wideweb.1.1 Previous WorkThe idea of machine independent program represen-tations is quite old and goes back to the year 1960[TBS61]. An intermediate language UNCOL (UNiver-sal Computer Oriented Language) was proposed foruse in compilers to reduce the development e�ort ofcompiling many di�erent languages to many di�erentarchitectures. The design of the JavaVM has beenstrongly in
uenced by P code, the abstract machineused by many Pascal implementations [PD82]. P codeis well known from its use in the UCSD Pascal system.There have even been e�orts to develop microproces-sors which execute P code directly.The Amsterdam compiler kit [TvSKS83] [TKLJ89]uses a stack oriented intermediate language. This lan-guage has been designed for fast compilers which emite�cient code. The intermediate representation of theGardens Point compiler project is also based on a stackmachine called Dcode [Gou97]. Dcode was in
uencedby Pascal P code. Both Dcode interpreters and codegenerators for di�erent architectures exist.The problems of compiling a stack oriented abstractmachine code to native code are well known from theprogramming language Forth. In [Ert92] and his thesis[Ert96] Ertl describes RAFTS, a Forth system that gen-erates native code at run time. Translating the stackoperations to native code is done by translating theoperations back to expressions represented as directedacyclic graphs as an intermediate step. In [EM95] he1



translates Forth to native code using C as an interme-diate language. In this system the stack slots are trans-lated to local variables of a function. Optimization andcode generation are performed by the C compiler.In his thesis [Fra94], Franz claims that generatingnative code on the 
y at load time is faster than loadinga much bigger native code image from a 
oppy or harddisk. Franz uses a compressed representation of theabstract syntax tree as an intermediate representation.Generating native code is so fast that this idea has beenextended to dynamic run time reoptimization [Kis97].Specializing and optimizing code at run time is alsoperformed in the Self system [US87] and in some Prologsystems [KB95].The �rst implementations of JIT compilers becameavailable last year for the browsers from Netscape andMicrosoft on PCs. They were followed by Syman-tec's development environment. Recently SUN releaseda JIT compiler for the Sparc and PowerPC proces-sors. Silicon Graphics developed a JIT compiler forthe MIPS processor.A public domain JIT compiler for several architec-tures is the ka�e system developed by Tim Wilkinson(http://www.kaffe.org/). For all the above men-tioned systems, no publicly available description of thecompilation techniques exists.The translation scheme of the Ca�eine system is de-scribed in [HGmWH96]. It supports both a simpletranslation scheme which emulates the stack architec-ture and a more sophisticated one which eliminates thestack completely and uses registers instead. Ca�eine isnot intended as a JIT compiler. It compiles a completeprogram in advance. DAISY (DynamicallyArchitectedInstruction Set from Yorktown) is a VLIW architecturedeveloped at IBM for fast execution of x86, PowerPC,S/390 and JavaVM code. Compatibility with di�erentold architectures is achieved by using a JIT compila-tion technique. The JIT compilation scheme for theJavaVM is described in [EAH97].2 The Java Virtual MachineThe JavaVM is a typed stack architecture [LY96].There are di�erent instructions for integer, long inte-ger, 
oating point and address types. Byte and charac-ter types have only special memory access instructionsand are treated as integers for arithmetic operations.The main instruction set consists of arithmetic/logicaland load/store/constant instructions. There are spe-cial instructions for array access and for accessing the�elds of objects (memory access), for method invoca-tion, function call and type checking. A JavaVM hasto check the program for type correctness and executes

only correct programs. The following examples showsome important JavaVM instructions and how a Javaprogram is represented by these instructions.iconst x push integer constant with value xiload n load contents of local variable nistore n store stack top in local variable niadd sum of two topmost stack elementsimul product of 2 topmost stack elementsThe Java assignment statement a = b + c is trans-lated intoiload b ; load contents of variable biload c ; load contents of variable ciadd ; compute b + cistore a ; store stack top in variable aFigure 1 shows the contents of the stack before andafter execution of each instruction. Prior to the �rstinstruction, and after the last instruction, the stack isempty. b bc b + ciload b iload c iadd istore aFigure 1: JavaVM stack operationsThe iload b instruction pushes the contents of thelocal variable b onto the stack. iload c works in asimilar way. iadd adds the two elements at the top ofthe stack, pops these two values and pushes the sumonto the stack. The istore a writes the value at thetopmost stack position into the local variable a andpops this value.Accessing the �elds of objects is handled by the in-structions getfield and putfield. getfield expectsan object reference on the stack and has an index intothe constant pool as an operand. The index into theconstant pool must be a reference to a pair contain-ing the class name and a �eld name. The types of theclasses referenced by the constant pool index and bythe object reference must be compatible, a fact whichis usually checked statically at load time. The objectreference has to be di�erent from the null pointer, afact which must usually be checked at run time.Array access is handled by the aload and astoreinstructions. Separate versions of these instructionsexist for each of the basic types (byte, int, float,ref, etc.). The aload instruction expects a reference2



to an array and an index (of type int) on the stack.The array reference must not be the null pointer. Theindex must be greater than or equal to zero and lessthan the array length.The Java method invocation o.print(a + 3); istranslated intoaload o ; load object pointer oiload a ; load contents of variable aiconst_3 ; push constant 3iadd ; compute a + 3invokevirtual print ; call o.printo oa oa3 oa + 3aload o iload a iconst 3 iadd invokeFigure 2: JavaVM method invocationFigure 2 shows the contents of the stack for a methodinvocation. Each method has its own virtual stack andan area for local variables. After the method invoca-tion, the stack of the caller is empty and the argumentsare copied into the �rst local variables of the calledmethod. After execution of a return instruction, thecalled method returns to its caller. If the called methodis a function, it pops the return value from its own stackand pushes it onto the stack of the caller.Only the behavior of the invoke and return instruc-tions has been described. The concrete implementationis de�ned by the implementor of the abstract machine.One possible approach is to pass arguments via thestack and, instead of copying the arguments to the lo-cal variables, simply to adjust the stack pointer accord-ingly. Another solution is to pass the arguments via aregister interface and use register windows or registercoloring to achieve e�cient parameter passing.The instanceof and checkcast instructions areused for subtype testing. Both expect a reference toan object on the stack and have an index into the con-stant pool as operand. The index must reference aclass, array or interface type. The two instructions dif-fer in their result and in their behavior if the objectreference is null.The Java compiler computes the variable slots forlocal variables. Variables which are not simultaneouslyactive are allowed to share the same slot. Variables oftype long use two 32 bit sized slots. All other typesincluding addresses use one slot.

3 Translation to Register FormThe architecture of a RISC processor is completely dif-ferent from the stack architecture of the JavaVM. RISCprocessors have large sets of registers. (The Alpha has32 integer registers and 32 
oating point registers whichare both 64 bits wide.) They execute arithmetic andlogic operations only on values which are held in regis-ters. Load and store instructions are provided to movedata between memory and registers. Local variablesof methods usually reside in registers and are saved inmemory only during a method call or if there are toofew registers.If JavaVM code is translated to machine code, thestack is eliminated and temporary registers replace thestack slots.3.1 Machine code translation examplesThe example expression a = b * c + d has theJavaVM codeiload b ; load contents of variable biload c ; load contents of variable cimul ; compute b * ciload d ; load contents of variable diadd ; compute (b * c) + distore a ; store stack top in variable aand will be translated to the following two Alpha in-structions (the variables a, b, c and d reside in regis-ters):MULL b,c,tmp0 ; tmp0 = b * cADDL tmp0,d,a ; a = tmp0 + d3.2 Intermediate representationThe CACAO system does the translation to machinecode in four steps. First, basic blocks are determined.Then, the JavaVM is translated into a register orientedintermediate representation, the registers are allocated,and �nally machine code is generated. The intermedi-ate representation is oriented towards a RISC archi-tecture target and assumes that all operands are inregisters (assuming an unlimited number of registers).In the following, all the intermediate code instructionsare covered.LOADCONST (type) #value -> destwrites a constant value of the speci�ed type (int,long, 
oat, double, address) into the destinationregister.3



MOVE (type) src -> destcopies the source register into the destination reg-ister.OP1 (operator) src -> destexecutes an operation with one source and one des-tination register. The operator de�nes the kindand type of operation (e.g. INEG).OP2 (operator) src1, src2 -> destis similar to OP1, but with 2 source registers (e.g.IADD).OP3 (operator) src1, src2, src3 -> sourceis similar to OP1, but with 3 source registers.MEM (LOAD) (type) o�set (src) -> destMEM (STORE) (type) src2 -> o�set (src1)loads a value frommemory into a register or storesa register into memory. The type speci�es the typeof the memory operation.BRA (operator) address src1 src2 -> destis used for all kinds of branch and jump instruc-tions, as speci�ed by operator. The address refer-ences a target basic block.TABLEJUMP (table) srcis used for branching via a jump table.METHOD (op) (descriptor) src1, ... -> dest, exceptionis used for all kind of method invocations asspeci�ed by op (INVOKESTATIC, INVOKESPECIAL,INVOKEVIRTUAL, INVOKEINTERFACE). Parametersfor the method are passed using an unlimited num-ber of registers. The return value of the methodis written into the destination register.DROP registeris a pseudo instruction telling the register allocatorthat the register is no longer used.ACTIVATE registeris the opposite instruction to DROP.3.3 Translation schemeThe second pass of the compiler translates eachJavaVM load or store instruction into a correspond-ing intermediate code MOVE instruction using a new reg-ister as the destination register in the case of a load.Always using a new register yields code in a simi-lar form to static single assignment form [CFR+91],which is commonly used for compiler optimizations. AJavaVM iadd instruction is translated into a OP2 in-struction, again using a new destination register.

This naive translation scheme would generate manyMOVE instructions. Therefore MOVE instructions are gen-erated lazily. The translator keeps a table which trackswhich registers should contain the same values. Insteadof generating a MOVE instruction, the translator entersthe register into the table. If the translator should latergenerate a DROP instruction, it deletes the register fromthe table. When the end of a basic block is reached,the corresponding MOVE instruction is generated for allregisters remaining in the table. But for most basicblocks, the stack, and therefore the register table, isempty at the end or else the registers are compatiblewith the dependent basic blocks.The example expression a = b * c + d with theJavaVM codeiload b ; load contents of variable biload c ; load contents of variable cimul ; compute b * ciload d ; load contents of variable diadd ; compute (b * c) + distore a ; store stack top in variable awill be translated into the following intermediate code:OP2(IMUL) b, c, t2 ; t0 == b, t1 == cOP2(IADD) t2, d, a ; t3 == d, t4 == aThe iload b instruction does not generate a MOVEinstruction for moving local variable b to stack locationt0. It just marks in the register table that registert0 and b are equal. Similarly the iload c instructionmarks the equivalence of t1 and c. In this example, allload and store instructions are eliminated. Registerst0, t1, t2, t3 and t4 may have existed in the registertable for some time, but no MOVE instruction has beengenerated.At a control 
ow join of two basic blocks where thestack is not empty and the stack slots are representedby di�erent registers, a MOVE instruction is generatedin one of the basic blocks. The register allocator triesto assign the same hardware register to the same stackslots so that the MOVE instruction can be eliminated.3.4 Register allocationBecause a just in time compiler generates code at runtime, it must be fast. Expensive register allocationalgorithms, like graph coloring, cannot be used. Wetherefore designed a simple and fast scheme.There are two di�erent sets of registers: registersfor stack slots and registers for local variables. First,registers for stack slots are assigned. Afterwards, the4



-object pointer object class codeinstance dataclass pointer - method pointermethod pointermethod pointerclass infointerface pointerinterface pointer method pointermethod pointermethod pointerinterfaces method code- - method code- - method code-Figure 3: CACAO object and compact class descriptor layout
-object pointer object class codeinstance dataclass pointer - method pointermethod pointermethod pointerclass infoifmethod pointerifmethod pointer method code-- method code- method code
Figure 4: CACAO object and fast class descriptor layoutremaining registers are assigned to the local variableswhich are active in the complete method.All registers are assigned to a CPU register at thebeginning of a basic block. An existing allocation isleft unchanged. The allocator scans the instructionsand, for each instruction which activates a register andto which no CPU register has been assigned, a newCPU register is selected. If the allocator has run outof CPU registers, the register is spilled to memory.There exist some conventions for the assignment ofregisters when calling methods. To prevent unneces-sary copy instructions at a method call prior to theallocation pass, pseudo registers which are method pa-rameters or return values are assigned the correct reg-ister (pre-coloring).4 The Complete SystemGeneration of native code is only a small part of thecomplete CACAO system. The run time system is amajor part. The run time system of the JDK is writ-ten mainly in Java and is distributed as class �les. TheJava methods call some native functions which we im-plemented for the ALPHA and which are contained

in the CACAO system. The following subsections de-scribe concepts of CACAO which are not directly re-lated to code generation.4.1 Object layoutThe CACAO object and class descriptor layout hasbeen designed for fast access and low memory con-sumption (see �g. 3). The SUN JDK represents anobject by a cell with two pointers: the �rst points tothe instance data of the object, the second to the classdescriptor [HGmWH96]. Our representation eliminatesone unnecessary indirection by having the object itselfcontain the pointer to the class descriptor and the in-stance data. The Alpha architecture requires pointersto be 64 bits. Therefore �eld o�sets in objects are com-puted to obtain correct 64 bit alignment of references,long integers and double 
oating point values. SinceAlpha processors do not support 8 bit and 16 bit loadsor stores, bytes and shorts are stored as 32 bit quanti-ties aligned on 32 bit boundaries. Only byte, characterand short arrays are stored in a compact representationsince they can be large, and the saving in memory isworth the more expensive access.In addition to other information, the class descrip-5



tion contains the virtual function table. To call amethod, two memory access instructions are necessary(load the class pointer, load the method pointer) fol-lowed by the call instruction. Java supports multiplesubtyping via interfaces. Currently we are changingthe representation for interfaces. The original repre-sentation (see �g. 3) needs one additional indirection,but usually consumes less space. In this compact lay-out scheme, the class table contains, at negative o�sets,the interface table containing pointers to the interfacevirtual function tables.In the faster scheme, we store interface methods inan additional table at negative o�sets from the classpointer (see �g. 4). Segregating the interface virtualfunction table keeps the standard virtual function ta-ble small and allows interface methods to be called withjust two memory accesses. The memory consumptionof virtual function tables containing interface and classmethods would be number of (classes + interfaces) *number of distinct methods. The memory consumptionof the interface tables is only number of classes whichimplement interfaces * number of interface methods.We use coloring to reduce the number of distinct o�-sets for interface methods further. Compaction meth-ods which reduce the size of the interface tables asdescribed in [VH96] would increase the interface calloverhead.4.2 Method layoutThe code of a method needs access to constants (mostlyaddress constants). Since a global constant table wouldbe too large for short addressing ranges and, becausemethods are compiled on demand, every method hasits own constant area which is allocated directly beforethe start of the method code (see �g. 5). A registeris reserved which contains the method pointer. Theconstants are addressed relative to the method pointer.� method pointerconstantscodeFigure 5: CACAO method layoutDuring a method call, the method pointer of thecalling method is destroyed, but the return address isstored in a register which is preserved during executionof the called method and has to be used for returningfrom the method. After a method return, the methodpointer of the calling method is recomputed using the

return address. The following code for a method calldemonstrates the method calling convention:LDQ cp,(obj) ; load class pointerLDQ mp,met(cp) ; load method pointerJSR ra,(mp) ; call methodLDA mp=ra+offset ; recompute method pointer4.3 Just in time compilationMachine code can be generated at either load time orat run time when a method is called. Compilation atload time simpli�es the compiler and gives more oppor-tunities for optimization. The drawback is that manymethods are compiled which are never used. Therefore,CACAO translates methods just in time when they arecalled.When class �les are loaded, the virtual functiontables and the interface tables are initialised with apointer to a stub routine which invokes the compiler.This stub routine can determine its caller and invokesthe compiler with the corresponding data. After thecompiler has �nished translating the method, it up-dates the method pointer in the virtual function table.The same method can be reached by di�erent virtualfunction tables. The compiler only updates the tableentry of the caller. But if the compiler is invoked, itdetermines if code has already been generated. In thatcase, it only updates the pointer in the virtual func-tion table. Thereafter, the newly generated code isexecuted.For static functions the address of the function isstored in the constant area of a method. Neither theaddress of a virtual function, nor a static function arestored in the code area. This makes the updating of theaddress easy and prevents performance degradation ofinstruction caches.4.4 Exception handlingThe use of exception handling is quite common inJava. Typical exceptions are references to the nullpointer, array index out of bounds or division by zero.To achieve portability across di�erent architectures,checks are inserted at appropriate places. For exam-ple, before accessing a �eld of an object, the objectreference is checked against zero. This is implementedby a single branch instruction which branches to theexception code. Because the branch is easy to predict,it executes very fast on modern processors. An arraybound check is an unsigned comparison of the index6



JavaLex javac espresso Toba java cupruntime on SparcStation 20 (in seconds)JDK 176.3 45.0 24.9 59.8 8.3GUAVA 80.8 17.8 - 36.8 6.2TOBA 38.8 12.8 4.9 20.1 2.9runtime on 21064A 300MHz (in seconds)JDK 29.8 18.5 8.7 32.1 3.5ka�e 9.9 17.8 12.5 - 2.98CACAO total 2.65 4.74 3.17 4.58 1.52load 0.18 0.61 0.38 0.18 0.21compile 0.39 1.21 0.91 0.55 0.81run 2.08 2.92 1.88 3.85 0.50number of compiled JavaVM instructions13412 34759 27281 14430 17489speedup with respect to interpreterspeedup JDK/GUAVA 2.18 2.53 - 1.62 1.34speedup JDK/TOBA 4.54 3.51 5.08 2.98 2.86speedup JDK/ka�e 3.01 1.04 0.7 - 1.17speedup JDK/CACAO 11.24 3.90 2.74 7.01 2.30Table 1: comparison between JDK, GUAVA, TOBA and CACAOagainst the array length. These checks are quite fre-quent, but can be eliminated in many cases. It is pos-sible to move a loop invariant null pointer check beforethe loop or to eliminate a bound check.Exception handlers are usually implemented by cre-ating a linked list exception handling data structurewhen entering a try block and by discarding the struc-ture when leaving the protected block. Since the use ofexceptions is common in Java, we implemented a dif-ferent scheme. Our exceptions are functions with tworeturn values: one is the result value, the second is theexception value. After each method call, the exceptionregister is checked and, if it is non-zero, the exceptionhandling code is executed. Since an exception is rarelyraised, the branch is easy to predict and cheap. Enter-ing and leaving a try block has no associated cost.4.5 Run time type checkingA type inclusion test is a procedure to decide whethertwo types are related by a given subtype relationship.In Java, a run time type check results either from typecasts or from explicit type checks (instanceof). In theJavaVM, the instructions instanceof and checkcastare used for subtype testing. Since Java currently doesnot support parametric polymorphism, type casts areused frequently. Therefore, the implementation of typechecks has some a�ect on the performance of Java pro-grams.

In [VHK97], we describe four di�erent fast constanttime type check methods. The fastest and most com-pact is not suited for the Alpha processor because itrequires byte sized memory access. We therefore im-plemented a run time type check as a bit test in a bitmatrix which contains the subtype relation.5 ResultsTo evaluate the performance of CACAO we comparedit with Sun's JDK and with ka�e version 0.8 (see sec-tion 1.1). In the last minute we got access to the JITcompiler from Digital (version 1.1.1 beta). We assumethat the beta release has some problems because in oneexample it is 3 times slower than the JDK interpreter.Therefore we included only results where we believethey are correct. We also compared CACAO with twoother JavaVM to native code compilers for the SPARCprocessor:� Guava is a just in time compiler like CACAOwhich translates class �les at run time into ma-chine code� Toba is a system which translates JavaVM instruc-tions into C code. A standard C compiler is usedto generate machine code. The measured time forToba does not include compilation time, givingbetter results for Toba.7



sieve addition linpackruntime on 21064A 300MHz (in seconds)JDK 83.2 138.76 1.6ka�e 9.14 12.2 0.34Digital JIT 7.27 5.33 -GCC -O3 2.0 1.40 -CACAO total 4.57 1.69 0.81run 4.31 1.42 0.58CACAO -cbnf total 3.46 1.62 0.33run 3.31 1.42 0.13relation of runtimespeedup JDK/ka�e 9.10 11.8 4.7speedup JDK/Digital JIT 11.4 26.0 -speedup JDK/CACAO 18.2 82.1 2.0speedup JDK/CACAO -cbnf 24.1 85.7 4.8speedup JDK/GCC 41.6 99.1 -CACAO -cbnf run/GCC 1.66 1.01 -Table 2: comparison between JDK, CACAO and GCCNeither system is available for the ALPHA, whereasCACAO currently supports only the ALPHA. Wetherefore compared all systems against the JDK in-terpreter, assuming that a SPARC processor and anALPHA processor are similar and that the implemen-tation of the JDK interpreter is similar.The benchmark programs and the run time data forGuava and Toba were taken from the Toba homepage.We tested CACAO with exactly the same programsand the same data. JavaLex is a scanner generator,javac is the Java compiler from the JDK compilingthe Toba sources, espresso is another Java compiler,Toba is a JavaVM to C compiler and java cup is aparser generator.Table 1 gives the run times. For CACAO, it alsoshows the load time and the compile time for eachbenchmark on a SparcStation 20 and an ALPHA work-station with a 300MHz 21064a processor. The CACAOsystem is between 2 and 7 times faster than the ka�esystem. In nearly all cases, it is faster than Guava andToba. Only when the compile time is high is the Tobasystem faster.Table 2 compares the CACAO system with the Dig-ital JIT compiler and a C compiler. sieve is the wellknown prime number computation program, additionis a loop with a simple addition and linpack is a 
oat-ing point intensive program. The option -cbnf of CA-CAO disables array bound checks and precise 
oatingpoint exceptions. Since C does not do implement thesechecks, it is fairer to make the comparisons with check-ing disabled. The CACAO system is only a factor of1.66 slower than C and up to 7 times faster than ka�e.

6 Conclusion and further workWe presented an e�cient layout for objects and classesin Java, a technique for translating the JavaVM to ef-�cient native code for RISC processors and a novelimplementation of exceptions. The CACAO systemuses these techniques and executes Java programs upto 85 times faster than the JDK interpreter. It isonly 1.01 to 1.66 times slower than an equivalent Cprogram compiled with maximum optimization. CA-CAO can be obtained via the world wide web athttp://www.complang.tuwien.ac.at/java/cacao/.We plan to add instruction scheduling to the codegenerator assuming that this will help close the gap inspeed with C. We will also split up code generationfor method invocation to give the instruction schedulermore possibilities for moving instructions. We will inte-grate data 
ow analysis with safe bound check removal.Furthermore we will reduce compilation time by usingstate machines for code generation. Code generatorsfor the MIPS architecture and the PowerPC are beingdeveloped.AcknowledgementWe express our thanks to Nigel Horspool and FranzPuntigam for their comments on earlier drafts of thispaper. We would also like to thank the reviewers fortheir helpful suggestions.8



References[AG96] Ken Arnold and James Gosling. TheJava Programming Language. Addison-Wesley, 1996.[CFR+91] Ron Cytron, Jeanne Ferrante, Barry K.Rosen, Mark N. Wegman, and F. Ken-neth Zadeck. E�ciently computingstatic single assignment form and thecontrol 
ow graph. ACM Transactionson Programming Languages and Sys-tems, 13(4):451{490, October 1991.[EAH97] Kemal Ebcio�glu, Erik Altman, and Er-dem Hokenek. A Java ILP machinebased on fast dynamic compilation. InMASCOTS'97 - International Workshopon Security and E�ciency Aspects ofJava, 1997.[EM95] M. Anton Ertl and Martin Maierhofer.Translating Forth to native C. In Euro-Forth '95, 1995.[Ert92] M. Anton Ertl. A new approach to Forthnative code generation. In EuroForth'92, 1992.[Ert96] M. Anton Ertl. Implementation ofStack-Based Languages on Register Ma-chines. PhD thesis, Technische Univer-sit�at Wien, April 1996.[Fra94] Michael Franz. Code Generation On theFly: A Key for Portable Software. PhDthesis, ETH Z�urich, 1994.[Gou97] K. John Gough. Multi-language, multi-target compiler development: Evolu-tion of the Gardens Point compilerproject. In Hanspeter M�ossenb�ock, ed-itor, JMLC'97 - Joint Modular Lan-guages Conference, Linz, 1997. LNCS1204.[Gra97] Reinhard Gra
. CACAO: Ein 64BitJavaVM Just-in-Time Compiler. Mas-ter's thesis, Technische Universit�atWien, January 1997.[HGmWH96] Cheng-Hsueh A. Hsieh, John C. Gyl-lenhaal, and Wen mei W. Hwu. Javabytecode to native code translation: Theca�eine prototype and preliminary re-sults. In 29th Annual IEEE/ACM In-ternational Symposium on Microarchi-tecture, 1996.

[KB95] Andreas Krall and Thomas Berger. In-cremental global compilation of Pro-log with the Vienna Abstract Machine.In Leon Sterling, editor, Twelfth Inter-national Conference on Logic Program-ming, pages 333{347, Tokyo, 1995. MITPress.[Kis97] Thomas Kistler. Dynamic runtime op-timization. In Hanspeter M�ossenb�ock,editor, JMLC'97 - Joint Modular Lan-guages Conference, Linz, 1997. LNCS1204.[LY96] Tim Lindholm and Frank Yellin. TheJava Virtual Machine Speci�cation.Addison-Wesley, 1996.[PD82] Steven Pemberton and Martin C.Daniels. Pascal Implementation, The P4Compiler. Ellis Horwood, 1982.[TBS61] Jr. T. B. Steel. A �rst version of UN-COL. In Proceedings of the WesternJoint IRE-AIEE-ACM Computer Con-ference, pages 371 { 377, 1961.[TKLJ89] A. S. Tanenbaum, M. F. Kaashoek,K. G. Langendoen, and C. J. H. Ja-cobs. The design of very fast portablecompilers. ACM SIGPLAN Notices,24(11):125{131, November 1989.[TvSKS83] Andrew S. Tanenbaum, Hans vanStaveren, E. G. Keizer, and Johan W.Stevenson. A practical tool kit for mak-ing portable compilers. Communicationsof the ACM, 16(9):654{660, September1983.[US87] David Ungar and Randall B. Smith.SELF: The power of simplicity. In OOP-SLA '87 Proceedings, pages 227 { 242,1987.[VH96] Jan Vitek and R. Nigel Horspool. Com-pact dispatch tables for dynamicallytyped object oriented languages. In 6thInternational Conference CC '96, pages307 { 325, 1996.[VHK97] Jan Vitek, Nigel Horspool, and An-dreas Krall. E�cient type inclusiontests. In Toby Bloom, editor, Conferenceon Object Oriented Programming Sys-tems, Languages & Applications (OOP-SLA'97), Atlanta, October 1997. ACM.9


