
Java for Large-Scale Scienti�c Computations?Andreas Krall0 and Philipp Tomsich11 Institut f�ur Computersprachen, Technische Universit�at WienArgentinierstra�e 8, A{1040 Wien, Austriaandi@complang.tuwien.ac.at2 Compilers and Tools, Silicon Graphics, Inc.1600 Amphitheatre Parkway, Mountain View, CA 94043ptomsich@sgi.comAbstract. The Java programming language has its origins in the de-velopment of portable internet applications, that are interpreted on theclient machine. However, a number of software projects have adoptedit as the language of choice for a wide variety of applications, includ-ing numerically intensive scienti�c computing. Given its heritage, thesuitability of Java for such application domains remains questionable,which is re
ected in large number of users reporting poor performancecompared to native compilers for C or Fortran.At heart, Java is an object-oriented language enabling the rapid devel-opment of modular and maintainable programs. It provides an integralsecurity model and features array bounds checking, arbitrarily shapedarrays, a deterministic
oating-point arithmetic on all platforms, au-tomatic memory management using garbage collection, multi-threadedexecution and a portable byte code representation. These features easethe development of scienti�c applications but may hinder e�cient execu-tion of the applications. This article shows state of the art compilationtechniques addressing these language features to achieve optimal perfor-mance. E�cient solutions for a large number of performance problemsencountered in the past are available in the current generation of Javacompilers. We may thus conclude that a maturing Java is suited for largescale scienti�c applications.1 IntroductionThe Java programming language is an object-oriented, general-purpose languagewhich has its origins in the development of portable internet applications. Itfeatures simple object semantics, cross-platform portability, arbitrarily shapedarrays and security. All this is highly desirable from a software engineering view-point and increases programmer productivity. However, these features also comeat a cost: they negatively impact the performance of Java applications. Object-orientation requires additional indirections and introduces method dispatchingoverheads, while index checks increase overall run-time.The object-oriented programming model employed by Java leads to largenumbers of small methods and lightweight classes causing excessive overheads,

even when operating on objects that have value semantics such as complex num-bers. The arbitrary shape of arrays and the fact that the Java language does notsupport arrays of rank greater than one leads to the implementation of mul-tidimensional arrays as arrays-of-arrays, requiring multiple dereferencing andaddress calculations during element accesses. This compares very unfavorably|particularly for scienti�c applications that depend on true multidimensionalarrays|to the rectangular arrays used in C or Fortran, where the o�set for eachelement can be calculated statically and only a single memory access needs tobe executed. Type checking at run-time introduces additional, signi�cantly sizedinstruction sequences and multiple branch instructions on most current imple-mentations. Further, the Java language speci�cation mandates a deterministicbehavior of
oating-point arithmetic among all platforms, thus e�ectively dis-allowing the use of hardware-depended optimizations and extensions, such asfused multiply-add instructions. As a result, the performance of numerically in-tensive, scienti�c application executed using commercial Java environments canbe as low as one percent of equivalent Fortran programs[MMG+00].Interpretation was the �rst available choice for Java implementations andhelped accelerate early Java adoption due to its rapid retargetability. Its poorperformance, however, quickly led to the proliferation of just-in-time (JIT) com-pilers, which translate bytecode to native code at run-time, executing and cachingit. As the time required for compilation is added to the overall execution time ofa program, time-consuming optimizations must be used sparingly or replaced byless costly algorithms. Code quality remains poor in comparison to traditionalcompilers due to this design requirement of fast compilation. Most modern sys-tems with JIT compilers can be described as mixed-mode, in that they combinean interpreter with a JIT compiler: the interpreter runs initially and collects pro-�ling information, and performance-critical methods are identi�ed and compiledas execution progresses[SOY+00]. This in turn allows the creation of compilersthat implement more costly optimizations, since they are invoked more selec-tively. Extending this approach further, multiple compilers at di�erent levels ofsophistication can be employed within a single virtual machine [DA97].With the growing importance of Java for long-running computationally in-tensive applications and the continuing demand for higher performance thanthat provided by early JIT compilers, implementors attempted to leverage ex-isting mature compiler infrastructure for Java either by translating Java to C orby connecting a Java front end to a common optimization and compilation backend. The result of this approach is a system that compiles Java to native codeahead-of-time (AOT). Such compilers can produce completely static standaloneexecutables, or they can work within the context of a traditional virtual ma-chine which also supports interpretation or just-in-time compilation of dynam-ically loaded bytecode. Examples include TowerJ[Tow], MS Marmot[FKR+00],Compaq Swift[SRGD00] and the NaturalBridge[Nat] compilers. Ahead-of-timecompilers o�er the hope of higher performance than what is available with tradi-tional virtual machines and JIT compilers. Achieving the performance of natively

compiled code while maintaining compatibility with the dynamic aspects of Javaremains a promise[SSTP00].2 Optimization techniques for JavaActive research into e�cient implementation techniques for Java has yieldeda number of optimization techniques to reduce the overheads associated withbounds checking for Java arrays, multidimensional arrays, Java
oating-pointsemantics and run-time type checking.2.1 Removing array bound checkingRemoving of array bound checking is the most important optimization for scien-ti�c programs. Up to 40% of the run-time can be spent in array bound checkingcode. Di�erent algorithms with increasing complexity have been designed forJIT and AOT compilers.The CACAO JIT compiler has been designed for extremely short compilationtimes [Kra98]. It consequently does not support pro�ling. Therefore, to �nd arrayaccess instructions which are worthwhile candidates for removal, loop analysisis performed. For array access instructions inside loops the variables in simpleloop expressions are analyzed and their possible range is computed for simpleindex modi�cations. If it can be determined that the index variables lies inthe correct range, the array bound check is either removed, or moved before theloop (eventually copying the loop for correct exception behavior). This algorithmincreases the compile time from 118 to 176 milliseconds for javac, but reducesthe run-time by 33% for the sieve benchmark.ABCD is a light-weight algorithm for elimination of bound checks on demandby Bodik et. al. [BGS00]. ABCD works by adding a few edges to the SSA valuegraph and performing a simple traversal of the graph. ABCD works on a sparserepresentation and requires on average fewer than 10 simple analysis steps perbound check. On the benchmarks ABCD removes on average 45% of dynamicbound check instructions, sometimes achieving near-optimal optimization.The Sable research group presented a framework for optimizing Java usingattributes [PQVR+00]. The array bound check analysis collects constraints ofnodes and propagates them along the control
ow graph until a �xed point isreached. The information is stored in attributes and used by interpreters andcompilers. Between 26% and 59% of the bound checks can be removed and per-formance is improved by 5.8% to 35.6% in the IBM high performance compiler.2.2 Optimized multidimensional arraysFor scienti�c and engineering computations, multidimensional rectangular arraysare the most important data structure. While the Java language does not directlysupport arrays of rank greater than one, arrays-of-arrays can be constructedwhich are far more
exible, but do not o�er a dense representation. While this

allows the de�nition of ragged arrays and even of arrays which alias some oftheir rows, it renders it impossible to calculate an element position within amultidimensional array in Java using a base address, shape information andindices only. Unfortunately this generality weighs down on performance even fornumerical applications that do not require these rich array semantics.While it is di�cult to replace the default array implementation used withinthe virtual machine, it is easy to extend the Java run-time environment withnatively implemented classes to provide optimized multidimensional arrays withmore favorable semantics[MMG+00]. Such arrays are accessed through Java ob-jects that encode the index ranges and reference a
at memory space whichcontains a dense representation of the array elements. When the array is con-structed, its shape is speci�ed and remains immutable afterwards. Indexing el-ements is done cheaply using a direct address calculation and a single memoryfetch.2.3 Floating-point optimizationsThe original Java language speci�cation required a deterministic behavior of
oating-point arithmetic on all platforms as speci�ed in IEEE 754. In particular,Java requires full support of IEEE 754 denormalized
oating-point numbers andgradual under
ow. This speci�cation disallowed hardware speci�c optimizationslike fused multiply-add operations or the use of higher precision arithmetic likeIntels 80bit arithmetic.These ine�ciencies lead to a change in the Java 2 language speci�cation asimplemented with JDK 1.2. A modi�er strictfp was added to specify methodsand classes which strictly have to follow the IEEE 754 standard. The defaultmode was changed to non-strict and a strict mathematic library was added.Non-strict operations are allowed to use a higher precision extended arithmetic.Early models of Alpha processors handle in�nities and NaNs in software usingimprecise exceptions. To enable an IEEE compliant
oating-point behavior atrap barrier instruction has to be placed between two
oating point instructionsor before the end of a basic block leading to an increase in code size and slowerexecution speed. The CACAO just-in-time compiler has a global switch whichcan disable IEEE compliant behavior raising an exception whenever NaNs orin�nities occur.2.4 64 bit Java virtual machinesThe Java virtual machine is speci�ed as a 32 bit stack machine. For this rea-son, and because a few bytecodes such as pop2 or dup2 introduce di�culties intheir de�nition for 64 bit Java interpreters, the initial Java execution environ-ments were exclusively available as 32bit binaries. Unfortunately this contradictsthe requirements of scienti�c applications that operate on large data sets andlarge arrays, as these need the larger address space provided by a 64bit imple-mentation. Many specialized libraries used in data analysis and other scienti�capplications are available as 64 bit binaries only and can therefore not interface

with the JavaVM through the Java native interface. Further, many 32 bit JavaVMs that are available on 64bit architectures cause unaligned loads and storeswhich signi�cantly impact performance.Today an increasing number of 64bit JVMs is becoming available. CACAO[KG97] was the �rst 64bit JVM, although available for the Alpha architectureonly. Compaq later released a commercial-quality 64bit JavaVM and �nally Sunis planning for 64 bit support in the JDK 1.4 release.2.5 MultithreadingJava threads independently execute code that operates on values and objectsresiding in a shared memory. Java threads on multiprocessor systems e�cientlycan be used to execute parallelized large scale scienti�c applications. Perfor-mance problems can happen if threads need synchronization to allow safe accessto shared data. To tackle this performance bottleneck two approaches have tobe combined: e�cient implementation of synchronization and elimination of syn-chronization.In [KP98] we showed that ine�cient implementation of synchronization canlead to huge a performance degradation. We presented a fast space e�cientsolution where monitors are implemented in a hash table. For multiprocessorsystem the shared hashtable can be a bottleneck. Therefore, Bacon et. al. pre-sented thin locks which allocate a 24bit monitor data structure within everyobject [BKMS98]. If one word is used to store the monitor on average the size ofan object is increased by 17% for javac (a Java to byte code compiler) and by0.6% for linpack (a linear algebra package). Whereas for average Java programsthe increase of object size is high, it is negligible for scienti�c applications.Ruf [Ruf00] presents an e�ective technique for removing unnecessary syn-chronization operations from statically compiled Java programs. His analysiscan eliminate synchronization operations even on objects that escape their al-locating threads. For the benchmark programs examined 100% synchronizationoperations are removed in single-threaded programs and 0{99% synchronizationoperations are removed in multi-threaded programs.2.6 Garbage collectionAutomatic memory management|or more precisely garbage collection|is anintegral aspect of the Java language. Unfortunately it is rather di�cult to designa garbage collector that performs equally well for di�erent allocation patterns,as seen with interactive user-interface applications and scienti�c workloads, re-spectively. One of the problems arising from the object-orientation of the Javalanguage and the resulting allocation patterns is the fact that objects remainalive for a very long time or are extremely short-lived.Early VM implementations used either a non-moving mark-and-sweep or amark-and-compact collector. While simpler in design, the mark-and-sweep col-lectors were believed to cause heap fragmentation in the context of Java. While

our work[KT99] in the context of the CACAO VM has shown that mark-and-sweep collectors are a viable solution for Java, recent developments have lead tothe use of generational garbage collection algorithms, which operate separatelyon young object and mature objects. The main bene�t reaped from this is thatonly a small fraction of all objects survive more than one garbage collectionand can thus be evicted early. As a result the mature generation stays smalland for the young generation a garbage collection algorithm may be chosen thatperforms best when few objects survive. However, using generational garbagecollection introduces the penalty of requiring a write barrier that keeps track ofintergeneration pointers.2.7 E�cient run-time type checkingFor every type cast or execution of an instanceof operator run time type check-ing has to be done. Static analysis is not very e�ective in eliminating these castchecks [GRS00]. Therefore, e�cient run-time type checking is very important.A type check tests whether one type is a subtype of another. A subtype testis trivially implemented by traversing a data structure representing the super-types of the type. For classes this data structure is a simple list, for interfacesit is a directed acyclic graph. Although very e�cient constant time type check-ing algorithms exist [VHK97], most of the currently available JVMs use somevariations of the simple algorithm caching one or two supertypes [SOY+00].
�
�� �
�� �
���
�� �
���
��d e fb caf3,0g f4,0g f6,0gf2,2g f5,1gf1,5g�� ��@@ @@ @@Fig. 1. Relative numbering with fbaseval, diffvalg pairsCACAO uses di�erent very fast constant time subtype tests for classes andinterfaces which easily supports dynamic class loading. The subtype test forclasses is implemented by relative numbering. Two numbers low and high arestored for each class in the class hierarchy. A depth �rst traversal of the hierarchyincrements a counter for each class and assigns the counter to the low �eldwhen the class is �rst encountered and assigns the counter to the high �eldwhen the traversal leaves the class. A class is a subtype of another class, if thesuper:low � sub:low < super:high. Since a range check is implemented moree�ciently by an unsigned comparison, CACAO stores the di�erence betweenthe low and high values and compares it against the di�erence of the low valuesof both classes. The code for instanceof looks similar to:return (unsigned) (sub->vftbl->baseval - super->vftbl->baseval) <=(unsigned) (super->vftbl->diffval);

For leaf nodes in the class hierarchy the diffval is 0 which results in afaster test. A JIT compiler can generate the faster test for �nal classes. An AOTcompiler may additionally replace the baseval of the superclass by a constant.CACAO stores an interface table at negative o�sets in the virtual functiontable. This table is needed for the invocation of interface methods. This table isadditionally used by the subtype test for interfaces. If the table is empty for theindex of the superclass, the subtype test fails. The code for instanceof lookssimilar to:return (sub->vftbl->interfacetable[-super->index] != NULL);Both subtype tests can be implemented by very few machine code instruc-tions without using branches which are expensive on modern processors.3 ConclusionWhile a large amount of anecdotal evidence regarding the low performance ofJava exists, reality is quickly improving. The current generation of Java just-in-time compilers includes increasingly sophisticated optimizations, which reducethe overheads caused by the modern language features o�ered by Java: arraybound check elimination, optimized multidimensional arrays, optimized
oating-point arithmetic, synchronization elimination, e�cient run-time type checking.The availability of ahead-of-time compilers is also promising, as they canignore some of the more dynamic aspects of the language and generate highlyoptimized executables for production runs. While Java still is not the perfectenvironment for scienti�c computing, major steps towards a competitive perfor-mance for numerically intensive applications have been made in the last few yearsand some applications already achieve 90 percent of the performance of nativeFortran implementations[MMG+00]. Today, whether or not to choose Java fora particular scienti�c application mostly reduces to making a decision betweenperformance and improved programmer productivity and maintainability.References[BGS00] Rastislav Bodik, Rajiv Gupta, and Vivek Sarkar. ABCD: Eliminatingarray bound checks on demand. In Conference on Programming LanguageDesign and Implementation, volume 35(5) of SIGPLAN, pages 321{333,Vancouver, 2000. ACM.[BKMS98] David F. Bacon, Ravi Konuru, Chet Mruthy, and Mauricio Serrano. Thinlocks: Featherweight synchronization for Java. In Conference on Program-ming Language Design and Implementation, volume 33(5) of SIGPLAN,pages 258{268, Montreal, 1998. ACM.[DA97] David Detlefs and Ole Agesen. The Case for Multiple Compilers. In Proc.OOPSLA 1999 VM Workshop on Simplicity, Performance and Portabilityin Virtual Machine Design, 1997.

[FKR+00] Robert Fitzgerald, Todd B. Knoblock, Erik Ruf, Bjarne Steensgaard, andDavid Tarditi. Marmot: an optimizing compiler for Java. Software {Practice and Experience, 30(3):199{232, November 2000.[GRS00] Sanjay Gehmawat, Keith H. Randall, and Daniel J. Scales. Field analysis:Getting useful and low-cost interprocedural information. In Conferenceon Programming Language Design and Implementation, volume 35(5) ofSIGPLAN, pages 334{344, Vancouver, 2000. ACM.[KG97] Andreas Krall and Reinhard Gra
. CACAO { a 64 bit JavaVM just-in-time compiler. Concurrency: Practice and Experience, 9(11):1017{1030,1997.[KP98] Andreas Krall and Mark Probst. Monitors and exceptions: How to im-plement Java e�ciently. Concurrency: Practice and Experience, 10(11{13):837{850, 1998.[Kra98] Andreas Krall. E�cient JavaVM just-in-time compilation. In Jean-Luc Gaudiot, editor, International Conference on Parallel Architec-tures and Compilation Techniques, pages 205{212, Paris, October 1998.IFIP,ACM,IEEE, North-Holland.[KT99] Andreas Krall and Philipp Tomsich. Garbage collection for large mem-ory Java applications. In Proc. of the 7th European Conference on High-Performance Computing and Networking (HPCN Europe'99), volume 1593of Lecture Notes in Computer Science, pages 895{907. Springer Verlag, Apr1999.[MMG+00] J. E. Moreira, S. P. Midko�, M. Gupta, P. V. Artigas, M. Snir, and R. D.Lawrence. Java programming for high-performance numerical computing.IBM Systems Journal, 39(1):21{56, 2000.[Nat] NaturalBridge. BulletTrainTM optimizing compiler and runtime for JVMbytecode. http://www.naturalbridge.com.[PQVR+00] Patrice Pominville, Feng Quian, Raja Vallee-Rai, Laurie Hendren, andClark Verbrugge. A framework for optimizing Java using attrributes. InCASCON, Mississauga, 2000. IBM.[Ruf00] Erik Ruf. E�ective synchronization removal for Java. In Conference onProgramming Language Design and Implementation, volume 35(5) of SIG-PLAN, pages 208{218, Vancouver, 2000. ACM.[SOY+00] T. Suganuma, T. Ogasawara, M. TaT. Yasuekeuchi, , M. Kawahito,K. Ishizaki, and H. Komatsuatani. Overview of the IBM Java just-in-timecompiler. IBM Systems Journal, 39(1):175{193, 2000.[SRGD00] Daniel J. Scales, Keith H. Randall, Sanjay Ghemawat, and Je� Dean. TheSwift compiler: Design and implementation. Technical Report 2000/2,Compaq Western Research Laboratory, April 2000.[SSTP00] Todd Smith, Suresh Srinivas, Philipp Tomsich, and Jinpyo Park. Practicalexperiences with Java compilation. In Proceedings of the Intl. Conf. onHigh-Performance Computing, volume 1970 of Lecture Notes in ComputerScience. Springer, December 2000.[Tow] Tower Technologies. TowerJ 3.0: A New Generation Native Java CompilerAnd Runtime Environment. http://www.towerj.com.[VHK97] Jan Vitek, Nigel Horspool, and Andreas Krall. E�cient type inclusiontests. In Toby Bloom, editor, Conference on Object Oriented Program-ming Systems, Languages & Applications (OOPSLA '97), pages 142{157,Atlanta, October 1997. ACM.

