
Efficient Variable Allocation
to Dual Memory Banks of DSPs

Viera Sipkova

CD-Lab Compilation Techniques for Embedded Processors
Institut für Computersprachen, Technische Universität Wien

Argentinierstraße 8, A-1040 Vienna, Austria
Tel.: (+43-1)-58801-58520

sipka@complang.tuwien.ac.at

Abstract. To improve the overall performance, many of the modern
advanced digital signal processors (DSPs) are equipped with on-chip
multiple data memory banks which can be accessed in parallel in one
instruction. In order to effectively exploit this architectural feature, the
compiler must partition program variables between the memory banks
appropriately – two parallel memory accesses always must take place
on different memory banks. There is some research work that addresses
this issue, however, most of this has been proposed as a post-pass (ma-
chine dependent) optimization. We attempt to resolve this problem by
applying an algorithm which operates on the high-level intermediate rep-
resentation, independent of the target machine. The partitioning scheme
is based on the concepts of the interference graph which is constructed
utilizing the control flow, data flow, and alias information. Partitioning of
the interference graph is modeled as a Max Cut problem. The variable
partitioning algorithm has been designed as an optional optimization
phase integrated in the C compiler for a digital signal processor. This
paper describes our efforts. The experimental results demonstrate that
our partitioning algorithm finds a fairly good assignment of variables to
memory banks. For small kernels from the DSPstone benchmark suite
the performance is improved from 10% to 20%, for FFT filters by about
10%.

1 Introduction

To improve the effective bandwidth and memory access speed, recently, design-
ers of embedded systems prefer the on-chip memory over the use of the external
memory or more complicated hardware mechanisms. They have developed spe-
cial architectural features to access multiple data memories in parallel, provided
that referenced variables have been allocated to different memory banks. Fur-
thermore, the instruction set may encode parallel accesses in a single instruction
word, which improves the code density and reduces the code size. Examples
of processors which support such memory architecture include the Motorola
DSP56000, Analog Devices ADSP2106x, NEC µPD77016, etc. In this research
we will be using the experimental digital signal processor xDSPcore [1].

A. Krall (Ed.): SCOPES 2003, LNCS 2826, pp. 359–372, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

360 Viera Sipkova

Unfortunately, the current compiler technology is generally unable to deliver
high-quality code for DSPs whose architectures are extremely irregular. High-
level C data types and language constructs are not easily mapped into dedicated
DSP machine instructions. The reason is a lack of suitable optimization tech-
niques. Much of the research for optimizing compilers has been done for general-
purpose microprocessors and has focused on traditional machine-independent
optimizations. Producing a high-performance code for DSPs requires adequate
support for each specialized architectural feature.

The goal of this paper is to present the new optimization technique which
attempts to maximize the benefit of dual data-memory bank DSPs. In order to
make an efficient use of the bandwidth increase offered by dual memory banks
(often denoted by X and Y), the C program variables have to be partitioned
appropriately between X and Y.

int a[100], b[100];

int dot product(void)

{ int dot = 0;

for (i = 0; i < 100; i++)

dot += a[i] * b[i];

return dot;

}

Fig. 1. Dot Product (C code)

Multi-memory bank architectures have been proved to be effective for many
operations commonly found in embedded applications. For instance, in a dot
product operation shown in Fig. 1 arrays a and b must be placed in different
memory banks for allowing simultaneous access. The corresponding assembly
code looks as outlined in Fig. 2. The notation || denotes that the combined
operations should be executed in parallel. The instruction (3) performs both
loads.

To solve the problem of memory assignment several approaches are possible
at different stages of compilation flow. Our partitioning technique has been de-
signed as a separate optimization module of the C compiler for the xDSPcore. It
operates on the high-level intermediate representation, so it is not dependent on
the target-machine. The result of the partitioning is the intermediate represen-
tation annotated with the X/Y bank assignment information for all variables.
This can be utilized later in the subsequent code generation phase. The main
scheme of our approach is similar to that proposed in [2]. It is modeled by a
graph which tries to reflect all the potential parallelisms between the variables
and also provides a weight metric for different parallel access demands. The par-
titioning itself is solved as the combinatorial optimization problem Max Cut,
which is known as NP-complete. To find a near optimal partitioning we have
implemented several partitioning algorithms, exact and also approximating.

Efficient Variable Allocation to Dual Memory Banks of DSPs 361

(1) movcl g b,R1 || movc 0,D0

(2) movcl g a,R0 || bkrep 100,LBL

(3) ld (R0)+,D2 || ld (R1)+,D1

(4) nop

(5) mul D2,D1,A1

(6) nop

(7) add D0,D2,D0

(8) LBL:

(9) ret

Fig. 2. Dot Product (assembly language)

The structure of the paper is organized as follows. In Section 2 a brief sum-
mary of the previous work is presented. In Section 3 the partitioning strategy
is described. Section 4 provides our experimental results, and finally, Section 5
presents conclusions and future plans.

2 Related Work

The earliest work on this problem was presented by Powell, Lee, and Newman
[3]. Here, the assignment of program variables to the X/Y memory banks occurs
on the meta-assembly code, after the scheduling and register allocation phase.
Variables are assigned to X and Y in an alternating fashion, according to their
access sequence in the program code, without any analysis.

In the work of Saghir, Chow, and Lee [4,5] a variable partitioning technique
for a hypothetical VLIW DSP architecture is presented. They describe two algo-
rithms: compaction-based data partitioning, and partial data duplication. Both
are performed as the post-pass phase operating only on basic blocks. The central
data structure is an interference graph, whose nodes are partitioned into two sets
heuristically, by searching for the minimum-cost partitioning.

In the approach of Sudarsanam and Malik [6,7] the memory bank allocation
and register allocation take place in a single phase, after a pre-compaction step
of the input program producing the symbolic assembly code. The algorithm is
based on graph labeling, the objective of which is to find an optimal labeling
of a constraint graph representing conditions on the register and memory bank
allocation. The simulated annealing is used to find a good labeling.

In the work of Leupers and Kotte [2] the variable partitioning is performed
as a separate optimization phase after the initial run of the backend used only to
determine the exact set of memory accesses. The variable partitioning is modeled
as Integer Linear Programming based on the interference graph.

The most recent papers concerning the problem of the memory banks assign-
ment are probably [8,9,10].

Cho, Paek, and Whalley [8] presented a work where they study the mem-
ory and register allocation for non-orthogonal architectures. Memory bank as-

362 Viera Sipkova

signment is done after the code compaction phase. For partitioning they use a
heuristic that chooses the maximum spanning tree of the simultaneous reference
graph. Then X memory is assigned in even depth and Y memory in odd depth
in this tree.

Zhuang, Pande, and Greenland [9] proposed a post-register allocation solu-
tion which attempts to maximally combine loads and stores to generate parallel
load/store instructions after code is generated. They introduce the motion sched-
ule graph, which is partitioned applying the two-coloring algorithm.

The work of Zhuge, Xiao, and Sha [10] describes two algorithms: variable
partitioning and scheduling with variable re-partition. The idea here is to reveal
the true picture of potentially parallel memory accesses that can really occur in
scheduling. The problem is modeled by the variable independence graph refined
by a mobility window used by eliminating these edges that are impossible to be
scheduled in the same control step. To partition the graph into multiple disjoint
sets a greedy strategy is used.

In all previous work some kind of graphs have been used which are partitioned
applying different optimization methods. However, all (except of [2]) have been
proposed as a post-pass backend phase operating on the assembly code. This
has a benefit that all memory accesses can be captured, however, generally, it
can not be performed separately without any impact on the register allocation
and scheduling.

In our approach the algorithm operates on high level intermediate represen-
tation. To find any potential parallelism between memory accesses information
from all the sophisticated program analysis are possible to be utilized. Our frame-
work is global (intra-procedural) and is not just limited to basic blocks. Memory
accesses of the entire program are handled and relations between them are ana-
lyzed at once, so no contrary demands on assigning a certain variable to either X
or Y can arise. Surely, it is not always possible to recognize all memory accesses,
however, as will be reported later in this paper, our performance results are quite
encouraging.

3 Partitioning Scheme

The C compiler which our variable partitioner has been integrated into, accepts
a C-source code that is translated through the frontend into the tree-like high-
level intermediate representation (HIR). The root of the HIR is the unit which
contains a list of functions, global variables, externals and types. Every function
contains a list of function parameters, local variables, and basic blocks consist-
ing of a sequence of statements. The HIR is optimized applying the standard
machine-independent transformation. Furthermore, the frontend provides also
some abstract structures of the program, such as call graph, control flow graph,
dominator tree, SSA-form, which are bases for the advanced analysis framework.
The HIR is taken as input for the partitioner which may be invoked at any point
after the compiler frontend and before the backend. For illustration, the HIR of
the dot product code introduced in Fig. 1 is outlined in Fig. 3.

Efficient Variable Allocation to Dual Memory Banks of DSPs 363

(1) IrBlock bb1

(2) IrAssign

(3) IrAddress (IrLocal tmp b)

(4) IrConvert

(5)* IrAddress (IrGlobal b)

(6) IrAssign

(7) IrAddress (IrLocal tmp dot)

(8) IrConstant 0

(9) IrAssign

(10) IrAddress (IrLocal tmp a)

(11) IrConvert

(12)* IrAddress (IrGlobal a)

(13) IrLoopStart

(14) IrConstant 100

(15) IrAddress (IrBlock bb2)

(16) IrBlock bb2

(17) IrAssign

(18) IrAddress (IrLocal tmp dot)

(19) IrAdd

(20) IrRead

(21) IrAddress (IrLocal tmp dot)

(22) IrMult

(23) IrRead

(24) IrRead

(25)* IrAddress (IrLocal tmp a)

(26) IrRead

(27) IrRead

(28)* IrAddress (IrLocal tmp b)

(29) IrAssign

(30) IrAddress (IrLocal tmp b)

(31) IrAdd

(32) IrRead

(33) IrAddress (IrLocal tmp b)

(34) IrConstant 1

(35) IrAssign

(36) IrAddress (IrLocal tmp a)

(37) IrAdd

(38) IrRead

(39) IrAddress (IrLocal tmp a)

(40) IrConstant 1

(41) IrLoopEnd

(42) IrAddress (IrBlock bb2)

(43) IrAddress (IrBlock bb3)

(44) IrBlock bb3

(45) IrReturnValue

(46) IrRead

(47) IrAddress (IrLocal tmp dot)

(48) returnReg

Fig. 3. Dot Product (HIR code)

364 Viera Sipkova

In our approach we focus on the set of global variables and static local variables.
Local variables and parameters of a function are processed later in the code
generation phase. They are allocated either in registers, or in the stack which
is part of one particular memory bank. These temporaries are handled by the
scheduler so that the memory conflicts are avoided. Array variables are treated
as monolithic entities that are allocated to a single memory bank. To determine
the optimal memory bank assignment for given variables, references over all
functions in the program need to be observed at the same time.

The partitioning algorithm is based on the concepts of the interference graph,
where each memory access is represented by one vertex. An edge between two
vertices indicates that they may be accessed in parallel, and that the corre-
sponding variables should be stored in separate memory banks. The goal is to
partition the interference graph in such a way that the potential parallelism is
maximized. The partitioning process consists of two separate components: the
first constructs the interference graph, the second partitions the interference
graph.

3.1 Construction of the Interference Graph

Definition 3.1 The interference graph is defined as an edge-weighted undirected
graph G = (V, E), where each vertex v ∈ V represents a memory access, and an
edge e = (v, u) ∈ E connecting a pair of vertices v and u, indicates that there
is no dependence between them. With each edge e = (v, u) ∈ E a nonnegative
weight W (e) is associated which represents the extent of independence between
v and u.

The interference graph is constructed for the whole program. The set of ver-
tices is generated by traversing the HIR of the program (all functions, basic
blocks and statements) and looking for objects IrAddress which point to global
variables (see Fig. 3). Local variables (tmp a, tmp b, and tmp dot) will be al-
located in registers. For each memory access found one interference vertex is
created. The IrAddress can represent one or more memory accesses, dependent
on how many IrRead operators are preceding to it. IrRead denotes the read
of the value at the address which is specified by the following address expres-
sion. Multiple consecutively IrRead operators substitute the multilevel indirect
addressing, and to determine all global variables associated, the alias analysis
is required. Currently, we utilize only information from the SSA (static single
assignment) form, so not all memory accesses can be caught. The percentage
of not-resolved variable references is strongly dependent on the structure of the
source program. In our example there were recognized two memory accesses to
a – (12), (25), and two memory accesses to b – (5), (28). Accesses (25) and (28)
were identified through the double IrRead operator.

The interference vertex, besides the memory address itself, encapsulates also
all information about its enclosing context (owner statement, owner block,
def/use attribute, etc.), which serves as a framework for determining graph edges.

Efficient Variable Allocation to Dual Memory Banks of DSPs 365

Generating the set of edges E on the set of vertices V is equivalent to the
identifying all pairs of memory accesses that can be combined together for par-
allel execution. To accomplish this problem, at first, we construct the intra-
procedural control dependence and data dependence graphs which define the
relationship between the basic blocks and also between the statements within
each function. There will be an edge e = (v, u) between vertices v, u ∈ V if and
only if the statements (or expressions) enclosing the v and u, respectively, are
not control-dependent and also not data-dependent. We suppose that memory
accesses occurring in different functions or in different basic blocks can not be
scheduled for parallel processing, so, no edge is generated between them.

According to the context in which the memory accesses are included a weight
W is assigned to each edge e = (v, u) ∈ E which is defined :

W (e) = EF × DW (e)

where EF represents the execution frequency of the enclosing basic block, and
DW represents the distance weight of the edge.

DW (e) =

{
2 if v and u are contained in expressions of the same statement
1 if v and u are contained in different statements

We chose this simple weight as a heuristic measure, it can be seen as the rate
of the probability that the connected vertices will be scheduled into the same
instruction.

Once the interference graph has been constructed, each vertex subset
{v1, . . . , vk} ⊆ V representing accesses to the same variable, is merged into a
single vertex v, and all edges containing v1, ..., vk are redirected to the new ver-
tex v. The weight of an edge e = (v, u) is modified to

W (e) = Max(W (ei))× k

where ei = (vi, u), for i = 1, . . . , k. So, the size of the graph (number of vertices)
is equal to the number of global variables accessed.

3.2 Partitioning of the Interference Graph

The best partitioning of the interference graph G = (V, E) is achieved if the set
of vertices V can be divided into two disjoint sets S ⊆ V and S̄ = V − S, such
that the sum of the weights of all edges that connect a vertex v ∈ S to a vertex
u ∈ S̄ is maximal. Variables corresponding to vertices from S are assigned to X
memory bank, and variables corresponding to vertices from S̄ are assigned to Y
memory bank.

Theoretically, in this case the highest number of parallel memory accesses
can be obtained. Practically, however, the performance gain is affected by the
fact, how the scheduler actually realizes the calculated parallelism.

This partitioning task can be formulated as the combinatorial optimization
problem Max Cut. The cut Cut(S, S̄) is defined as the set of edges that have one

366 Viera Sipkova

endpoint in S and the other endpoint in S̄. The Max Cut consists in finding a
subset of vertices S such that the weight of Cut(S, S̄) given by∑

e∈Cut(S,S̄)

W (e)

is maximized.
Let V = {v1, v2, . . . , vn} be the set of vertices of G = (V, E); we use i for an

vertex vi, and wij for the weight of an edge (vi, vj) ∈ E (for e = (vi, vj) /∈ E
we set wij = 0). When introducing cut vectors x ∈ {−1, 1}n with xi = 1 for
vi ∈ S, and xi = −1 for vi ∈ S̄, then the algebraic formulation for Max Cut can
be written as follows:

maximize
1
2

∑
1≤i<j≤n

wij(1 − xixj)

subject to xi ∈ {−1, 1}, i = 1, . . . , n .

(1)

The key property of the formulation (1) is that (1− xixj)/2 can take only two
values - either 0 or 1, which allows to model the appearance of an edge in a cut
within the objective function. For any feasible solution x = (x1, . . . , xn), the set
S = {vi ∈ V : xi = 1} defines the cut Cut(S, S̄) which has the weight equal to
the objective value at x.

The first feasible solution of this NP-complete problem was proposed in 1976
by Sahni and Gonzales [11], they presented an approximation algorithm with the
performance guarantee 0.5× optimal value. Since then for a nearly twenty years
no significant progress has been made in improving this performance guarantee.
Only in 1994 Goemans and Williamson [12,13] proposed a randomized algorithm
based on the semidefinite programming which always delivers a solution of value
at least 0.87856× the optimal value. There exists several extensions of the Goe-
mans and Williamson technique. For example, Frieze and Jerrum [14] designed
an algorithm for the Max k-Cut, where k ≥ 2, which can be applicable to an
arbitrary number of memory banks.

3.3 Implementation of Partitioning

Provided that the number of vertices is small (less than twenty), the Max Cut
is possible to be solved exactly still in reasonable time. Otherwise, approximat-
ing techniques are applied. To find a near optimal partitioning we have imple-
mented several approximating algorithms, simple and also more sophisticated.
This which yields the best solution is chosen for the partitioning. Algorithms are
described in the following.

Exact Algorithm

This algorithm computes the Max Cut exactly. It generates recursive all possible
cut vectors and calculates its cut. The cut vector having the maximal cut value
is chosen as the solution. It can happen that there exists more than one solution
– several different cut vectors with the equal maximal cut value. In this case to
select the best one must be experimentally examined.

Efficient Variable Allocation to Dual Memory Banks of DSPs 367

Greedy Algorithm

This approximating algorithm represents the iterative approach which utilizes
the property of the Max Cut problem that the value of any local optimum is not
too far from the value of the total optima. Implementation is based on the scheme
described in [15]. The algorithm begins with a naive initial approximation to the
solution – all vertices of G are placed into the set S, with the set S̄ being empty.
Then the method repeatedly iterates over all vertices in order to find a vertex
whose relocation to other set could increase the cut. The algorithm is running
until it reaches a fix point where each pass produces no further increase of the
cut. Algorithm runs in the polynomial time O(n × m), where n is the number
of vertices, and m is the number of edges. It delivers a solution of value at least
0.5× the optimal value.

Semidefinite Programming Relaxation

This approximating algorithm was provided by Goemans and Williamson [12,13].
It is a simple and elegant technique that randomly rounds the solution to a
nonlinear semidefinite programming relaxation. The algorithm always delivers a
solution of value at least 0.87856× the optimal value.

Let Rn denote the space of real n-dimensional column vectors. The unit
scalars xi of (1) can be viewed as vectors of unit norm belonging to Rn; or more
precisely, to the n-dimensional unit sphere Sn = {y ∈ Rn : ‖ y ‖= yT y = 1}.
Associating scalars xi with the unit vectors yi ∈ Sn, for i = 1, . . . , n, the products
xixj ∈ {−1, 1} may be relaxed to yT

i yj ∈ 〈−1, 1〉.
Then after some mathematical manipulations, (1) can be formulated as a

relaxation to a semidefinite program (for more details see [12,13]):

maximize C • Y

subject to diag(Y) = e

Y � 0
(2)

Given a feasible solution Y of (2), the set of unit vectors yj , j = 1, . . . , n,
can be obtained by the Cholesky factorization Y = ZT Z, where columns of the
matrix Z correspond exactly to the vectors y1, . . . , yn.

Using the geometric interpretation, a solution (y1, . . . , yn) consists of n points
on the surface of the unit sphere Sn, each representing a vertex of the graph,
and the product yT

i yj is the cosine of the angle enclosed by these vectors.
Goemans and Williamson proposed the following randomized algorithm for

generating cuts : construct a random hyperplane through the origin of Sn and
group all vectors on the same side of this hyperplane together. The hyperplane
can be constructed by choosing a random vector r uniformly distributed on the
unit sphere Sn : H(r) = {y ∈ Rn : rT y = 0}. Partitioning of the vertex set V
into (S, S̄) is formed by assigning all vertices vi ∈ V to S whose corresponding
vectors yi have positive inner product with r:

S = {vi ∈ V : yT
i r ≥ 0}

S̄ = {vi ∈ V : yT
i r < 0}

368 Viera Sipkova

This semidefinite relaxation has been implemented using the SDPA solver
developed by Fujisawa, Kojima, Nakata, and Yamashita [16]. For the Cholesky
factorization and randomizing the solution the LAPACK-library is utilized.

Semidefinite Rank-2 Relaxation

For experimental reasons we have implemented also this algorithm which was de-
veloped by Burer, Monteiro, and Zhang [17]. It represents the specialized version
of the Goemans–Williamson randomized technique with the same performance
guarantee. Algorithm was implemented utilizing the Fortran 90 software package
CIRCUT [18] which was rewritten into C++ object.

4 Experimental Results

Our partitioning technique was empirically evaluated on the simulator of the
experimental digital signal processor xDSPcore [1]. We did experiments with
various small kernels from the DSPstone benchmark suite [19], and some ap-
plications. The metrics which the performance is measured in is the number
of cycles executed, and the number of memory conflicts appeared. A memory
conflict occurs if two accesses to the same memory bank are scheduled in one in-
struction; in this case an extra (stalling) cycle is generated by a special hardware
mechanism.

In order to demonstrate the effectiveness of our partitioning algorithm, for
each kernel several variants were compiled, executed, and evaluated. In the first
version variables are assigned explicitly only to one memory bank. In the sec-
ond version variables are not assigned before linking phase; here an optimistic
algorithm by scheduling is applied and the linker tries to resolve the variable
allocation. For these two cases the partitioner was disabled. In the third version
variables are assigned to memory banks by means of the partitioner. These three
cases are referred to as X-Allocating, Scheduling, and Partitioning, respectively.

Table 1 lists the performance results obtained for some selected DSPstone
kernels. Each kernel contains some loops with operations on two or three global
arrays. According to the information about the memory assignment the code
generator schedules the operations into instructions, so, for our three examined
cases the target code may look differently. For each variant the first column
shows the total number of cycles executed (memory conflicts are not included),
the second and third columns show the number of accesses to X and Y memory
bank, and the fourth column shows the number of memory conflicts. We can see
that in the first version, where all variables are allocated to X memory bank,
the number of memory conflicts is equal to zero only in this case when memory
accesses are scheduled in separate instructions, that is, the number of executed
cycles is increased. In the optimistic version variables are tried to be allocated
to both memory banks, however, the results are not better than in the first
case. It is evident that the best performance gain is achieved by the version
with partitioning. For these small kernels, all implemented algorithms, exact
and also approximating, yield the identical partitioning result which seems to

Efficient Variable Allocation to Dual Memory Banks of DSPs 369

Table 1. DSPstone Kernels

Kernel X-Allocating Scheduling Partitioning
Cycl. X Y Confl. Cycl. X Y Confl. Cycl. X Y Confl.

dot product 625 200 0 0 525 200 0 100 525 100 100 0
convolution 625 200 0 0 525 134 66 34 525 100 100 0

matrix mult 1 5368 2100 0 1000 5368 2100 0 1000 5368 1000 1100 0
matrix mult 2 5014 2010 0 900 4993 2010 0 900 4993 1100 910 0
mat1x3 85 24 0 0 76 24 0 9 76 9 15 0
lms 219 95 0 0 219 12 83 16 188 48 47 0

fir2dim 963 304 0 144 963 304 0 144 963 144 160 0
biquad n sections 71 38 0 12 84 38 0 16 66 21 17 0

Total Number of Cycles
dot product 625 625 525 (84.0%)
convolution 625 559 525 (84.0%)

matrix mult 1 6368 6368 5368 (84.3%)
matrix mult 2 5914 5893 4993 (84.4%)
mat1x3 85 85 76 (89.4%)
lms 219 235 188 (85.8%)

fir2dim 1107 1107 963 (87.0%)
biquad n sections 83 100 66 (79.5%)

Table 2. FFT Filters

Kernel X-Allocating Scheduling Alternate Alloc.
Cycl. X Y Confl. Cycl. X Y Confl. Cycl. X Y Confl.

fft256 1 194681 110252 0 17052 204178 113248 0 20195 195560 60888 49364 12831

fft256 2 162341 91046 0 11053 168927 91291 0 17661 146322 48479 39920 8823

Partitioning
Execution Frequency No Frequency

Cycl. X Y Confl. Cycl. X Y Confl.

fft256 1 194261 24110 86142 12572 (74%) 194261 24110 86142 12572 (74%)
fft256 2 145977 44909 42518 8785 (79%) 152171 29957 61936 7427 (67%)

Total Number of Cycles
X-Allocating Scheduling Alternate Alloc. Partitioning

fft256 1 211733 224373 208391 206833 (97%)
fft256 2 173394 186588 155145 154762 (89%)

be quite ideal. The pure memory access cycles are decreased by about 50%, and
the improvement of total number of cycles ranges from 10% to 20%. In real
applications, however, this would not be true.

370 Viera Sipkova

Table 2 presents performance results of code which contains a fixed-point
implementation of 256-point complex Fast Fourier Transform (FFT) and the
inverse FFT. It is based on Radix-2 decimation in frequency domain algorithm
on a block of complex numbers. Two versions of the FFT code have been exam-
ined. In fft256 1 the real and imaginary values of the complex data are stored
in one array in interleaved format (real followed by imaginary). The fft256 2
represents a slightly modified code; in order to avoid the successive memory ac-
cesses to the same array, the real and imaginary values of the complex data are
stored in two separate arrays. In both versions all global arrays are referenced
through the subscripts, not through the pointers, so, all accesses could be found
and resolved without any complicated alias analysis.

Additionally to the X-Allocating, Scheduling, and Partitioning strategies we
measured also the approach where the vertices of the interference graph are
partitioned in the alternate way starting with X-memory, it is referred to as Al-
ternate Alloc. By partitioning we experimented with several heuristics. In Table
2 results from two instances are reported : in the first the edges are weighted by
the execution frequency of basic blocks as defined in Section 3.1; while in the
second, the edges are weighted without using any frequency estimates (EF is
supposed to have the value one).

For the fft256 1 code the size of the interference graph is equal to 10, and
surprisingly, the partitioning algorithm yields only one solution regardless of the
execution frequency is used or not. Wenn comparing the X-Allocating with the
Partitioning the number of memory conflicts is decreased by 27%, however, the
total number of cycles is approximately the same.

For the fft256 2 code the size of the interference graph is equal to 13. In
this case better results can be achieved because the butterfly FFT-algorithm
operates now on two arrays (real and imaginary) instead of on one array. The
partitioning algorithm without the execution frequency used yields three solu-
tions which give the equal results. The algorithm using the execution frequency
yields twelve solutions giving several different results, the best one is introduced
in the table. Also for this version the execution frequency does not improve
significantly the quality of the results. Wenn comparing the X-Allocating and
Partitioning strategies, the number of memory conflicts is decreased by 33%,
and the total number of cycles by about 10%.

The Alternate Allocating approach for both codes shows the comparable re-
sults as the Partitioning strategy. This is due to the character of the FFT-
algorithm.

It is worth to say, that for each observed benchmark approximating algo-
rithms give the identical solution as the exact algorithm. So, which algorithm
is preferred has not a great impact on the partitioning result. To obtain a real
performance improvement, the most significant is to provide the correct infor-
mation for partitioning. A good graph model should reflect all the potentially
parallel memory accesses that may actually occur in scheduling.

Efficient Variable Allocation to Dual Memory Banks of DSPs 371

5 Conclusion

In this paper we have presented an algorithm which attempts to maximize the
benefit of dual data memory banks. The algorithm is based on partitioning the
interference graph whose nodes represent variables and edges represent potential
parallel accesses to pairs of variables. The interference graph is constructed uti-
lizing the control flow, data flow, and alias information. For partitioning itself,
formulated as Max Cut problem, we have implemented several methods. All of
them work very well and fast. The important contribution of our approach is
that the algorithm operates on the high-level intermediate representation, inde-
pendent of the target machine. Our framework is global and is not just limited to
basic blocks. Both scalar and array variables of the entire program are handled
at once, so no contrary demands on assigning a certain variable to either X or
Y can arise.

The experimental results demonstrate that our method finds a quite satisfy-
ing memory assignment. On small kernels we were able to reduce the number of
memory cycles by 50%, and the total number of cycles by 10%–20%. For FFT
filters the number of memory conflicts is decreased by 30%, and the total number
of cycles by 10%.

In the future we plan to work on the refinement of the interference graph. We
would like to make experiments with several new heuristics including runtime
profiling information, and evaluate the method on real bigger applications. We
also plan to explore the memory partitioning for DSP architectures which are
equipped with interleaved memory banks where the interleaving factor can be
any number, not only two.

Acknowledgments

I would like to acknowledge the Christian Doppler Forschungsgesellschaft and
Infineon for funding this research. I would also like to thank Andreas Krall for
his valuable comments on this paper and Ulrich Hirnschrott for his help by
compiling and simulating the kernels.

References

1. C. Panis, G. Laure, W. Lazian, A. Krall, H. Grünbacher, J. Nurmi: DSPxPlore
– Design Space Exploration for a Configurable DSP Core. In: Proceedings of the
GSPx, Dallas, Texas, USA (2003)

2. R. Leupers and D. Kotte: Variable Partitioning for Dual Memory Bank DSPs.
In: Proceedings of the IEEE International Conference on Acoustics, Speech, and
Signal Processing (ASSP). Volume 2. (2001) 1121–1124

3. D.B. Powell, E.A. Lee, and W.C. Newman: Direct Synthesis of Optimized DSP
Assembly Code from Signal Flow Block Diagrams. In: Proceedings of the IEEE
International Conference on Acoustics, Speech, and Signal Processing (ASSP).
Volume 5. (1992) 553–556

4. M.A.R. Saghir, P. Chow, and C.G. Lee: Automatic Data Partitioning for HLL
DSP Compilers. In: Proceedings of the 6th International Conference on Signal
Processing Applications and Technology. (1995) I–866–871

372 Viera Sipkova

5. M.A.R. Saghir, P. Chow, and C.G. Lee: Exploiting Dual Data-Memory Banks in
Digital Signal Processor. In: ACM SIGOPS Operating Systems Review, Proceed-
ings of the 7th International Conference on Architectural Support for Programming
Languages and Operating Systems. Volume 30(5). (1996) 234–243

6. A. Sudarsanam and S. Malik: Memory Bank and Register Allocation in Software
Synthesis for ASIPs. In: Proceedings of the IEEE/ACM International Conference
on Computer Aided Design. (1995) 388–392

7. A. Sudarsanam and S. Malik: Simultaneous Reference Allocation in Code Gener-
ation for Dual Data Memory Bank ASIPs. Journal of the ACM Transactions on
Automation of Electronic Systems (TODAES) 5 (2000) 242–264

8. J. Cho, Y. Paek, and D. Whalley: Efficient Register and Memory Assignment
for Non-orthogonal Architectures via Graph Coloring and MST Algorithm. In:
Proceedings of the International Conference on the LCTES and SCOPES, Berlin,
Germany (2002)

9. X. Zhuang, S. Pande, and J.S. Greenland: A Framework for Parallelizing
Load/Stores on Embedded Processors. In: Proceedings of the International Con-
ference on Parallel Architectures and Compilation Techniques (PACT), Virginia
(2002)

10. Q. Zhuge, B. Xiao, and E.H.-M. Sha: Variable Partitioning and Scheduling of
Multiple Memory Architectures for DSP. In: Proceedings of the IEEE International
Parallel and Distributed Processing Symposium (IPDPS). (2002)

11. S. Sahni and T. Gonzales: P-complete Approximation Problems. Journal of the
ACM 23 (1976) 555–565

12. M.X. Goemans and D.P. Williamson: 0.878-Approximation Algorithms for MAX
CUT and MAX 2SAT. In: Proceedings of the 26th Annual ACM Symposium on
Theory of Computing. (1994) 422–431

13. M.X. Goemans and D.P. Williamson: Improved Approximation Algorithms for
MAX CUT and Satisfiability Problems Using Semidefinite Programming. Journal
of the ACM 42 (1995) 1115–1145

14. A. Frieze and M. Jerrum: Improved Approximation Algorithms for Max k-Cut and
Max Bisection. Algorithmica 18 (1997) 61–77

15. Hromkovic, J.: Algorithmics for Hard Problems. Springer-Verlag, Berlin (2001)
16. K. Fujisawa, M. Kojima, K. Nakata, and M. Yamashita: SDPA (Semidefinite

Programming Algorithm), vers. 4.10, Research Report on Mathematical and Com-
puting Sciences, Tokyo Institute of Technology, Japan. (1998)

17. S. Burer, R.D.C. Monteiro, and Y. Zhang: Rank-two Relaxation Heuristics for
Max-Cut and Other Binary Quadratic Programs. SIAM Journal on Optimization
12 (2001) 503–521

18. S. Burer, R.D.C. Monteiro, and Y. Zhang: CirCut vers. 1.0612, Fortran 90 Package
for Finding Approximate Solutions of Certain Binary Quadratic Programs (2000)

19. V. Zivojnovic, J.M. Velarde, C. Schager, and H. Meyr: DSPstone – A DSP oriented
Benchmarking Methodology. In: Proceedings of the 6th International Conference
on Signal Processing Applications and Technology. (1994)

	Introduction
	Related Work
	Partitioning Scheme
	Construction of the Interference Graph
	Partitioning of the Interference Graph
	Implementation of Partitioning

	Experimental Results
	Conclusion

