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Abstract

Dynamic binary translators compile machine code from
a source architecture to a target architecture at run time.
Due to the hard time constraints of just-in-time compila-
tion only highly efficient optimization algorithms can be
employed. Common problems are an insufficient number
of registers on the target architecture and the different han-
dling of condition codes in source and target architecture.
Without optimizations useless stores and computations are
generated by the dynamic binary translator and cause sig-
nificant performance losses. In order to eliminate these use-
less operations, a very fast liveness analysis is required.

We present a dynamic liveness analysis algorithm that
trades precision for fast execution and conducted experi-
ments with the SpecInt95 benchmark suite using our Pow-
erPC to Alpha translator. The optimizations reduced the
number of stores by about 50 percent. This resulted in a
speed-up of 10 to 30 percent depending on the target ma-
chine. The dynamic liveness analysis results are very close
to the most precise solution.

1 Introduction

In dynamic binary translation code is translated at run
time to machine code of the target architecture. As the
translation time is included in the run time, optimizations
are beneficial only where the shorter execution time pays
off the higher translation time. Often the number of regis-
ters of the emulated architecture is larger than the number
of registers of the target architecture. A common approach
is to keep the emulated registers in memory and to perform
local register allocation for the translation units. Without
liveness information this leads to dead stores of emulated
registers. Another common problem is the implicit compu-
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tation of condition codes and other side effects of instruc-
tions. These side effect computations are expensive, but the
results are used rarely. Therefore, optimizations such as the
elimination of dead register stores and dead computations
improve the efficiency of binary translators.

A prerequisite for these optimizations is liveness infor-
mation of registers and computations. Precise liveness anal-
ysis requires an iterative analysis algorithm which is too ex-
pensive to be executed at run time. We have developed a
simple dynamic liveness analysis which is precise enough
for dead register stores and computation elimination.

In Section 2 we give an overview of our binary transla-
tor bintrans, describe how liveness information is com-
puted and show how this information can be used for elim-
ination of stores and condition code computations. Section
3 goes into the details of liveness analysis and explains why
our dynamic approach cannot achieve the most precise so-
lution. In Section 4 we present detailed experiments which
demonstrate the effectiveness of our simple liveness analy-
sis. In the last section we draw our conclusions and give an
outline of the future work.

2 bintrans

bintrans is a freely available dynamic binary transla-
tor that translates binary code for a source architecture into
instruction sequences for a target architecture and executes
the translated code on-the-fly. bintrans supports several
source-target combinations whereas we focus on the Pow-
erPC to Alpha translator in this paper.

For bintrans the unit of translation is a basic block
which is a sequence of instructions with a single entry and a
single exit. Jumps in the target-architecture are replaced by
jumps to a dispatcher. The task of the dispatcher is to look
up the target address in a lookup table. If the corresponding
basic block is already translated, it will simply branch to the
translated block. Otherwise, the basic block is translated
and the newly translated basic block is executed. In case
of direct jumps bintrans resolves the jumps if the target



of the jump is already translated. Then, the dispatcher is
not invoked anymore and the direct jump is “hard-wired”.
However, indirect jumps are always resolved through the
dispatcher since the target address is not known apriori.

The PowerPC to Alpha translator has to deal with the
problem that the source architecture features more regis-
ters than the target architecture. Therefore, source regis-
ters of the PowerPC architecture are kept in a memory area
which we call register save area. Within blocks, register
allocation techniques are applied for reducing the number
of load and store operation. If the number of registers used
within a block does not exceed the number of target reg-
isters, the used source registers are kept in target registers
for the whole block. In that case, all required registers are
loaded at the beginning of the block from the register save
area and stored back into the register save area at the end.
If the block uses more source registers than available target
registers, loads and stores are inserted within the block as
well.

The memory traffic generated by loads and stores at the
beginning and at the end of basic blocks deteriorates perfor-
mance significantly, especially on in-order machines with a
slow memory subsystem. Without liveness information, we
must assume that all registers modified within a block might
be read in consecutive basic blocks. With liveness informa-
tion, we can avoid storing modified register values to the
register save area if we know that they are not alive, i.e.
they are not used in a later point in time.

2.1 Register Mapping

The PowerPC has 32 general purpose and 5 special pur-
pose integer registers. One of the 5 special purpose registers
is the condition register, which can be seen as 8 separate
4 bit fields. Each comparison instruction sets one of those
fields. Three of the four bits are set to the results of the com-
parison (less than, greater than, equal). The fourth bit is set
to a copy of a specific bit of another register, the purpose
of which is not relevant for our discussion. A conditional
branch instruction branches on an individual bit (specified
in the instruction word) in the condition register. Many
PowerPC instructions have an alternative form which au-
tomatically compares the result of their operation with zero
and set the first condition register field (the four most sig-
nificant bits) accordingly.

The Alpha has 31 general purpose integer registers and
no special purpose registers of interest. A comparison
writes zero or one into a general purpose register, depend-
ing on the outcome. Conditional branches branch on the
contents of general purpose registers.

Since inserting condition bits into the condition register
is inefficient, bintrans improves the access to the first
condition register field by keeping each of the four bits in

separate Alpha registers. With only one instructions a con-
dition bit can be generated and tested.

2.2 Optimization

Consider the following basic block of two PowerPC in-
structions:

addi. r3,r3,-1
beq somewhere

The first instruction decrements register r3 and com-
pares the result against zero. The first condition register
field is set according to the outcome of the comparison. The
second instruction jumps to somewhere if the “equal”-bit
in the first condition register field is set, otherwise it falls
through.

The Alpha code generated for this block is given as fol-
lows by assuming that the branches are already hard-wired:

ldl $5,o_r3($27)
subl $5,1,$5
cmplt $5,0,$7
cmpgt $5,0,$8
cmpeq $5,0,$9
bne $9,branch_taken
stl $5,o_r3($27)
stl $7,o_lt($27)
stl $8,o_gt($27)
stl $9,o_eq($27)
b fallthrough_target

branch_taken:
stl $5,o_r3($27)
stl $7,o_lt($27)
stl $8,o_gt($27)
stl $9,o_eq($27)
b somewhere_target

The first instruction loads the value of the source regis-
ter r3. Note that the names with prefix “o ” are symbolic
names for the offsets of registers in the register save area.

The second instruction performs the subtraction and the
three instructions after that generate the three condition bits
of the comparison with zero. After the computation of the
condition bits the actual branch is executed. Before termi-
nating the basic block the registers which are held in regis-
ters of the target architecture are stored back to the register
save area.

When translating a block, liveness information is used
for two different purposes. First, only values which are alive
after the instruction in which they are produced are actually
generated. In the above example, assume that none of the
three condition bits are live at the end of the block. In that
case, only the equal bit would be generated, because it is



alive after the compare instruction (because the conditional
branch depends on its value). The other two bits are dead,
so they would not be generated.

The second opportunity for using liveness information
during translation is the removal of register stores. Assume
register r3 was alive on the fallthrough edge but dead on
the edge to the block somewhere. In that case, we would
not generate the store for register r3 before branching to
somewhere target.

To illustrate the effect of those two transformations, as-
sume that the three condition bits were dead on both exits
and r3 alive on the fallthrough exit but dead on the other
one. The generated code would then look like this:

ldl $5,o_r3($27)
subl $5,1,$5
cmpeq $5,0,$9
bne $9,branch_taken
stl $5,o_r3($27)
b fallthrough_target

branch_taken:
b somewhere_target

The other circumstance where bintrans uses live-
ness information is when new liveness information becomes
available for a block which has already been translated.
This happens when a direct jump is first executed. As ex-
plained above, a direct jump is translated to a call to the
dispatcher. Should the target block not be available, it is
translated. Then, the out set of the target block is used to
eliminate register stores in the already generated code. The
register stores always directly precede the call to the dis-
patcher, so that removing some of the stores is an easy pro-
cess. We simply go backwards one instruction at a time and
if the instruction is a register store, we examine which reg-
ister it stores and delete the store if the stored register is not
alive. A register store instruction can be easily identified by
examining the base register and the offset. If the base regis-
ter is the register pointing to the register save area, the store
is a register store. In that case, the offset determines which
register it stores.

3 Register Liveness Analysis

Global register liveness analysis [ASU86] is a prerequi-
site of bintrans for producing efficient code. Since the
binary translator has very hard time constraints, it is appar-
ent that exhaustive data flow analysis1 techniques will not
deliver an analysis result in a short period of time. There-
fore, we propose a dynamic approach that works fast and
still obtains satisfactory results.

1An exhaustive data-flow analysis considers the effect of all basic
blocks and their branching structure.
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Figure 1. Liveness Analysis Example

Dynamic liveness analysis is only performed when basic
blocks are translated. The liveness information is kept and
at the end of execution it is stored in a file. A further run
of a program reads the file and refines the information from
previous runs. In this setting the propagation of liveness in-
formation is performed over several runs of a program. Due
to the restricted propagation of information (along the exe-
cution path and over several runs of a program) considera-
tions about correctness and precision of the analysis result
are fundamental for our approach.

Liveness analysis statically determines whether a regis-
ter is alive or dead at some program point. A register is alive
at some program point if the value of the register is used in
a later point in time. In contrast a register is dead if there
are no further uses of the value. In our framework the anal-
ysis result can be weakened in terms of precision. A register
which is dead and marked as alive cannot harm program se-
mantics when optimizations are applied – the analysis result
is safe.

For dynamic analysis a trade-off between precision and
runtime is essential. The most precise analysis result does
not pay off if the analysis time is significantly higher than
the achievable benefit of the optimizations. Moreover, dy-
namic liveness analysis also has to cope with the problem
that only fragments of the control flow exists when the pro-
gram is translated. For not translated basic blocks the anal-
ysis has to assume that all CPU registers are alive which
definitely worsens the analysis results.

The example in Figure 1 depicts the control flow of a
program that consists of a simple loop. For sake of simplic-
ity we have two registers (i.e. ��� and ��� ). Inside the loop,
register ��� is incremented and the loop is terminated if the
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Table 1. Dataflow Analysis of Example in Figure 1

value of � � is greater than or equal to 10. Before and after
the loop we assign register � � a constant value and register
� � is assigned the value of � � . For the analysis we need the
liveness information of registers � � and ��� at the entry of
the basic blocks. This information can be simply deduced
by looking at all paths ending in the end node. For exam-
ple basic block �� has only one path to the end node and at
the entry we do not need any previous computation of reg-
isters � � and ��� since register � � is assigned a constant and
register � � is assigned the constant value of ��� . Therefore,
both registers are dead at the entry of �� . In the figure the
liveness information is given by set LV which is empty for
�  . Note that a register is alive at the entry of a basic block
if the register is a member of set LV. In the example basic
block � � is more complex. Register � � is alive at the entry
of � � since register � � is incremented and the value of � �

might be used for a further iteration of the loop. Similar to
basic block �� both registers are dead at the entry of � �

(i.e. LV � � ) since registers are defined in � � . For the start
node we have no definitions and no uses of registers � � and
� � . Therefore, we have identical analysis results as given
for basic block � � .

In the example we provide the most precise solution.
However, an approximation is still acceptable as long as the
result is safe and the optimizing transformation does not de-
stroy program semantics.

3.1 Background of Liveness Analysis

Liveness analysis problem can be optimally solved in
polynomial time and the data flow analysis problem is char-
acterized as a backward any path gen/kill problem. The data
flow analysis framework computes liveness sets at the entry
of basic blocks. The liveness sets are subsets of the power
set LV ����� where � are the registers. Moreover, the power
set of � induces a partial order: LV ��� LV � if LV ��� LV � .
The partial order corresponds to the degree of information
of two liveness sets. A liveness set LV � which is a true sub-
set of LV � has fewer registers, that are alive, than liveness
set  "! � . Therefore, the degree of information of LV � is
higher than LV � , e.g. more optimizing transformation can
be applied.

In order to obtain a solution for register liveness we need
the control flow graph as an underlying program represen-

tation. The control flow graph is a tuple #$�&%(' �*)+�*,-�/.10
with a set of nodes ' , a set of edges ) , a start node ,
and an end node . . The set of successors is given by
succs ���2�3� ��4�5 �6� � 4 �7� )+
 . Since liveness analysis is a
backward problem we need to consider reverse paths, i.e.
a reverse path 89�;: < � � < � �>=�=>=�� <�?�@ is a finite sequence of
nodes where �6<�ACB � � <DAE�F� ) for all G , HI�JG�%LK . Note
that the sequence can be empty as well. The set of reverse
paths Path �6� � 4 � denotes the set of all reverse paths from �
to
4

. As usual a gen/kill framework is represented as tuple
%M��� � � �/NO� # �*PQ0 where

R �S� is a lattice with meet operator � where � is the set
of registers,

R N �9���UTV��� is a monotone function space,

R #$�&%(' �*)+�*,-�/.10 is a control flow graph,

R P W 'XT N is a map from the nodes of the control
flow graph to data flow to functions in N .

The transition function of node � is defined by two con-
stant sets use ���2� and def �6��� . Set use ���2� contains all regis-
ters which are used. Set def �6��� are all registers which are
defined in � . Note that if a register � is in use �6��� there must
not be a definition from the use of the register to the entry
of the basic block.

In Table 1 the def and use sets are given for the example
in Figure 1. For start node and end node the sets are empty
since no registers are either used or defined. For basic block
� � and basic block �  the def set contains registers � � and
� � since both are defined. Although register � � is used in the
second statement of basic block � � and �  the preceding
definition of � � kills the use and � � is not a member of the
use set. For basic block � � register � � is in the use set since
� � is not killed by a preceding definition. In addition � � is
in the def set since it is also defined.

Based on sets use �6��� and def �6��� the transition function
of node � is expressed as follows:

P �6������YZ�[�\�6Y^] def ���2�/�D� use ���2�
We extend function P to path 8_�`: < �	��=>=�=�� < ?�a ��� < ? @
where P ��8�� is defined as P �68��b� P �6<c?S�ed P �6<�?�a ���ed
=>=�= d P ��< ��� . If path 8 is empty ( 8f�g: @ ), then P �/: @6� is
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Figure 2. Solutions of Liveness Analysis

the identity function, i.e. � �6Y2� � Y . Given a reverse path
8 from end node . to a node � , we define state ���2� to be
P �68���� � � =

The most precise solution of a framework is given by the
meet over all path (MOP) solution which is defined as

MOP ���2�e� ���� Path ���	� state ��8�� =

The MOP solution for a node � is the meet operation ap-
plied over the effect of all reverse paths which end in node
� . The formula reflects the desired behavior of the liveness
analysis. If there is only one register used on one path to
the exit node and the register use is not hidden by a prior
definition of the register, the register is alive in � . Note
that the definition of the MOP solution is not constructive
since an infinite number of paths can occur in the presence
of loops. Therefore, an alternative method of computing the
MOP solution is necessary.

Since liveness analysis is a monotone and distributive
problem the MOP-solution is identical to the maximum fix-
point (MFP) of the following equation system:

LV �6���e�

� �� � succs ���� LV � , � ] def ���2���� � use ���2� (1)

In Table 1 the column LV �6��� gives the equations,
whereby the equations are constructed by Formula 1. For
example the equation of the end node is the empty set
LV � end �e� � since the node has no successors and therefore
all registers are dead at that point. For basic block � � and
basic block �� the right-hand side of the equations is given
by the set difference of the successors and registers � � and
� � since both registers are defined. Only for � � have we
two successors (i.e., the block itself and block �  ) which
are joined by the set union. Register � � must be added as
well since there is a use of � � in � � . The definition of regis-
ter � � in � � was not displayed on right-hand side due to the
fact that the use of � � cancels the set difference of the def
set. The equation of the start node is quite simple. There
are no uses and definitions in the start node and therefore
the solution of this node entirely depends on the solution of
its successor � � .

{}

{r1} {r2}

{r1,r2}
FP=SAFE

MFP

LFP

Lattice

Figure 3. Solutions of Node ���
The solution of the equation system can be solved itera-

tively. A simple solver initializes the registers LV ����� with
the empty set which is the greatest element in the lattice ���
and iterates until the equations are stable. Note that the iter-
ations starts with an analysis result that is not always a safe
solution. The first solution with which the equations hold
is called the maximum fix-point(MFP). Feeding the MFP
solution into the equation system will keep it stable for an
arbitrary number of iterations. Note that a fix-point solution
is a solution where all equations hold and the maximum fix-
point might not be the only fix-point of the equation system.
In contrast to the maximum fix-point there exists a least fix-
point(LFP) which is the smallest fix-point. All other fix-
points FP ����� of the equation system must be smaller than
the MFP and greater than the LFP:� �! #"%$ LFP �����'& FP �����(& MFP ����� (2)

The least fix-point is computed by initializing all registers of
the equation system by the smallest element of the lattice ���
which is ) . Then, the least fix-point is obtained by iterating
the equations as long as the result is stable.

In Table 1 the maximum fix-point (column MFP ����� ) and
the least fix-point (column LFP ����� ) are also given. Both
fix-point results are the same except for node � � . The re-
sult depends on the initialization of the node. If node � �
is initialized by ) no further iteration of the equation can
make the result better since the equation depends on itself.

For our approach it is important to state which solution is
safe. An analysis result can be adequate even if it is not the
MOP solution. The only requirement is that it must not pro-
duce incorrect code when it is used for optimizations. Since
we know that the most precise solution is the MOP solution
every solution which is below the most precise solution is a
safe solution � �# !"*$ SAFE �����'& MOP �����
If a solution was unsafe i.e. it is not smaller than or equal
to the MOP solution, some registers would not be marked
as alive and therefore would give a wrong analysis result.
Note that the smallest solution, i.e. all registers are alive,
is always a safe solution — but it is not always the most
precise solution.
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Figure 4. Dynamic Liveness Analysis Example

In Figure 2 possible solutions of a node are given. The
analysis must provide a solution which is safe and must
not be contained in the unsafe set. Fix-points of the equa-
tions must be safe since all fix-points are smaller than the
maximum fix-point (cf. Equation 2). As described above
we have two dedicated fix-points: The maximum fix-point
which represents the MOP solution and the least fix-point
which is the smallest fix-point in the set of fix-points.

Recall solution of node � � . The lattice is formed by the
power set of ��������� ��� 	 . The lattice induces a partial order as
depicted as Hasse diagram in Figure 3. Two elements con-
nected by a line means that the element on the higher level
is greater than the element on the lower level. Since the re-
lation is transitive, transitive relations can be constructed
as paths between two elements (e.g.

� 
 is greater than�
� ��� � ��
 ). In addition safe solutions are highlighted. For

solution of � � the set of safe solutions is identical with the
set of fix-points. In the figure the maximum fix-point and
the least fix-point are indicated whereby the maximum fix-
point is on a higher level as the least fix-point.

3.2 Dynamic Liveness Analysis

bintrans performs the register liveness analysis for a
basic block when the basic blocks is translated. The live-
ness information of the newly translated block is not prop-
agated — it is only kept for further runs of the program.
To perform the analysis we have three sets, i.e. LV, def
and use for each basic block. Set LV is computed as given
in Equation 1. Note that for one run of the program we
would hardly get a precise solution since the problem is a
backward data flow analysis problem. However, by keeping
the liveness information the liveness information becomes
more precise over several runs since the propagation of in-
formation is achieved by a feedback loop.

In general we cannot obtain a fix-point after few runs
since the propagation is only performed when a block
is translated. Moreover, if no liveness information of a
not translated successor block is available, we have to as-
sume that all registers of the not translated block are alive.
This approach ensures that all analysis results are safe (i.e.
equivalent to an initialization of � ) but in the best case we
can only achieve the least fix-point of the liveness equations.
If the least fix-points differs from the maximum fix-point,
we will never get the most precise result (i.e. MOP solu-
tion) even when the program is executed several times until
a fix-point is obtained. Therefore, our approach does not
seem to be viable in terms of precision and convergence.
However, it has an excellent performance during transla-
tion since the translator just needs to store three sets2 for a
block and the analysis time for computing one equation of
the newly translated block is negligible.

In Figure 4 we perform dynamic liveness analysis of the
example in Figure 1 when the blocks are translated, and as-
sume that we have no information from a previous run. In
the first step (a) we translate block � � . The block has one
not translated successor ( � � ) with an unknown behavior.
Therefore, we assume that both registers (i.e. � � and � � ) are
alive. By applying Equation 1 we obtain an empty liveness
set for � � because both registers are defined in � � . In the
second step (b) we translate block � � . Again, we assume
that in �� all registers are alive. According to the liveness
equation we mark both registers as alive at the entry of � � .
In the last step (c) we translate �� . Block �� defines both
registers and therefore the liveness set is empty. In the ex-
ample we obtain the least fix-point in the first execution of
the program. As given in Table 1 the maximum fix-point

2Even the use and def set can be omitted since it can be computed on
the fly.
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differs from the least fix-point. Therefore, we will never
obtain the most precise solution (i.e. MOP solution) for our
example. Moreover, the least fix-point was computed after
the first execution of the run. In general we cannot expect
this fast convergence of the equations.

3.3 Refinement

To overcome the obstacles of locality we can improve
the liveness analysis of bintrans by looking ahead at not
translated basic blocks. Therefore, a translation of one basic
block could cause an additional overhead for the analysis of
not translated successors of the block. In the worst case
there are only two not translated successors and therefore
the analysis is still very cheap. The improvement can be
substantial since the convergence of the analysis accelerates
and for not translated blocks we have a detailed information
about their register liveness.

4 Experiments

The main question of our experiments was: Can we
come close to the MOP solution with our dynamic liveness
analysis and if so, how many iterations and/or lookahead do
we need?

To that end we have run several SpecInt95 benchmarks
with various configurations of the PowerPC to Alpha bi-
nary translator. All run-times given are arithmetic averages
over five samples on lightly loaded machines (sums of user
and system time). The PowerPC executables were compiled
with the GNU C Compiler and statically linked.

What we were mainly interested in was overall run-time
and, more specifically, the number of loads and stores exe-
cuted.

All benchmarks have been run independently with no
lookahead and with a lookahead of one block.
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One should expect the liveness optimizations to speed
the binary translator up compared to running it without
those optimizations. To get a picture of this improvement,
we ran the benchmarks without any liveness information.
All other data in the figures are given relative to this value.

In order to compare the dynamic liveness analysis with
the MOP solution, we made one run of the benchmarks and
collected gen/kill sets. We did this independently without
lookahead and with a lookahead of one block. The results
were gen/kill sets of all dynamically translated blocks for
each benchmark, and, for the runs with lookahead, gen/kill
sets of all successors of all translated blocks.

We then used those gen/kill sets to calculate the MOP
solution using a traditional data-flow analysis. The MOP
solution was then used by bintrans instead of a dynamic
solution. The results for these runs are given in the columns
labeled “MOP”. We should not expect to perform better
than that, but we would like to come close.

The results for the regular runs are given in the columns
labeled “Run 0” and “Run 4”, for the first run, and the fifth,
respectively. The columns “Loss” give the differences be-
tween the MOP numbers and the fifth run numbers in per-
cent (of the MOP numbers).

Figures 5 and 6 give relative execution times for the
benchmarks for an 21264 (500 MHz) and a 21164PC (533
MHz), respectively. The impact on performance for the
21264 is clearly not as big as for the 21164PC. This can be
explained by the fact that the former is an out-of-order ma-
chine, while the latter operates in-order. The 21264 seems
to be able to schedule a large number of stores in parallel
to the instructions doing the “real” work to avoid slowing
down execution considerably.

Figures 7 and 8 give the relative numbers of executed
register loads and register stores. These results show con-
clusively across all benchmarks that using good liveness in-



Source Gen Gen Gen Gen Gen Billion Billion
Benchmark Blocks insns insns loads stores CRF0 CRFx loads stores
compress 845 5314 14561 2401 9473 1836 174 22.694 56.555
go 9839 72411 191258 32771 127020 25072 2208 15.291 37.587
m88ksim 2695 16761 45765 7645 29485 5636 585 28.872 81.200
ijpeg 2599 18817 46561 8429 31474 5886 397 7.879 18.171
perl primes 3106 17709 52130 8311 33355 7008 776 7.590 20.531
perl scrabbl 3941 22158 65658 10353 41804 8560 1044 14.074 35.349
vortex 11812 77039 192542 33982 144924 27449 842 41.193 105.927
xlisp 2228 11773 31752 5765 21156 3560 362 33.971 94.462

Table 2. Various benchmark information (no liveness)

Source Gen Gen Gen Removed Gen Gen Billion Billion
Benchmark Blocks insns insns loads stores stores CRF0 CRFx loads stores
compress 845 5314 13826 2259 6594 293 1401 174 20.278 30.226
go 9839 72411 176707 28970 72923 3931 13368 2208 13.933 19.168
m88ksim 2695 16761 43419 7141 20363 966 4090 585 25.323 34.562
ijpeg 2599 18817 44467 7987 21837 825 4513 397 7.265 8.146
perl primes 3106 17709 48931 7510 21174 1110 4561 776 6.883 11.916
perl scrabbl 3941 22158 61578 9327 26527 1382 5421 1044 12.848 20.031
vortex 11812 77039 176469 29975 91014 3461 15293 842 35.574 53.133
xlisp 2228 11773 30677 5503 15737 569 2750 362 31.319 49.508

Table 3. Various benchmark information (liveness with lookahead one, first iteration)
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Figure 7. Dynamic register loads

formation (i.e. the MOP solution), about 10% of executed
register loads and about 50% of executed register stores can
be avoided.

Also, the MOP solution results do not substantially differ
between using no lookahead and a lookahead of one block.

The results for the fifth iterated runs show that the dy-
namic liveness analysis comes very close to the MOP solu-
tion after enough iterations.

The result most relevant to our work is the fact that with
a lookahead of one block, the iterative liveness analysis
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Figure 8. Dynamic register stores

comes to within about 10% of the MOP solution for the
register stores. This means that it makes perfect sense to do
this sort of liveness optimization even if only a single run is
done.

Figure 9 gives relative numbers of executed generations
of bits in the first field of the condition register. Each gen-
erated bit counts as one generation. The difference between
the first iteration and the MOP solution is bigger here than
for the register stores. This is partly due to the fact that
the instructions generating condition bits are not removed



no lookahead lookahead one
Benchmark # Registers Dynamic MOP Dynamic MOP
compress 74169 93.3% 93.1% 91.5% 91.0%
go 696331 87.8% 86.5% 87.2% 85.8%
m88ksim 228269 92.5% 92.2% 90.6% 89.9%
ijpeg 221234 92.7% 92.3% 91.0% 90.3%
perl primes 271283 92.7% 92.6% 90.6% 90.0%
perl scrabbl 333191 92.2% 92.1% 90.3% 89.7%
vortex 951132 90.4% 90.3% 87.8% 86.9%
xlisp 177349 92.9% 92.8% 91.4% 91.1%

Table 4. Number of alive registers—Comparison between dynamic analysis and MOP solution
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Figure 9. Dynamically generated CR field 0
bits

when new liveness information becomes available. Doing
so would require either expensive bookkeeping or a more
involved removal algorithm.

Also, the difference between MOP solutions with and
without lookahead is significant. However, we are not
overly concerned about condition bit generation, since each
generated bit costs only one (cheap) compare instruction.

Tables 2 and 3 give various additional information about
the benchmarks for a run without liveness analysis and for
the first iteration of a run with liveness analysis with looka-
head. The meanings of the columns are: number of trans-
lated blocks, number of translated instructions, number of
generated target instructions (not counting register loads
and stores), number of generated register loads, number
of generated register stores, number of removed (patched)
stores (only in Table 3), number of generated condition field
0 bits, number of generated condition bits in other fields,
number of executed register loads and stores in billions.

Even with liveness information, bintrans still gener-
ates about one register store instruction for each translated
source instruction. This makes obvious the need for register

allocation between blocks, which we will investigate in the
future.

Finally, Table 4 directly compares the solution to the
liveness problem of the fifth run of the dynamic algorithm
with the MOP solution. The second column gives the num-
ber of all registers over all translated blocks. The other
columns present the relative portion of these found to be
alive by the two analyses, again without and with looka-
head. Surprisingly, the differences between the dynamic
and the MOP solutions are minimal.

5 Related Work

Iterative data flow analysis including liveness analysis is
well described in the book of Aho et al. [ASU86]. Our
dynamic liveness analysis can be seen as a variation of clas-
sical algorithm. Each run of the program is comparable
with an iteration in an iterative data flow analysis frame-
work. Since a backward data flow problem is solved in the
wrong direction the number of runs for obtaining a fix-point
might be close to the worst case complexity. In compari-
son with classical approaches we initialize our liveness sets
with safe solutions and step-wise improve this solution. In
the best case we achieve the least fix-point which can differ
from the most precise solution (i.e. MOP solution).

In the eighties when computers were slow several at-
tempts were undertaken to reuse data flow information from
previous compilations if the changes in the programs were
small. Pollock and Soffa [PS89] presented an iterative in-
cremental data flow analysis algorithm for use in program-
ming environments. They present two different algorithms
with different complexity which solve the any path update
and all path update problem. Marlowe and Ryder [MR90]
present a hybrid algorithm for incremental data flow analy-
sis based on iteration and elimination techniques. All these
incremental algorithms are too complex to be executed at
run time in a dynamic binary translator. The analysis over-
head would spoil the speed-up of the optimization.

Computing the liveness information needed for register



allocation is usually done using an iterative work list algo-
rithm [App98]. This information has to be computed re-
peatedly after insertion of spill code. Since only a few it-
erations of spill code insertions are necessary and many ba-
sic blocks are affected, liveness analysis starts from scratch.
Kim and Leung [KL00] very briefly describe an incremen-
tal liveness analysis algorithm when liveness information is
changed due to live range splitting.

To the best knowledge of the authors none of the
available dynamic binary translators or optimizers such as
UQDBT [UC00], Dynamo [BDB00], Mojo [CLCG00] and
the simulator by Zhu [ZG99] compute liveness informa-
tion at run time. Static binary translators such as FX!32
[CHH B 98] are not restricted in the resource usage and can
use iterative data flow analysis algorithms.

6 Conclusion and Future Work

We have demonstrated an effective optimization for a dy-
namic binary translator based on dynamic register liveness
analysis. The optimization mainly targets the reduction of
register store operations.

We introduced a new approach to liveness analysis in
dynamic binary translation. bintrans performs liveness
analysis for basic blocks when they are translated. The anal-
ysis information is propagated by a feed-back loop between
several runs of the program. Our approach has a negliga-
ble runtime overhead in comparison with incremental or ex-
haustive data-flow analysis frameworks. Although our dy-
namic liveness analysis always produces safe analysis in-
formation, we showed that in general the most precise solu-
tion cannot be obtained. To improve the analysis result the
binary translator also analyzes the successors of a newly
translated block.

We conducted experiments with the SpecInt95 bench-
mark suite using our PowerPC to Alpha translator. The opti-
mization reduced the number of stores by about 50 percent.
This resulted in a speed-up of 10 to 30 percent depending on
the target machine. In our experiments the dynamic liveness
analysis results are very close to the most precise solution
(i.e. MOP solution). The analysis difference between the
most precise solution and our dynamic analysis is below
2 percent. By analyzing successors of a newly translated
block the propagation of analysis information is acceler-
ated. Even for the first run of the program the number of
reduced stores is within 10 percent of the number obtained
with the most precise analysis.

Our future work in this area will be twofold. First, we
want to apply more aggressive optimization techniques to
further reduce the number of store operations, which are
still a considerable overhead. Although global register al-
location is a challenging problem for dynamic binary trans-
lation, it would further decrease load and store operations.

Second, we want to investigate other dynamic analyses such
as alignment analysis.
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