
Compilation Techniques for VLIW Architectures

Dietmar Ebner and Florian Brandner
VU2 185.32

Assignment 2

Please deliver all answers via e-mail with the subject “[VLIW] <matr.nr..> - <name>”. For
changes to the sourcecode and/or makefile, use the diff utility, e.g.,

diff -Nupr ../reference .

Example 1: VLIW Toolchain (10P)

Using the VEX toolchain (http://www.hpl.hp.com/downloads/vex), perform the
following experiments with the MPEG2 decoder available on the course website. The
makefile assumes that the vex toolchain is installed in “$(HOME)/vex”. You can use
the phony target “sim” to run the decoder and compare the results to reference data.
The VEX documentation can be found in the ./share/doc subdirectory.

a) [2P] The VEX toolchain supports custom machine and memory architecture models.
Compile and and run the mpeg2 decoder for the risc, default, and vex8 machine
description. Compare the results in respect to execution time, IPC, stall cycles, and
nops.

b) [2P] Create profiling data and re-compile the application with profiling. Compare the
results (for the default model only!) tho those without profiling from the previous run.

c) [6P] Use gprof and the rgg utility to examine the profile for the example stream.
Where (in which function) does the decoder spend most of its time? Use compiler
switches and pragmas to improve the performance critical parts of the application.
What is the best cycle count you can obtain? You are free to use inline assembler and/
or assembler modules.

The winner gets a small prize ;-)

Example 2: Branch Delay Slots (20P)

The VEX architecture does not expose branch delay slots. Assume a 4-way
architecture where load and multiply operations have a latency of 3 instructions, and
branches (jumps, return, call instructions) expose a delay slot of 4 cycles. All other
instructions have a latency of one cyle. There are no multiway branches, i.e, each
instruction must not contain more than a single jump which can be scheduled in the
first issue slot only. Use the provided VEX parser template to write a simple list
scheduler that produces a correct schedule using explicit nop instructions. Don't care
about memory deallocation or efficiency.

a) [10P] Implement the function sched::computeDDG() to compute a data
dependence graph for the given list of vex instructions. The first node is an artificial
start vertex with a dummy edge to each node without predecessors. Likewise, the node
with id 2 is an end vertex with an edge leading from each node without successors.
Data structures are already defined in sched.h. Use the risc.mm machine model to
generate test data. Label the edges with the type of the dependence (e.g., control, raw,
...) and the edge weight. Branch delays can be expresses with negative weights, e.g.,
the weight of an edge among a simple add and a return instruction is -3. A weight of 0
means that the source node can be scheduled within the same VLIW instruction but
not afterwards. You can assume that there are no branch targets apart from the labels
present in the instruction stream. Call instructions can be considered to be a barrier.

b) [10P] Use the DDG implemented in a) to write a simple list scheduler
(sched::schedule())that produces a correct stream of operations. Insert explicit
nops where necessary. Each VLIW instruction consists of 4 successive operations.
NOPS are expressed by setting the instr pointer in the result list to NULL.

Again, the student with the best results earns a little surprise!

	Compilation Techniques for VLIW Architectures
	Example 1: VLIW Toolchain (10P)
	Example 2: Branch Delay Slots (20P)

