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Last Lectures (1)

� Instruction scheduling

� List scheduling

� Classification

� Regime, search strategy, region shapes

� Region formation
� Mutual most likely strategy
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Last Lectures (2)

� Region Types

� Linear

� Traces / Superblocks

� Non linear

� Hyperblocks / Treegion / Trace 2

� SEME vs MEME

� Details on Superblocks

� Moderate compile time penalty

� Major performance improvements

� Sometimes severe code size increase
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Last Lectures (3)

� Region enlargement

� Loop unrolling

� Loop peeling

� Tail duplication

� If-conversion (Hyperblocks)

� Dependence elimination

� Renaming

� Induction variable / accumulator expansion

� Operation combining and migration
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In Today's Lecture

� Cyclic Scheduling

� Software Pipelining

� Modulo Scheduling

� Predicated Execution

� If-conversion
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Phases of an ILP Oriented Compiler

High Level Optimizer

C C++ Java

Code Generator (BURS)

Low Level Optimizer

Region Scheduler
Target

Machine
Description

Alias
Information
Database

Assembly Printer

Front-End

Middle-End

Back-End

LLIR

Opt. LLIR

Sched. LLIR
Assembly
Code

Opt. HLIR

HLIR
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Cyclic Scheduling

� Programs spend most of the time in loops

� Apply specialized scheduling techniques

� Enlarge the loop body by unrolling

� Overlap the execution of several loop iterations

� Execute (parts of) different iterations in parallel

� When applicable leads to good improvements

� Not all loops can be handled
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Software Pipelining

� Family of cyclic schedulers

� Divide the loop into stages

� Execute stages of different iterations in parallel

� Effectively pipelines the loop
(similar to pipelining for computer architectures)

� Dominating approach: Modulo Scheduling

� Optimize for throughput

� The latency of a single iteration is irrelevant
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Example: Software Pipelining (1)
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c) pipelined loop
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Example: Software Pipelining (2)
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Loop Kernel

Prolog

Epilog
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Modulo Scheduling (1)

� Important SW Pipelining Technique

� Explores the space of possible loop kernels

� Initiation interval (II)

� Constant interval between the start of successive kernel 
iterations

� Lower bound of II (MinII)

� Consider available hardware resources (ResII)

� Data dependencies and recurrences (RecII)

� Upper bound of II (MaxII)

� Length of a linear schedule

05/30/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #12

Modulo Scheduling (2)

� Search for an II starting from MinII

� If a valid schedule could be found stop

� Otherwise decide whether to

� Backtrack - revert some scheduling decision

� Increase the II

� Abort if II is larger than MaxII

� High computational complexity

� Backtracking and searching the II
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Scheduling Heuristics

� Modified version of list scheduling

� Employ the modulo reservation table (MRT)

� Similar to regular reservation tables

� Ensure that a resource is not used at the same cycle, or 
at following cycles that modulo the II collide with it

� Allows backtracking to revert scheduling decisions

� Limited by a backtracking budged

� May cause significant overhead
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Example: Modulo Scheduling

int i,x ;

short a[];

for (i=0; i < 100; ++i)

  a[i+3] = a[i]*x + 7;

(a) Original C Code

ldh

mpyl

add

sth

add'

cmp

br

3

2

1

2

1

(b) Data Dependence Graph

Cycle mod II Cycle

0 0 ldh
1 1
2 2
0 3 mpyl ldh
1 4
2 5 add
0 6 mpyl ldh
1 7 sth

2 8 add' add
0 9 cmp mpyl ldh
1 10 sth
2 11 br add' add
0 12 cmp mpyl
1 13 sth
2 14 br add' add

0 15 cmp
1 16 sth

(d) Modulo Schedule

ALU0 ALU1 MUL0 MEM BR
0 cmp (9) --- mpyl (3) ldh (0) ---
1 --- --- --- sth (7) ---
2 add (5) add' (8) --- --- br (11)

(c) Modulo Reservation Table
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Prolog / Epilog

� Partial copies of the loop kernel

� May cause some code size increase

� Strongly depending on the number of stages

� Several versions required in the presence of 
multiple loop exits and uncertain trip counts

� May harm runtime on small trip counts

� Loop kernel is never reached (steady state)
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Variable Names

� MS increases the register pressure

� Preserve multiple copies of the same variable for 
different iterations

� Life ranges exceeding the II

� Spilling may disrupt the compact schedule

� Solutions

� Modulo variable expansion (loop unrolling)

� Copy operations

� Hardware support (rotating register files)
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Example: Variable Names (1)

ldh

mpyl

add

sth

add'

cmp

br

4

1

1

2

1

(a) Data Dependence Graph

Cycle mod II Cycle

0 0
1 1
2 2

0 3
1 4
2 5 add

0 6
1 7
2 8 add' add

0 9
1 10

2 11 add' add
0 12
1 13

2 14 add' add
0 15
1 16

ldh

ldh
mpyl

ldh

sth mpyl

cmp ldh
sth mpyl

br
cmp

sth mpyl

br
cmp

sth

(b) Modulo Schedule

� Minor change in the schedule

� The value of ldh exceeds the II

� mpyl still requires the value of the last iteration
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Example: Variable Names (2)

ldh

mpyl

add

sth

add'

cmp

br

4

1

1

2

1

(a) Data Dependence Graph

Cycle mod II Cycle

0 0
1 1
2 2

0 3
1 4
2 5 add

0 6
1 7
2 8 add' add

0 9 copy
1 10

2 11 add' add
0 12
1 13

2 14 add' add
0 15
1 16

ldh

ldh
mpyl

ldh

sth mpyl

cmp ldh
sth mpyl

br
cmp

sth mpyl

br
cmp

sth

(b) Modulo Schedule

� Solution

� Shown here: A extra copy operation

� Alternative: Modulo Variable Expansion

05/30/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #19

Modulo Variable Expansion

� Unrolling increases the II

� It is always possible to find a suitable unrolling 
factor to prevent copy operations

� Assume   is the longest lifetime of a variable

� The unrolling factor is given by  

� Larger kernel, prolog, and epilog

� Complicates handling of loop exits

k=�
v

II
�

v
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Limitations of Modulo Scheduling

� Internal control flow

� No internal control flow permitted

� Applying if-conversion helps

� Early loop exits are complex to handle

� Nested Loops

� Recursively invoke the modulo scheduler starting 
with the innermost loop

� Low trip counts

� Possibly never reach the steady state

� Two versions unrolling & pipelined loop (code bloat)
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Software Pipelining on a MIPSPro

Source: J. Ruttenberg, SGI

� SPECfp92 on a 
MIPSPro 
(R8000, 75Mhz)

� SPECmarks with 
pipelining 
enabled/disabled

Side note: Papers on software pipelining 
typically do not show complete 
benchmarks, but concentrate on single 
loops only.

05/30/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #22

Software Pipelining on a VLIW

Source: D. Kästner, AbsInt

� TriMedia TM1000

� 5 issue VLIW

� 100 Mhz

� Benchmarks

� DSPStone

� MiBench

Side note: Papers on software pipelining typically do 
not show complete benchmarks, but concentrate on 
single loops only.
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Predicated Execution

� Predicated operations

� Conditionally nullify the result of the operation

� Partial vs. full predication

� All operations can be predicated

� Conditional move or select operations

� Enable elimination of branches

� Increase available ILP

05/30/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #24

If-Conversion

� Restructure the CFG

� Augment blocks with predicates

� Merge blocks

� Eliminate branches

� Additional benefits

� Increase scope for schedulers (Hyperblocks)

� Enable software pipelining (internal control flow)

� Other optimizations may benefit as well
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BB0

BB1 BB2

BB3

BB0
if p1 BB1

BB2

BB3

BB0
if p1 BB1
if p2 BB2

BB3

Example: If-Conversion
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If-Conversion

� Simple approaches

� Select a candidate basic block following a heuristic

� Often following simple patterns (e.g., if-then-else, etc.)

� Calculate a predicate

� Predicate all instructions of the block

� More Sophisticated

� Use the Program Dependence Graph (PDG)

� Try to place predicate definitions optimally

� Try to derive a minimal set of predicates
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Program Dependence Graph

Source: J .Ferrante, HP

b) Derived PDGa) Regular CFG
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If-conversion using RK
*

Source: J. Park, HP

b) Derived Predicatesa) CFG

* R and K are functions on the control dependence graph, introduced by Park et. al.
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If-conversion on Itanium (1)

Source: Y. Choi, Intel* SPECINT2000, running on a near-production silicon
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If-conversion on Itanium (2)

Source: Y. Choi, Intel* SPECINT2000, running on a near-production silicon
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If-conversion on Itanium (3)

Source: Y. Choi, Intel* SPECINT2000, running on a near-production silicon
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Limitation of If-Conversion

� Relies on hardware support

� Non predicatable instructions cause problems

� Aggressive application

� Causes slow-down, increase of code size, and 
power consumption

� Estimating profitability is hard

� Reverse-if-conversion

� Undo if-conversion if unprofitable
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Outlook

� Second Assignments

� Presentation of your results

� Minimal execution time of the mpeg2decoder

� Best scheduler implementation

� The winner gets a small price


