

05/30/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #1

VU2 185.324

Compilation Techniques for VLIW Architectures

Dietmar Ebner ebner@complang.tuwien.ac.at

Florian Brandner brandner@complang.tuwien.ac.at

http://complang.tuwien.ac.at/cd/vliw

05/30/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #2

Last Lectures (1)

� Instruction scheduling

� List scheduling

� Classification

� Regime, search strategy, region shapes

� Region formation
� Mutual most likely strategy

05/30/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #3

Last Lectures (2)

� Region Types

� Linear

� Traces / Superblocks

� Non linear

� Hyperblocks / Treegion / Trace 2

� SEME vs MEME

� Details on Superblocks

� Moderate compile time penalty

� Major performance improvements

� Sometimes severe code size increase
05/30/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #4

Last Lectures (3)

� Region enlargement

� Loop unrolling

� Loop peeling

� Tail duplication

� If-conversion (Hyperblocks)

� Dependence elimination

� Renaming

� Induction variable / accumulator expansion

� Operation combining and migration

05/30/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #5

In Today's Lecture

� Cyclic Scheduling

� Software Pipelining

� Modulo Scheduling

� Predicated Execution

� If-conversion

05/30/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #6

Phases of an ILP Oriented Compiler

High Level Optimizer

C C++ Java

Code Generator (BURS)

Low Level Optimizer

Region Scheduler
Target

Machine
Description

Alias
Information
Database

Assembly Printer

Front-End

Middle-End

Back-End

LLIR

Opt. LLIR

Sched. LLIR
Assembly
Code

Opt. HLIR

HLIR

05/30/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #7

Cyclic Scheduling

� Programs spend most of the time in loops

� Apply specialized scheduling techniques

� Enlarge the loop body by unrolling

� Overlap the execution of several loop iterations

� Execute (parts of) different iterations in parallel

� When applicable leads to good improvements

� Not all loops can be handled

05/30/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #8

Software Pipelining

� Family of cyclic schedulers

� Divide the loop into stages

� Execute stages of different iterations in parallel

� Effectively pipelines the loop
(similar to pipelining for computer architectures)

� Dominating approach: Modulo Scheduling

� Optimize for throughput

� The latency of a single iteration is irrelevant

05/30/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #9

B

H

G

F

E

D

C

A

Example: Software Pipelining (1)

B

H

G

F

E

D

C

A

a) original loop b) divide into stages

B1

H1

G1

F1

E1

D1

C1

A1

c) pipelined loop

B2

H2

G2

F2

E2

D2

C2

A2

B0

H0

G0

F0

E0

D0

C0

A0

05/30/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #10

Example: Software Pipelining (2)

B1

H1

G1

F1

E1

D1

C1

A1

B2

H2

G2

F2

E2

D2

C2

A2

B0

H0

G0

F0

E0

D0

C0

A0

Loop Kernel

Prolog

Epilog

05/30/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #11

Modulo Scheduling (1)

� Important SW Pipelining Technique

� Explores the space of possible loop kernels

� Initiation interval (II)

� Constant interval between the start of successive kernel
iterations

� Lower bound of II (MinII)

� Consider available hardware resources (ResII)

� Data dependencies and recurrences (RecII)

� Upper bound of II (MaxII)

� Length of a linear schedule

05/30/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #12

Modulo Scheduling (2)

� Search for an II starting from MinII

� If a valid schedule could be found stop

� Otherwise decide whether to

� Backtrack - revert some scheduling decision

� Increase the II

� Abort if II is larger than MaxII

� High computational complexity

� Backtracking and searching the II

05/30/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #13

Scheduling Heuristics

� Modified version of list scheduling

� Employ the modulo reservation table (MRT)

� Similar to regular reservation tables

� Ensure that a resource is not used at the same cycle, or
at following cycles that modulo the II collide with it

� Allows backtracking to revert scheduling decisions

� Limited by a backtracking budged

� May cause significant overhead

05/30/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #14

Example: Modulo Scheduling

int i,x ;

short a[];

for (i=0; i < 100; ++i)

 a[i+3] = a[i]*x + 7;

(a) Original C Code

ldh

mpyl

add

sth

add'

cmp

br

3

2

1

2

1

(b) Data Dependence Graph

Cycle mod II Cycle

0 0 ldh
1 1
2 2
0 3 mpyl ldh
1 4
2 5 add
0 6 mpyl ldh
1 7 sth

2 8 add' add
0 9 cmp mpyl ldh
1 10 sth
2 11 br add' add
0 12 cmp mpyl
1 13 sth
2 14 br add' add

0 15 cmp
1 16 sth

(d) Modulo Schedule

ALU0 ALU1 MUL0 MEM BR
0 cmp (9) --- mpyl (3) ldh (0) ---
1 --- --- --- sth (7) ---
2 add (5) add' (8) --- --- br (11)

(c) Modulo Reservation Table

05/30/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #15

Prolog / Epilog

� Partial copies of the loop kernel

� May cause some code size increase

� Strongly depending on the number of stages

� Several versions required in the presence of
multiple loop exits and uncertain trip counts

� May harm runtime on small trip counts

� Loop kernel is never reached (steady state)

05/30/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #16

Variable Names

� MS increases the register pressure

� Preserve multiple copies of the same variable for
different iterations

� Life ranges exceeding the II

� Spilling may disrupt the compact schedule

� Solutions

� Modulo variable expansion (loop unrolling)

� Copy operations

� Hardware support (rotating register files)

05/30/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #17

Example: Variable Names (1)

ldh

mpyl

add

sth

add'

cmp

br

4

1

1

2

1

(a) Data Dependence Graph

Cycle mod II Cycle

0 0
1 1
2 2

0 3
1 4
2 5 add

0 6
1 7
2 8 add' add

0 9
1 10

2 11 add' add
0 12
1 13

2 14 add' add
0 15
1 16

ldh

ldh
mpyl

ldh

sth mpyl

cmp ldh
sth mpyl

br
cmp

sth mpyl

br
cmp

sth

(b) Modulo Schedule

� Minor change in the schedule

� The value of ldh exceeds the II

� mpyl still requires the value of the last iteration

05/30/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #18

Example: Variable Names (2)

ldh

mpyl

add

sth

add'

cmp

br

4

1

1

2

1

(a) Data Dependence Graph

Cycle mod II Cycle

0 0
1 1
2 2

0 3
1 4
2 5 add

0 6
1 7
2 8 add' add

0 9 copy
1 10

2 11 add' add
0 12
1 13

2 14 add' add
0 15
1 16

ldh

ldh
mpyl

ldh

sth mpyl

cmp ldh
sth mpyl

br
cmp

sth mpyl

br
cmp

sth

(b) Modulo Schedule

� Solution

� Shown here: A extra copy operation

� Alternative: Modulo Variable Expansion

05/30/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #19

Modulo Variable Expansion

� Unrolling increases the II

� It is always possible to find a suitable unrolling
factor to prevent copy operations

� Assume is the longest lifetime of a variable

� The unrolling factor is given by

� Larger kernel, prolog, and epilog

� Complicates handling of loop exits

k=�
v

II
�

v

05/30/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #20

Limitations of Modulo Scheduling

� Internal control flow

� No internal control flow permitted

� Applying if-conversion helps

� Early loop exits are complex to handle

� Nested Loops

� Recursively invoke the modulo scheduler starting
with the innermost loop

� Low trip counts

� Possibly never reach the steady state

� Two versions unrolling & pipelined loop (code bloat)

05/30/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #21

Software Pipelining on a MIPSPro

Source: J. Ruttenberg, SGI

� SPECfp92 on a
MIPSPro
(R8000, 75Mhz)

� SPECmarks with
pipelining
enabled/disabled

Side note: Papers on software pipelining
typically do not show complete
benchmarks, but concentrate on single
loops only.

05/30/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #22

Software Pipelining on a VLIW

Source: D. Kästner, AbsInt

� TriMedia TM1000

� 5 issue VLIW

� 100 Mhz

� Benchmarks

� DSPStone

� MiBench

Side note: Papers on software pipelining typically do
not show complete benchmarks, but concentrate on
single loops only.

05/30/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #23

Predicated Execution

� Predicated operations

� Conditionally nullify the result of the operation

� Partial vs. full predication

� All operations can be predicated

� Conditional move or select operations

� Enable elimination of branches

� Increase available ILP

05/30/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #24

If-Conversion

� Restructure the CFG

� Augment blocks with predicates

� Merge blocks

� Eliminate branches

� Additional benefits

� Increase scope for schedulers (Hyperblocks)

� Enable software pipelining (internal control flow)

� Other optimizations may benefit as well

05/30/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #25

BB0

BB1 BB2

BB3

BB0
if p1 BB1

BB2

BB3

BB0
if p1 BB1
if p2 BB2

BB3

Example: If-Conversion

05/30/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #26

If-Conversion

� Simple approaches

� Select a candidate basic block following a heuristic

� Often following simple patterns (e.g., if-then-else, etc.)

� Calculate a predicate

� Predicate all instructions of the block

� More Sophisticated

� Use the Program Dependence Graph (PDG)

� Try to place predicate definitions optimally

� Try to derive a minimal set of predicates

05/30/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #27

Program Dependence Graph

Source: J .Ferrante, HP

b) Derived PDGa) Regular CFG

05/30/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #28

If-conversion using RK
*

Source: J. Park, HP

b) Derived Predicatesa) CFG

* R and K are functions on the control dependence graph, introduced by Park et. al.

05/30/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #29

If-conversion on Itanium (1)

Source: Y. Choi, Intel* SPECINT2000, running on a near-production silicon

05/30/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #30

If-conversion on Itanium (2)

Source: Y. Choi, Intel* SPECINT2000, running on a near-production silicon

05/30/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #31

If-conversion on Itanium (3)

Source: Y. Choi, Intel* SPECINT2000, running on a near-production silicon

05/30/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #32

Limitation of If-Conversion

� Relies on hardware support

� Non predicatable instructions cause problems

� Aggressive application

� Causes slow-down, increase of code size, and
power consumption

� Estimating profitability is hard

� Reverse-if-conversion

� Undo if-conversion if unprofitable

05/30/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #33

Outlook

� Second Assignments

� Presentation of your results

� Minimal execution time of the mpeg2decoder

� Best scheduler implementation

� The winner gets a small price

