VU2 185.324

Compilation Techniques for VLIW Architectures

Dietmar Ebner ebner@complang.tuwien.ac.at
Florian Brandner brandner@complang . tuwien.ac.at

http://complang.tuwien.ac.at/cd/vliw

Last Lecture (2)

* Instruction set design
- Expose details (Latencies/Resources)
- Semantics of parallel execution
- Exceptions/Interrupts
* Instruction encoding
- Uncompressed/Fixed-overhead encoding
- Distributed/Template-based encoding
- Dispatching techniques

Last Lecture

* VLIW principles
» Forms of parallelism
- Pipelining
- Instruction level parallelism (ILP)
* VLIW vs. superscaler
- Similar ILP
- Differing techniques to achieve ILP

Terminology
* Operation
* Syllable
* Instruction/group

- Set of independent operations

* Bundle
- Set of operations encoded as a unit
- May have dependencies

Last Lecture (4) Last Lecture (5)

In many cases bundles and instructions coincide

‘ Instruction/Group ‘ Instruction/Group | Instruction/Group
| —_—— | — | — ‘ Instruction/Group ‘ Instruction/Group ‘
N Bundle ‘ BuF\dIe ‘ | | |
[Bundle [Bundle {
‘ Operation ‘Operation‘ Operation ‘Operation‘Operation‘
‘ Operation ‘Operation‘ Operation ‘Operation‘Operation‘
‘ Syllable ‘ Syllable ‘ Syllable ‘ Syllable ‘ Syllable ‘ Syllable ‘ Syllable ‘ —_— N — e
‘ Syllable ‘ Syllable ‘ Syllable ‘ Syllable ‘ Syllable ‘ Syllable ‘ Syllable ‘
Ebn Brandr o tior hniqu L #5 Ebr Brandr n tior hniqu L
In Today's Lecture Memory Architecture

* VLIW Implementation

_ Architecture Design * Strongly oriented towards RISC

- Microarchitectural - Dedicated load/store operations

Design - Typical addressing modes
e Examples « register indirect, register + offset, register + register
. « pre/post increment/decrement
- Multiflow Trace . . .
- Similar alignment, and access sizes
- ST231
- Chili

* Same caching and prefetching techniques

Instruction Fetch

Fetch [Instruction cache line | | D)

Align ‘ ‘ ‘ Instruction buffer

Decode ‘ ‘ ‘

Dispatch FU1 FU2 FU3 FU4

Source: P. Faraboschi, HP Research

Instruction Alignment

* Variable length instructions
- Complicate the Align step
- Might cause several cache accesses

* Interferes with cache organization
- Instruction encoding
- Alignment constraints

Instruction Fetch

* Additional step required: Align
- Find the boundaries of instructions
- Usually employs an instruction buffer

* Expansion of NOPs
- Both vertical and horizontal

Memory Architecture (2)

* Some techniques not unique to VLIW
* Stream buffers
- Dedicated caches relaying on spatial locality only
* Fast local memories
- Scratch pad memories
- Lockable caches (turned into regular memory)
* DMA engines

Code Compression Register File

* Compressed code in memory]
. * Multiple ports
* Decompression i)))
: . - Typically 2 read, 1 write port for each execution unit
- On instruction fetch

« Yet another step before Align

- On cache refill Register File
« Access to memory is slow, thus
allows more complex compression schemes VY o4 Vyov 4
« Cache holds uncompressed instructions, thus
reduces effective cache size

* Example: IBM Codepack

VLIW Datapath Example Register Count

0ss 7“/'_* ‘

2| « Media-oriented

1

ri
\ %
NN

é . -4

] £ y 6 benchmarks
5:?;0.75 / / 8 .
L 77 e 2-16 execution
5065 ="

units

0.55
05

32 64 9% 128 160 192
Regisiers
Source: P. Faraoschi, HP Research Source: . Faraboschi, HP Research

Register File Structure Register File Structure (3)

Organized as a two-dimensional grid
- Built from bit cells

* Implementation

. . . - Domi i
- Control lines running horizontally ominated by wires

- Data lines running vertically

- Thus shrinking transistors does not help
Bitce - Area grows with the number of ports

i Wmi“fe 3 gtd% - Similarly the access time, and power consumption
g{gggg; 8 Resa « Example: 130nm process

Wi R1 R2 Readd - Maximum of 20 ports (read/write)

i:;/ W1W2R1R2R3 R4 - Sweet spot: 12 ports (8 read/4 write)

Data
Bypassing

Clustered Register Files

Complexity increases: * Reducing the number of ports
- Number of read ports x write ports x pipeline depth

- Split the register file into several smaller
- Copy between the clusters
L Jleea][[T[] [ne]

P —

 ——"

N 0 N O B TN HHI [HH

performance [baseline

Clustered Datapath

AL [[Ao | [Ao || Ao
4 5 6 7
- —— -

Tt
Cluster g .
1 2
%
4 Load-Store
9l B
File g and
Intercluster
Cluster
o Unit
gi
File 4 T
=
A | [acu] [acu | [aco
o 1
Saurce: P. Faratoschi, HP Research

@ Unified

m Clustered

_w

16U 16u/2c 16uidc

12u 8u 8u/2c Bufdc 6u 4u 2u
Source: P. Faraboschi, HP Research

Clustering

* Architecturally invisible

- lllusion of a single large register file
 Implemented in hardware
- Encoding overhead (bits for all registers)

* Architecturally visible

- Implicit vs. explicit copying

* Complicates the compiler

Address Registers

* Special form of
clustering

* Not recommended

Data
Reg
File

Addr
Regs

Data
ALU

Data | [Data
ALU | |ALU

Source: P2 Faraboschi, HP Research

Indexed Register Files Branch Architecture

* Generalization of register windows (Sparc) * Again similar to RISC
 Offer "base + offset” addressing for registers - Common prediction techniques
* Rotating register files * Unbundling branches

- Policy to update the base address
« e.g. cycle over a subset of the register file - Prepare the target instruction streams to fetch

- Used for software pipelining - Select the instruction stream that will be taken
- Execute the taken instructions

- Split the branch into several steps

« Benefits unclear

Unbundling branches Example: Two-step branch

* Two-step branching cmpgt b1 =11, 12

[other useful op]

- Separate branching from condition [other useful op]

[other useful op]

- Usually using dedicated branch registers branch b1, oftsi

stall

stoll

* Three-step branching

[branch target |

- Additionally decouple the target address calculation

Source: P2 Faraboschi, HP Research

Multiway Branches Multiway Branches (2)

* Several branches in one instruction
- Can be seen as a single jump with multiple targets 0

® < ®

- One branch every 5-10 instructions ® <iz> \ lfx brA [fvbrs [ifzbrC (B)
- Branches get the bottleneck for larger ILP @ @ @S" hrough e
- Reduces the number of branches

* Why multiway branches?

Control flow Multiway branch

- Alternative: Predication

Branches need to be prioritized when conditions are not mutual exclusive!

History The first VLIWs

» Attached signal processors (70s-80s) * Research

- ILP similar to VLIW - ELI-512 (1983)

- Very idiosyncratic « Joseph Fisher, et.al.

- Exclusively hand-coded e Commercial
* Horizontal microcode (70-80s) - Multiflow - Trace (1984-1990)

- Control of hardware to emulate a complexer high- * Fisher, et. al.

level instruction set - Cydrome - Cydra (1984-1988)
- Hardware operates in parallel * Rau, et. al.

- Thus microcode needs to be parallel - Initially successful

Todays VLIWs

¢ Intel Itanium (EPIC)

- The only VLIW for workstations and servers
- Research started 1989 by Hewlett-Packard
- Partnered with Intel in 1994

- Rau, Fisher both involved

* Many VLIWs in the embedded domain
- Philips TriMedia, Tl C6x, StarCore, ST2xXx, ...

- OnDemand Chili

I-F Board Pair

ILoad Buses

-------- bopopdo

FLoad Buses

I Registers (64x32)

--------- e

F Registers (64x32)

ALUQ ALUL
IMUL MUL
TLB c

rc
Adder
Phys Addr PC

Multiflow Trace

* Built from 5 board types

- Pairs of Integer/Float boards (I-F)

- Global/memory/IO controller

- 45x45cm each

- Based on numerous gate arrays (8000 gates)
* Configurations with 1,2 or 4 I-F boards

- Issuing up to 28 operations per cycle

Instruction Set Architecture

* Register files
- 64 32-bit integer registers
- 64 32-bit float registers (paired)
- Clustered, with explicit copy
* Instructions
- Integer select - partial predication
- “Fast moves” for register file-register file transfers
- Speculative loads
- Non-trapping floating point instructions

Instruction Set Architecture (2) Instruction Encoding

* Two-step branches

- 7 branch registers

‘Word 0: 10 ALU 0, Early beat.
-1 delay slot 31 25 % 19 18 1% 15 13 12 11 76 10
. . [opeode dest [dest_bank [branch_test srel sr2_fimn]
- Multiway branches (up to 4 in parallel) ot e e
* Encoding E o
. . . | immediate constant {early) t
- Fixed-overhead with 32-bit syllables

- 7 syllables for each I-F pair
- 256-bit to 1024-bit instruction word
- Expanded at cache refill

Memory OnDemand Chili A-awsume

* Virtual memory

- Sophisticated paging and TLB

* 4-way VLIW architecture
- Full Unix OS support

» 64 32-bit general purpose register file
* No data caches, but * Instruction Set Architecture
- Interleaved memory banks - Full set of Micro-SIMD instructions
- Allowing 4 accesses to be initiated in parallel - Distinctive predication model
- Bank stalls on actual conflicts

- No floating point support
* Instruction cache

OnDemand Chili (2) Az SVENmM - Overview A-gemmwe

* SVENm - SoC

- 2 Chili v1.0 cores

- ARM control processor, running Linux
* Applications

lege nas
Sl dbug port Audio, Stream Wux

waeo oo e

Graphics Processor

eyl pecss

Iterfaces

- Mobile multimedia processing ez
- Focus on video decoding

Auti oue

Main cacks Testtl

- H264, MPEG, VC-1, etc. 7 |
| "“‘ =

» Developed in Austria —
- Built in China though

Boundayscan Tvelk T

Compilation T

41 04/04/08 Ebner, Brandner | Compilation Techniques for VLIWs slide #42

SVENmM — Board A-gueewae SVENmM - Area e ONDEMAND

SVENm postlayout active area breakdown
i2s_trans_top _Mbus_top
0% 3%

‘ZSJ“;JW mdcc_top
“‘;E:W sd_master s slave mi2s_rec_top
2% 1% Oi2s_trans_top
other
5% svun_axi_local sram | Mmbus_top
% wsd_master
pading
% swn_ddr_controller | @5d-slave
Bswn_axi_local_sram
svm_mmi_top mswn_ddr_controller_top
amo26 %
oy mswm_mmi_top

svm_doorbell_top | @svm_doorbell_top
0% Dsw_tam_top
svm_tam _top | mchili_0
%

T o chi_t
7 gamo2s
chill_ =%
2% Bpading
wother
04 Compilation Techniques 08 lide #43 C Compilation T es for V 08 > #44

Chili Core Overview Az Chili - Pipeline Ao

* 4 identical pipelines in parallel
] * 11 stages
- Fetch/Expand/Decode
- :,‘” ‘ - Forward/Execute/Memory access

. - Writeback

P
e

- Limited hazard detection and stalling

* Typical latency of 1 cycle

- Multiplication 3 cycles
- Loads up to 40 cycles!

Chili - ISA p Chili — Predication A

* Special instructions

- Clip integer value to upper/lower bound * Full predication

- Align and round, for fractional data types - Not all operations can be predicated

- Population count, leading 0Os, leading 1s, etc. - Unfortunate: loads/stores can not be predicated

- Sum of absolute differences (SAD) * Requires two operations

- Multiply accumulate (MAC) - Test and predicated operation execute in parallel
* Full 2x16-bit Micro-SIMD - Saves extra cycles

- Powerful permute instructions - May increase code size

* No division

Chili — Branches A Chili — Encoding Asupame

* 32-bit syllables

* May only reside in the first slot » Operations require 1-2 syllables
5 delay slots * Variable-length bundles

- Up to 23 operations are execute after the branch - Neither vertical nor horizontal NOPs
* May be predicated - Always encodes 4 operations

- No unbundling possible - Requires 16-32 bytes

* May cross cache boundaries

Chili— Memory Ao Chili - Floorplan — Asuame

* Several memories
- Slow, shared DDR RAM
- Faster, shared SRAM
- Fast, local scratchpad memory
* Issue up to 4 memory operations

Il Fetch

[pecode

[Execution Units

] Comparators

[Register File

[| Forwarding

|:| Memory Subsystem (DMS)
Il DS Bus Interface
[_1DMS Core Interface

- Accesses executed out-of-order I Muttiplexer

- Interleaved memory banks

ST 2xx ST231 - Applications

MIVRMII for 100BT

Ethernct
+ Joint development by HP and STMicro. s%"ai%u“?ﬂ W e ool
- Based on the HP-LX research project T (e (e
. Pro) U | 16K oaena]|| 140 e St T\Ew’;g;; Lona
* 4-way VLIW architecture re e AN A e —
i 32K Deachd) "‘Miﬂ B 31| [oiseec GP;‘ LC]luarrs||sscs
* 64 32-bit general purpose register file :
STBus
. . A
* Instruction set architecture T :J
C-1 (inc WV-0) -~ P I@
H 1 H mix 1103
- Dismissible loads i el e Y B
. . . Video decoder
- Fractional arithmetic el e g % o g B
. . . 4 servicos 51231 nacs||| VHE | Uloenc| pacs || [benc]| pacs
- Partial predication (select) ki S | Iﬂ“ﬁ, fpee e
i v 2 AV T PO Ap— A T
> §ou\ output (HD) out oulput (SD) output (SD) out r(f;l:r;’mnnr

ST231 - Pipeline ST231 - ISA

* No details available * Special instructions

- Not completely symmetric - Min/max

- 4 integer execution units
- 2 multiply units

- Count leading 0s
- Multiplies for fractional data types
- Division step

* Partial predication

- 1 load/store, branch unit
- Hazard detection with stalling
* Typical latency of 1 cycle

- Loads and multiplications take 3 cycles

* Dismissible loads
- Prefetching to dedicated buffer

ST231 - Branches ST231 - Encoding

Bundles of up to 4 syllables

* May only reside in the first syllable Distributed encoding

- Positional dispatch
- 32 bit syllables, 1 stop bit

* Immediates

* Two-step branches
- 8 branch registers
- 2 bundle distance between condition and branch

- 9-bit short immediate
* No delay slot

- 9+23-bit extended immediates

- All branches incur 1 stall cycle -
Y * Restrictions for

- Branches, multiplies, extended immediates

ST231 - Memory ST231 — Block Diagram

* Issue one single access per cycle

e Caches

- 32kb instruction cache
- 32kb lockable data cache (8kb-24kb local RAM)
- 256 byte prefetch buffer

» Streaming data interface (SDI)

- Fast streaming 1/O
- Does not pollute caches

Outlook

Overview of traditional compilers
Introduction to ILP aware compilation
Profiling techniques

Phase ordering problems

