

04/14/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #1

VU2 185.324

Compilation Techniques for VLIW Architectures

Dietmar Ebner, Florian Brandner
{ebner|brandner}@complang.tuwien.ac.at

http://complang.tuwien.ac.a.t/cd/vliw

04/14/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #2

In the Last Lecture(s)

� VLIW instruction set design
� Expose architectural details

� Instruction Encoding
� Operation vs. Instruction
� Template based encodings
� Dispatching techniques

� Clustered Architectures

04/14/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #3

In the Last Lecture(s)

� Code Compression
� History
� Example Architectures

� Intel Itanium (IA64)
� Multiflow TRACE
� OnDemand CHILI
� HP / ST Micro ST2xx

04/14/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #4

In Today's Lecture

� Floating Point
Number Formats

� Embedded C
� Profiling
� The Role of the

Compiler
� Loop Unrolling

04/14/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #5

Number Formats

� Integer
� Two's complement prevalent on all platforms

� Floating Point Support
� Hardware FPUs are not very common for

embedded systems
� IEEE 754
� �Softfloat� implementations
� Fixed-point arithmethic

04/14/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #6

IEEE 754 Standard

� Single and double precision
� Addresses several issues

� Representation
� Arithmetic operations
� Range and Precision
� Rounding
� Exceptions (e.g., divide by zero, overflow, ...)

04/14/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #7

IEEE 754 Single Precision

� C: float datatype
� Normalized Mantissa
� Biased Exponent

1 8 23
sign

exponent:
excess 127
binary integer

Mantissa or significand
sign + magnitude, normalized
binary significand w/ hidden
one bit: 1.M

S E M

actual exponent is
e = E - 127 X = (-1) 2 (1.M)S E-127

01000101110010000000000000000000

S=0 E=100010112 = 13910 M=1+2-1+2-4 = 1.5625

X = (-1)0 x 2139-127 x 1.5625 = 6400

04/14/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #8

IEEE754

� Denormalized Numbers
� Fill the gap between [0 � 2-bias]
� Exponent of 0
�

� Special Values for Infinity, NaN
� Four rounding modes

� round to nearest (default)

� round towards plus infinity

� round towards minus infinity

� round towards 0

X = (-1) 2 (0.M)
S -bias+1

04/14/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #9

Softfloat Libraries

� Compiler replaces floating point comparisons
and arithmetic operations with support library
calls

� Very slow due to exception handling,
denormalized numbers, complex rounding, etc.

� addsf3 from libgcc (ARM): about 230 LOC
� Mostly highly optimized target dependent

assembler libraries

04/14/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #10

Fixed-Point Arithmetic

� Simple way to deal with fractional data
� Easy to

implement
� w = i + j

i=j=8
0 .. 255.99609375
step: 0.00390625

04/14/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #11

Embedded C

� ISO/IEC TR18037 (approved 2004)
� Mainly identical with industry standard DSP-C
� Addresses some major deficiencies:

� Support for fixed-point arithmetic
� Support for saturated logic
� Named address spaces and named-register

storage classes
� No high level support for circular buffers (c.f.
circ as in DSP-C)

04/14/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #12

Fixed-Point in Embedded C

[signed | unsined] [short | long] _Fract
[signed | unsined] [short | long] _Accum

� Overflow and Rounding
� explicit: _Sat [_Fract | _Accum]
� implicit: #pragma STDC FX_FRACT_OVERFLOW [SAT | DEFAULT]

� Exceptions in arithmetic conversions
fract f = 0.25; int i=3;
f*=i /*0.75*/ != f*= (fract) i;

� Result type is the one with highest rank

04/14/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #13

Named Address Spaces

� Global generic address space
� Additional implementation defined intrinsic

address spaces as type qualifiers:
_A struct {int a; fract b;} *_B q;

� No address space qualification for objects with
automatic storage duration

� Pointers point to a specific address space, but
can be cast explicitly

04/14/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #14

The Role of the Compiler

� �Probably the largest engineering effort of a
VLIW system�
� Hundreds of men-years
� More than 1 Million LOC
� Typical Lifetime: 10-15 years

� Rigorous software engineering requirements
� Many opposing engineering goals
� Extensive quality assurance / validation

04/14/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #15

Engineering Goals

� Effort for building a robust and aggressive ILP
compiler ist often underestimated

� Correctness!
� Optimization goals

� Execution Time
� Code Size

static code size v.s. dynamic footprint (icache)
� Energy

� Objectives are often diametrically opposed
04/14/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #16

Energy Optimizations

� Important for battery powered and thermally
constrained systems

� Traditional optimizations often benefit speed,
energy, and size (CSE, PRE, dead code elim.)

� Not the case for many ILP oriented techniques:
� loop unrolling
� tail duplication
� function inlining
� predication & speculation

04/14/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #17

Where Power goes in a CPU

� Integer Unit: 8%
� Issue Logic: 18%
� Memories: 50�55%

04/14/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #18

Where Power goes in a System

� Sometimes, the power
consumption of the
CPU is neglectable

� Power consumption to
a large extend
controlled by Software

� Effectiveness of
compiler oriented
optimizations is
disputed

HP IPaq:

04/14/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #19

Terminology

CPI
� cycles per instruction
� CPI of 1 has

traditionally been the
�holy grail� for
sequential machines

IPC
� instructions per cycle
� more common for

parallel architectures
� IPC's above 1 are

common nowadays
� rough measure of the

ILP attained during
execution

04/14/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #20

Typical �Dragon Book� Structure

Lexical Analyzer

Syntax Analyzer

Semantic Analyzer

character
stream

Intermediate Code Generator

Machine Independent Opt.

Code Generator

Machine Dependent Opt.

token stream

AST

AST

intermediate code

intermediate code

target-machine code

target-machine code

04/14/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #21

Phases of an ILP Oriented Compiler

High Level Optimizer

C C++ Java

Code Generator (BURS)

Low Level Optimizer

Region Scheduler
Target

Machine
Description

Alias
Information
Database

Assembly Printer

Front-End

Middle-End

Back-End

LLIR

Opt. LLIR

Sched. LLIR
Assembly
Code

Opt. HLIR

HLIR

04/14/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #22

Front-End

� Scanner / Parser / Type System / etc.
� Major improvements during the 70s:

LALR parser, lexical analysis, type checking, ...
� Language specific analyses and optimizations

(alias information, virtual function call elim.)
� Tree / DAG oriented representation
� Tools: lex, yacc/bison, ox, m4, ...
� Fairly well understood

04/14/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #23

Middle-End

� Traditional �scalar� and �loop� optimizations
� common subexpressions, dead code, constant/copy

propagation, PRE, ...
� Inlining, alias analysis, interproc. analyses, ...
� How often and when to apply a particular pass

is still an unsolved research problem
� To some extend architecture independent

04/14/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #24

Back-End

� Gradually �lowers� HLIR into machine specific
assembly code

� Hosts most machine specific optimizations
� �Retargetability� using Target Machine

Descriptions (ADL)
� Major performance contributor for VLIWs
� Relies on high level transformations and

analyses

04/14/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #25

Side Note: Compiler Optimizations

� Many compiler transformations are � despite
common usage - not optimization problems in
the classical OR sense
� What transformations �optimize� a program?
� What is a �maximum� / �minimum�?

� Optimizations often refer to transformations that
are likely to improve overall performance

� It's all about trade offs

04/14/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #26

VLIW Compiler Complexity

�VLIWs require heroic compilers to do what
superscalars do in the hardware.�

� The effort required is largely the same for both
architectural styles

� Complexity is mainly a function of the aspired
ILP

� VLIWs usually just offer more ILP

04/14/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #27

Key ILP Transformations

� Instruction Scheduling
� reorganizes operations
� finds and arranges operations that can be executed

in parallel
� Regions Scheduling

� How to handle Loops?
� Unrolling and apply region scheduling techniques to

loop body
� Software pipelining

04/14/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #28

Limits of ILP

� What is the upper bound for ILP given infinite
resources (early 70s)?

� J.Fisher: �These studies show that the most ILP
we'll ever get goes up by a factor of 2 every 3
years.�

� What could you really do with infinite
resources?

� Basic flaw: studies must ignore future DAG
flattening via compiler optimizations!

04/14/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #29

D. Wall: �Limits of Instruction Level
Parallelism� Nov. 1993

� Max. ILP seen around 500 (numerical
programs, unlimited parallelism, omniscient
scheduler)

� More realistic models
� Around 50 for peak performance and 10 for the

mean
� In practice, ILP of up to 6 is more common

04/14/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #30

Parallelism in the �Superb� Model

David W. Wall: �Limits of
Instruction Level Parallelism�

04/14/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #31

Profiling

� Many crucial ILP transformations (scheduling,
clustering, code layout, register allocation) rely
heavily on accurate profiling information

� Granularity
� Call graph (gprof)
� Control flow graph (CFG)
� Paths

� How to obtain representative input data?
� How to keep the information accurate?

04/14/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #32

Node vs. Edge Profiles

int main(){

 int i;

 foo;

 for(i=0; i<5; i++)

 bar();

}

int bar() {

 int i,c,d;

 c=d=0;

 for(i=0; i<10; i++)

 if(i%3 == 0)

 c++;

 else

 d++;

 return c;

}

main:1

foo:1 bar:5

c=d=i=0;

i%3 != 0 ?

c++; d++;

i++;

i < 10 ?

1

10

4

6

4 6

10

04/14/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #33

Two-Step Compilation

a.c cc -prof-gen

Profile

Database

Executable
Prof.

Data Execution

Profile

a.c cc -prof-use
Optimized

Exectable

Phase 1:

instrumentation

Phase 2:

collect

Phase 3::

optimize

04/14/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #34

Profile Collection

� Instrumentation
� Insert extra code to count the frequency of a

particular event
� Performed by the compiler or a post-compilation

tool
� Do we really have to measure every edge?

� Statistical sampling
� Hardware / simulator support
� Synthetic profiles (heuristics)

04/14/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #35

Loop Unrolling

� Important transformation to increase inter-
iteration ILP

� Removes redundancies (compares, branches)
� Duplicate a loop body several times

� preconditioning / postconditioning to handle trip
counts mod n

� preconditioning is not possible for data dependent
loop exits

� Small loops are often completely unrolled

04/14/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #36

Preconditioning

L: if -- goto EXIT
 <<body>>
 goto L
EXIT:

Original Loop:
 if -- goto EXIT
 <<body>>
 if -- goto EXIT
 <<body>>
 if -- goto EXIT
 <<body>>
L: if -- goto EXIT
 <<body>>
 <<body>>
 <<body>>
 <<body>>
 goto L
EXIT:

Preconditioned by 4:

L: if -- goto EXIT
 <<body>>
 if -- goto EXIT
 <<body>>
 if -- goto EXIT
 <<body>>
 if -- goto EXIT
 <<body>>
 goto L
EXIT:

Unrolled by 4:

04/14/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #37

Postconditioning

L: if -- goto EXIT
 <<body>>
 goto L
EXIT:

Original Loop:
L: if -- goto X
 <<body>>
 <<body>>
 <<body>>
 <<body>>
 goto L
X: if -- goto EXIT
 <<body>>
 if -- goto EXIT
 <<body>>
 if -- goto EXIT
 <<body>>
EXIT:

Postconditioned by 4:

L: if -- goto EXIT
 <<body>>
 if -- goto EXIT
 <<body>>
 if -- goto EXIT
 <<body>>
 if -- goto EXIT
 <<body>>
 goto L
EXIT:

Unrolled by 4:

04/14/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #38

Loop Unrolling: Increasing
Parallelism

if(i>N) goto E;

<<body(i)>>

for(int i=0; i<=N; ++i) { <<body>> }

i=0;
L:

E: i++;

 goto L;

i++;

if(i>N) goto E;

<<body(i)>>

i++;

if(i>N) goto E;

<<body(i)>>

i++;

if(i>N) goto E;

<<body(i)>>

if(i>N) goto E;

<<body(i)>>

L:

E: i=i3+1;

 goto L;

i1=i+1;

if(i1>N) goto E;

<<body(i1)>>

i2=i1+1;

if(i2>N) goto E;

<<body(i2)>>

i3=i2+1;

if(i3>N) goto E;

<<body(i3)>>

if(i>N) goto E;

<<body(i)>>

L:

E: i=i+4;

 goto L;

i1=i+1;

if(i1>N) goto E;

<<body(i1)>>

i2=i+2;

if(i2>N) goto E;

<<body(i2)>>

i3=i+4;

if(i3>N) goto E;

<<body(i3)>>

Renaming: Copy Propagation:

04/14/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #39

Reductions

� Classic example for
�false� loop
dependencies

� a = a op fn(i)
for a commutative op

 x=0.0;

 i=0;

L: if(i > N) goto E;

 x=x+y[i]*z[i];

 goto L;

E:

 x=0.0;

 t1=t2=t3=t4=0.0;

 i=0;

L: if(i > N) goto E;

 t1=t1+y[i]*z[i];

 i++;

 if(i > N) goto E;

 t2=t2+y[i]*z[i];

 i++;

 if(i > N) goto E;

 t3=t3+y[i]*z[i];

 i++;

 if(i > N) goto E;

 t4=t4+y[i]*z[i];

 i++;

 goto L;

E:

 x = t1+t2+t3+t4;

04/14/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #40

Loop Unrolling: Tradeoffs

� Unrolling effectively increases ILP and
decreases loop overead (compares, branches)

� Increases code size (icache pressure)
� Increases register pressure
� Increases compile time
� Choosing the right amount of unrolling is hard

(heuristics, canned recipes)

04/14/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #41

Next Time

� VEX toolchain tutorial
� Compiler
� Simulator
� Benchmarks
� Profiling
� Machine Descriptions

� Solutions for assignment 1
� Assignment 2

