VU2 185.324 In the Last Lecture(s)

* VLIW instruction set design
- Expose architectural details
Compilation Techniques for VLIW Architectures * Instruction Encoding

. . - Operation vs. Instruction
Dietmar Ebner, Florian Brandner i
{ebner | brandner } @onpl ang. t uwi en. ac. at - Template based encodings

- Dispatching techniques
* Clustered Architectures

http://conplang.tuwien.ac.a.t/cd/ vliw

04/14/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 slide #1 04/14/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 slide #

In the Last Lecture(s) In Today's Lecture

* Code Compression * Floating Point
« History Number Formats
« Example Architectures * Embedded C

- Intel Itanium (1A64) * Profiling

- Multiflow TRACE * The Role of the

- OnDemand CHILI Compiler

- HP / ST Micro ST2xx * Loop Unrolling

04/14/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 Slide #3 04/14/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 slide #

Number Formats IEEE 754 Standard

* Integer * Single and double precision
- Two's complement prevalent on all platforms ¢« Addresses several issues
* Floating Point Support - Representation
- Hardware FPUs are not very common for - Arithmetic operations
embedded systems

- Range and Precision
- IEEE 754

- “Softfloat” implementations
- Fixed-point arithmethic

- Rounding
- Exceptions (e.g., divide by zero, overflow, ...)

IEEE 754 Single Precision IEEE754

1_8 23 i
+ C:float datatype ggnls| e | M \ * Denormalized Numbers
* Normalized Mantissa sxeerent, o agnituae; honmalized - Fill the gap between [0 — 2]
+ Biased Exponent binary integer DAl g o W/ Mdden - Exponent of 0

— X= (_1)52-bias+1 o.M

2c_tuEaI_ ?)égonent is _ . S_EM27 ’

) X=t0720 M) « Special Values for Infinity, NaN
01000101110010000000000000000000 * Four rounding modes

S=0 E=10001011,=139,, M=1+27+24=1.5625 B

round towards plus infinity

round towards minus infinity

X=(-1)°x 213127 x 1.5625 = 6400 round towards 0

04/14/08 Ebner,

Softfloat Libraries

Compiler replaces floating point comparisons
and arithmetic operations with support library
calls

Very slow due to exception handling,

denormalized numbers, complex rounding, etc.

adds £ 3 from libgcc (ARM): about 230 LOC

Mostly highly optimized target dependent
assembler libraries

Embedded C

ISO/IEC TR18037 (approved 2004)

Mainly identical with industry standard DSP-C
Addresses some major deficiencies:

- Support for fixed-point arithmetic

- Support for saturated logic

- Named address spaces and named-register
storage classes

No high level support for circular buffers (c.f.
circ as in DSP-C)

Ebner, Brandner | Compilation Techniques for VLIWs | SS08

i=

j=8 1/2—'_,
14
.. 255.99609375 18
step: 0.00390625 7

0

Fixed-Point Arithmetic

Simple way to deal with fractional data

Easy to

implement . i
by -2
W= +j | [—; k;jk
e ! . R

Fixed-Point in Embedded C

[signed | unsined] [short | long] _Fract

[signed | unsined] [short | long] _Accum

Overflow and Rounding

- explicit: _sat [Fract | _Accum]

~ implicit: #pragma STDC FX_FRACT_OVERFLOW [SAT | DEFAULT]
Exceptions in arithmetic conversions

fract £ = 0.25; int i=3;

fx=i /%0.75%/ l= f*= (fract) i;

Result type is the one with highest rank

Named Address Spaces The Role of the Compiler

* Global generic address space “Probably the largest engineering effort of a

« Additional implementation defined intrinsic VLIW system
address spaces as type qualifiers: - Hundreds of men-years
A semer (e &y Fract bi) 7B A ~ More than 1 Million LOC

- Typical Lifetime: 10-15 years
Rigorous software engineering requirements

* No address space qualification for objects with
automatic storage duration

* Pointers point to a specific address space, but

can be cast explicitly * Many opposing engineering goals

Extensive quality assurance / validation

Engineering Goals Energy Optimizations

« Effort for building a robust and aggressive ILP Important for battery powered and thermally
compiler ist often underestimated constrained systems

* Correctness! Traditional optimizations often benefit speed,

« Optimization goals energy, and size (CSE, PRE, dead code elim.)

_ Execution Time * Not the case for many ILP oriented techniques:
— Code Size - loop unrolling

static code size v.s. dynamic footprint (icache) - tail duplication
- Energy - function inlining

» Objectives are often diametrically opposed - predication & speculation

Ebner, Brandner | Compilation Techniques for VLIWs | SS08 slide #15 04/14/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08

Where Power goes in a CPU

oMMU __Others
Datapath 8% A% jcache
P 2%

* Integer Unit: 8%
* Issue Logic: 18%

e Memories: 50-55%

C1'§nf.k"‘; | e
Dl:!‘{:hl
16% StrongARM, JSSC'96
04/14/08 Ebner, Brandner Compilation Techniques for VLIWs S508 Slide #17
Terminology
CPI IPC

* cycles per instruction

* CPl of 1 has
traditionally been the
“holy grail” for
sequential machines

04/14/08 Ebner, Brandner | Compilation

* instructions per cycle

* more common for
parallel architectures

* IPC's above 1 are
common nowadays

* rough measure of the

ILP attained during
execution
Techniques for VLIWs Ss08 Slide #19

Where Power goes in a System

« Sometimes, the power HP IPaq CPU is in the
consumption of the “etc.” slice...
CPU is neglectable 13%-/

RS232

Frontlight

« Power consumption to 3% 30%

a large extend _—
controlled by Software 14%

Effectiveness of
compiler oriented

optimizations is Audio o
disputed 22% 1%
04/14/08 Ebner, Brandner Compilation Techniques for VLIWs S808 Slide #18

Typical “Dragon Book” Structure

character
stream

intermediate code

intermediate code

token stream

target-machine code

target-machine code

04/14/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 slide #20

Phases of an ILP Oriented Compiler

Front-End

—————— Back-End

Alias
Information
Database

Opt. HLIR

Target
Machine
Description

Sched. LLIR

Assembly
Code

04/14/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 slide #21

Middle-End

* Traditional “scalar” and “loop” optimizations

- common subexpressions, dead code, constant/copy
propagation, PRE, ...

Inlining, alias analysis, interproc. analyses, ...

* How often and when to apply a particular pass
is still an unsolved research problem

* To some extend architecture independent

04/14/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 slide #23

Front-End

Scanner / Parser / Type System / etc.

Maijor improvements during the 70s:
LALR parser, lexical analysis, type checking, ...

Language specific analyses and optimizations
(alias information, virtual function call elim.)

Tree / DAG oriented representation
Tools: 1lex, yacc/bison, ox, m4,

Fairly well understood

04/14/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 slide #22

Back-End

Gradually “lowers” HLIR into machine specific
assembly code

Hosts most machine specific optimizations

“Retargetability” using Target Machine
Descriptions (ADL)

Major performance contributor for VLIWs

Relies on high level transformations and
analyses

04/14/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 slide #24

Side Note: Compiler Optimizations VLIW Compiler Complexity

* Many compiler transformations are — despite “VLIWSs require heroic compilers to do what @
common usage - not optimization problems in superscalars do in the hardware.” -
the classical OR sense

- What transformations “optimize” a program? * The effort required is largely the same for both
- What is a “maximum” / “minimum”? architectural styles

* Optimizations often refer to transformations that * Complexity is mainly a function of the aspired
are likely to improve overall performance ILP

* It's all about trade offs * VLIWSs usually just offer more ILP

Key ILP Transformations Limits of ILP
* Instruction Scheduling * What is the upper bound for ILP given infinite
- reorganizes operations resources (early 70s)?
- finds and arranges operations that can be executed * J.Fisher: “These studies show that the most ILP
in parallel we'll ever get goes up by a factor of 2 every 3
- Regions Scheduling years.”
* How to handle Loops? * What could you really do with infinite

- Unrolling and apply region scheduling techniques to resources?

loop body « Basic flaw: studies must ignore future DAG
- Software pipelining flattening via compiler optimizations!

Ebner, Brandner | Compilation Techniques for VLIWs | SS08 slide #2 04/14/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08

D. Wall: “Limits of Instruction Level

Parallelism” Nov. 1993 Parallelism in the “Superb” Model
* Max. ILP seen around 500 (numerical N A I R
programs, unlimited parallelism, omniscient i DR i
scheduler) ’ it

* More realistic models

- Around 50 for peak performance and 10 for the
mean

- In practice, ILP of up to 6 is more common

David W. Wall: “Limits of
Instruction Level Parallelism”

Profiling Node vs. Edge Profiles

* Many crucial ILP transformations (scheduling, int main(){

clustering, code layout, register allocation) rely e b

heavily on accurate profiling information for(ic0; <57 ith)
« Granularity !

- Call graph (gprof) ““in‘éaifé,é;

- Control flow graph (CFG) ‘;;i;i;o; i<10; i++)

- Paths iféii? -

else

» How to obtain representative input data? ettt

How to keep the information accurate? !

4/08 Ebner, \er | Compilation Tech

s508 slide #3 04/14/08 Ebner, Br

Two-Step Compilation Profile Collection

N Phase 1t * Instrumentation
rofile i N .
BoiIbaEe Fnstrumentation - Insert extra code to count the frequency of a
particular event
- Performed by the compiler or a post-compilation
Executable Execution Phase 2: tool
Profile collect
‘ - Do we really have to measure every edge?
« Statistical sampling
Phase 3:: H
optimize * Hardware / simulator support
» Synthetic profiles (heuristics)
04/14/08 Ebner, Brandner Compilation Techniques for VLIWs | SS08 Slide #33 04/14/08 Ebner, Brandner Compilation Techniques for VLIWs | SS08
Loop Unrolling Preconditioning
. . . Original Loop: Preconditioned by 4:
* Important transformation to increase inter- e
. . : if -- goto EXIT .
iteration ILP <<body>> if -- goto EXIT
goto L i§<k_’fd§Zio EXIT
* Removes redundancies (compares, branches) EXIT: <<body>>
. if -- goto EXIT
+ Duplicate a loop body several times Unrolled by 4: | S<body>>
L: if —- goto EXIT L: if ~- goto EXIT
iy . g . . << >>
- preconditioning / postconditioning to handle trip i;<k_>gdyzzo ExTT <<b§d§>>
counts mod n _;<bod)gz>1>: . ::ggg)g;;
iy . . . 1 - oto
- preconditioning is not possible for data dependent <<bod1gz>> goto L
loop exits if -- goto EXIT EXIT:
p <<body>>
« Small loops are often completely unrolled T

04/14/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08 slide #35 04/14/08 Ebner, Brandner | Compilation Techniques for VLIWs | SS08

Loop Unrolling: Increasing

Parallelism

i=0;

for (int i=0;

Renaming:

i<=N; ++i) { <<body>> }

Copy Propagation:

if(i>N) goto E;
<<body (i)>>

if(i>N) goto E;
<<body (i)>>

if(i>N) goto E;
<<body (i)>>

it+g
if(i>N) goto E;
<<body (i)>>

il=i+1;
if(i1>N) goto E;
<<body (il)>>

il=i+1;
if(i1>N) goto E;
<<body (il)>>

it+g
if(i>N) goto E;
<<body (i)>>

i2=i1+1;
if(i2>N) goto E;
<<body (i2)>>

it+g

* Classic example for
“false” loop
dependencies

*a = a op fn(i)
for a commutative op

x=0.0;

i=0;

L: if(i > N) goto E;
x=xt+y[i]*z[i];
goto Lj;

Postconditioning
Original Loop: Postconditioned by 4:
L: if -- goto EXIT
<<body>> L: if -- goto X
goto L <<body>>
EXIT: <<body>>
<<body>>
<<body>>
Unrolled by 4: qoto Y
e if —— X: if -- goto EXIT
L: 1£<b0dgggo EXIT “<<body>>
if -- goto EXIT l£<£;dggso EXIT
i;qfd}g’:zo EXIT if -- goto EXIT
<<body>> <<body>>
i EXIT:
if -- goto EXIT
<<body>>
goto L
EXIT:
04/14/08 Ebner, Brandner Compilation Techniques for VLIWs 508
Reductions
x=0.0;

t1=t2=t3=t4=0.0;
i=0;

if(i > N) goto E;
tl=tl+y[i]*z[i];
it+g

if(i > N) goto E;
t2=t2+y[i]*z[i];
it+g

if(i > N) goto E;
t3=t3+y[i]*z[i];
it

if(i > N) goto E;
ta=td+y[i]*z[i];
it+g

goto Lj;

X = tl+t2+t3+t4;

5508

E:

<

if(i>N) goto E;
<<body (i)>>

i3=i2+1;
if(i3>N) goto E;
<<body (i3)>>

ity -
goto Lj;

4/08 Ebner, Brandne

i=i34;

E:

i2=i+2;
if(i2>N) goto E;
<<body (i2)>>

i3=i+4;
if(i3>N) goto E;
<<body (i3)>>

i=i+4;
goto Lj;

ss08 slide #38

Loop Unrolling: Tradeoffs

Unrolling effectively increases ILP and
decreases loop overead (compares, branches)

Increases code size (icache pressure)

Increases register pressure

Increases compile time

Choosing the right amount of unrolling is hard
(heuristics, canned recipes)

Next Time

* VEX toolchain tutorial
- Compiler
- Simulator
- Benchmarks
- Profiling
- Machine Descriptions
* Solutions for assignment 1

* Assignment 2

