
Volume V
Number 1

$2.50

ARTICLES
Interactive Computer Graphics Bob Gotsch 3
FORTH in the Arts .. 5
3-D Animation ... Paul Lutus and Phil

Thompson 11
Space Graphics Problem ... 14
Double-Precision Math Words L.H. Bieman 16
Add a Break Point Tool Leo Brodie 19
Extending the FORTH Compiler Luke Seeto 20
More on Data Bases Lindsay Doyle 27
A Simple Overlay System Christian Mahr 37

DEPARTMENTS
New Product Announcements..3 1
Technotes .. 34
FIG Chapter News .. 40
FIG Chapters ... 41
FORTH System Vendors .. 42

1 FORTH for 2=80@, 8086,68000, and IBM" PC
FORTH Application Development Systems include interpreterlcompiler with virtual memory management and
multi-tasking, assembler, full screen editor, decompiler, utilities, and 130 + page manual. Standard random ac-
cess files used for screen storage, extensions provided for access to all operating system functions.

. $ 50.00

.
2-80 FORTH for CP/M@ 2.2 or MPIM I I
8080 FORTH for CPIM 2.2 or MPIM II.

PCIFORTHTM for PC-DOS, CPIM-86, or CCPM ''$100.00
68000 FORTH for CPIM-68K..'.................'.$25 0.00

FORTH + Systems are 32 bit implementations that allow creation of programs as large as 1 megabyte. This is
the only language that supports the entire memory space of the 8086188 directly for programs and data!

8086 FORTH for CPIM-86 or MS-DOS. .$100.00

PClFORTH + for PC-DOS or CPIM-86.
8086 FORTH + for CPIM-86. . $250.00

Extension Packages for FORTH systems

Software floating point (Z-80,8086, PC only).
Intel 8087 support (8086, PC only).
AMD 9511 support (8086,Z-80 only). .$100.00
Color graphics (PC only).

Cross reference utility . $ 25.00
PCIGENTM (custom character sets, PC only). . $ 50.00
Hierarchical file manager.. . $ 50.00
B-tree index manager. .$125.00
B-tree index and file manager. $200.00

for IBM PC with IBM or Epson printer. .$ 50.00

. $100.00
. $100.00

. $100.00
Symbolic interactive debugger (PC only) . 0.00

QTF + Screen editor and text formatter by Leo Brodie,

Nautilus Cross Compiler allows you to expand or modify the FORTH nucleus, recompile on a host computer for
a different target computer, generate headerless code, and generate ROMable code with initialized variables.
Supports forward referencing to any word or label. Produces load map, list of unresolved symbols, and ex-
ecutable image in RAM or disk file. No license fee for applications created with the Cross-Compiler. Prere-
quisite: one of the application development systems above for your host computer.
Hosts: Z-80 (CPIM 2.2 or MPIM II), 8086188 (CPIM-86 or MS-DOS), iBM PC (PC-DOS or CP/M-86), 68000 (CPIM-68K)
Targets. 8080, 2-50, 8086188, 6502, LSI-11, 68000. 1802, Z-8

Cross-Compiler for one host and one target. .$300.00

AUGUSTATM,ADA subset compiler from Computer Linguistics, for 2-80 computers under CPIM 2.2. $ 90.00
Each additional target .. 0.00

LEARNING FORTH computer-assisted tutorial by Laxen and Harris for CPIM, includes Brodie's
"Starting FORTH". .$ 95.00
2-80 Machine Tests Memory, disk, printer, and console tests with all source code in standard Zilog
mnemonics ..$5 0.00
DATA ACE, fully relational data base system from CSD, for the IBM Personal Computer. Faster and more

.

powerful than dBASE I I . . .$595.00

Laboratory Microsystems, Inc.

FORTH application development systems require 48 kbytes RAM and 1 disk drive, Cross-Compilers require 64 kbytes. All software distributed on eight inch, single den-
sity, soft sectored diskettes except PClFORTH on 5% inch single sided double density diskettes. Prices include shipping by UPS or first CiaSS mail within USA anc
Canada. Callfornia residents add appropriate sales tax. Purchase orders accepted at our discretion.

4147 Beethoven Street
Los Angeles, CA 90066

(21 3) 306-741 2

2-80 is a registered trademark of Zilog, Inc.
CPlM is a registered trademark of Digital Research, Inc.
IBM is a registered trademark of International Business Machines Corp.

Augusta is a trademark of Computer Linguistics
dBASE II is a trademark of Ashton-Tate

PClFORTH and PCfGEN are trademarks of Laboratory Microsystems Inc.

2 Volume V, No. 1
FORTH Dimensions

From
the Editor

This issue of FORTH Dimensions
marks my last as Editor. Starting with
the next issue (V/2), I’m pleased to
pass the baton to Marlin Ouverson,
formerly the Editor of the distin-
guished magazine Dr. Dobb’s
Journal. We can all look forward to
interesting issues and new ideas from
him. Meanwhile, I’ll be dividing my
time between writing my book on
Style and Methodology, and teaching
FORTH courses.

I want to thank all of you who
contributed your articles and ideas to
FORTH Dimensions during the past
year. Your expertise and dedication
has helped make this magazine as
useful a journal as it is. In particular
I’d like to thank Henry Laxen, a
tireless (and I might add, unpaid, as
are all ED. writers) columnist, for his
always excellent work, and to Robert
Smith, FIG’S own active archivist on
standardization. (Both columnists are
taking a much-deserved vacation with
this issue, but will return next time.)
I’d also like to thank regular reviewers
Kim Harris, Michael Perry, Klaxon
Suralis, Glen Haydon and Bill
Ragsdale for helping me ensure
technical correctness of published
material.

I’m looking forward to more issues
of interesting and pertinent FORTH
news and commentary. In fact I just
sent off my $15 renewal check. Hope
you have, too.

See ya.

-Leo Brodie

Cover Art

The end of another beautiful
definition as semi-colon sets over
the Firth of Forth. -LB

I 1

Interactive Computer
Graphics for Art,
Design and

Bob Gotsch, Time Arts, Inc.

A “video paint” program called
EASEL, written in FORTH for use
with several medium-resolution
graphics frame buffers (Cromemco
and Digital Graphics Systems among
others) allows an artist to create
images and illustrations with
electronic pen on digitizing tablet.
Video painting is a new medium of
expression with characteristics that
challenge an artist’s skill and
imagination and also provide new
creative opportunities.
Interactive Visual Programming

In te rac t ive t r i a l a n d e r r o r
refinement at computer-displayed
images is much more practical than
with the sticky paint or dried ink of
traditional graphic media. There is no
tube of paint that can run out.
Moving , sca l ing , r o t a t i o n ,
duplication, and coloring are some of
the manipulations available.

Actions are selected in menus that
pop up when needed on the color
monitor screen. The position of the
pen is always shown on the screen as
an XORed crosshair; so with menus
and positional feedback the artist
rarely needs to take attention away
from the screen. The hand holding the
pen becomes an automatic part of the
process of willing an image into being.

Complicated pictures can be built
using combinations of line, rectangle,
circle, and ellipse primitives, frames
and cells loaded from disk, digitized
video images, fills and freehand
drawing with various size “pens,”
“airbrushes,” and user-defined
“brushes.” The sequence of actions
that will result in the desired image,
whether diagrammatic or illusionistic,
is often as critical as the sequence of
instructions in programming; the
sophisticated computer graphic artist
is a “visual programmer,” using yet a

learning

higher level language than FORTH. A
t remendous advan tage of
programming at this level is that any
“bugs” are completely visible.
Extensible Software

Like FORTH, EASEL is interactive
and extensible. The user can select
among optional menus and add new
menus as they become available, or
program special application menus
such as TV weather effects, display
lettering, or key-frame animation.

Recently added menu operations,
“oblique” and “perspective,” are
used to create depth illusion. The 64K
address space isn’t nearly adequate for
a large and expanding video paint
system, so menus (or more accurately
the compiled code to perform their

FORTH Dimensions
Published by FORTH Interest Group

Volume V, No. 1
May/June 1983

Editorial
Leo Brodie
Publisher

Roy C. Martens
Tjrpesetting/F’roduction
LARC Computing, Inc.

FORTH Dimensions solicits editorial
material, comments and letters. No re-
sponsibility is assumed for accuracy of
material submitted. Unless noted other-
wise, material published by the FORTH
Interest Group is in the public domain.
Such material may be reproduced with
credit given to the author and the
FORTH Interest Group.

Subscription to FORTH Dimensions
is free with membership in the FORTH
Interest Group at $15.00 per year
($27.00 foreign air). For membership,
change of address and/or to submit
material, the address is: FORTH Inter-
est Group, P.O. Box 1105, San Carlos,
CA 94070.

Volume V, No. 1
~~ ~~

3 FORTH Dimensions

actions) are overlays, loaded quickly
when needed. Thus the number of
available menu overlays is limited only
by disk space.
Access and Applications

Artists and designers (even the ones
who would not be intimidated by
computers) have not had much access
to high-priced computer graphics
equipment. Some applications that
currently justify the cost of
professional graphics systems are
video illustration and real-time
animation, story-boarding for film
and video, graphic design layout,
business graphics , scientific
simulation, equipment control and
engineering and architectural design.

With cheaper memory and new
designs, good frame buffers are
becoming available at a fraction of the
former cost. This will give many more
artists and designers access to
interactive graphics systems. And
interactive tools are, most of all,
useful for learning. Access to tools for
experiment rather than production is a
necessary part of the creative process.
After imitating old graphics for a
while with new technology, artists can
be expected to contribute new
techniques of graphic representation.

This development would have been
very difficult using the EXORset’s
BASIC, not least because the BASIC
interpreter uses the graphics display
memory, making interactive develop-
ment of graphics impossible! poly-
FORTH and its graphics package
however fit in about 12K bytes, leav-
ing plenty of room for graphics dis-
play, data, and the application pro-
gram.

Come
to the
FORTH

Convention

Palo Alto, CA
Oct. 14-15, 1983

TRANSPORTABLE SOFTWARE
fig-FORTH and FORTH-79 Model Systems for:

DEC PDP-11
RSX-11 M

0 Multi-User
Multi-Tasking

0 Re-entrant Resident Library
Shared Commons

0 RSX-11 M Directive Support

Compatible with RSX-11 M System
RT-11 Programmed Request Support

RT-11

IBM PC
PC-DOS
CPIM-86

ROM BlOS Support
0 Stand-Alone

TRS-80
TRSDOS

ROMSupport
0 Stand-Alone

Data Base Support
Data Language including:

0 Base Relative Variables
0 Advanced String Package
0 Many Classes of Arrays

0 Hashed Search
0 Binary Search

Key File Support

Additional features :
0 Input and Output Forms Support
0 Screen Editors
0 Execute Variable Support
0 Extended Memory Support
0 Additional Control Structures
0 Trace Support with Stack Snapshot
0 Decompiling

Text Formatting
0 Time and Date Support
0 Double Integer Support
0 Floating Point Support

TransportabIe System Development
0 Consulting Services
0 Systems Analysis and Design
0 Communications
0 Networking
0 Encryption
0 Full Sources Available

Contact: Transportable Software, Inc.
P.O. Box 1049
Hightstown, NJ 08520

fig-FORTH and FORTH-79 are trademarks 01 Forth Interest Group 0 DEC PDP-11 RSX-11 M RT-11 are trademarks
of Digital Equipment Co 0 IBM PC PC-DOS are trademarks of International Business Machines Co 0 CPIM-66 is a
trademark of Digital Research Co 0 TRS-60 TRSDOS are trademarks of Tandy Co

=ORTH Dimensions 4 Volume V. No. 1

FORTH in the Arts
Three Application Stories

Simulation on the inside is animation
on the outside. Shown here is a print of a digital

generated by Howard Pearlmutter of ‘
a Of computer art The movie is made up of hearts. The

Santa Cruz, California. This valentine
is also a frame out of a one-minute
16mm movie called Tirclove Life ”.
It was produced on an AED 512 high
resolution color system running 6502
FORTH as its operating system,
graphics language, and “heart de-
scription language. ’’ Once the
graphics language had been imple-
mented, it took only three days topro-
gram the entire animation, including
the “heart description language. ”

Howard Pearlmutter spoke at last
year’s FIG national convention on this
project:

Digital Valentine
Colon definitions are great for

designing scenes, and out of scenes
you can build acts; out of acts you can
build entire movies. The natural
nesting structure of FORTH makes it
perfect for animation. The script for
“Circlove Life” was done right on the
computer, after building a few special
types of things such as loop constructs
that control the range and parameters
for the different dimensions.

definition of the heart fits on one
screen. It’s basically a loop that goes
over a certain range that increments
either by a positive or negative value
depending on whether you’re going up
or down and uses the index of the loop
to control everything from color to
size to the spread. You can change the
color table in a variety of ways. We
had three different loops built out of
CMOVES that were running at dif-
ferent frequencies. By picking har-
monics of these, and getting different
prime values, you could see the red
move in, the blue move out, and you
move your three color tables, for the
three primaries, to go at relatively
prime frequencies.

This not only gives you the building
up of elements that you’d like. It also
lends itself to the most readable code,
and exploiting the possibilities of good
FORTH style. You get to use the
noun-verb idea, the definition of
scenes. Extensibility is very important
because all of this was all built very
quickly out of something that had
nothing to do with computer art,
nothing to do with building movies,

but basically a computer graphics
language.

I suggest that those of you who are
really concerned about the readability
of FORTH, try doing something that
is application-oriented, and try using
the terminology of your application.
The code is extremely readable.

Howard Pearlmutter has spurred
much activity in the area of computer
graphics. He is author of a report for
NASA titled Interactive Computer
Graphics: the Human Interface to
Dynamic Simulation. Howard is also
the contact for Figgraph, the FORTH
graphics special interest group.
(408/425-8709)

Music
FORTH Dimensions found Allen

Strange, Professor of Music at San
Jose State University, using FOR TH
in his campus synthesizer studio.

We started about one year ago with
an Ohio Scientific 6502 system
procured on a small faculty grant to
let us experiment with driving analog
synthesizers with digital logic. I was
interested in developing a language
that could be used by anyone doing
analog synthesis. We’re not talking
about commercial analog synthesizers

Volume V, No. 1
~ ~~ ~~

5 FORTH Dimensions

.
FOR TRS-80 MODELS 1,3 & 4
IBM PC, XT, AND COMPAQ

The MMSFORTH
System.

Compare.
The speed, compactness and
extensibility of the
MMSFORTH total software
environment, optimized for
the popular IBM PC and
TRS-80 Models 1, 3 and 4.
An integrated system of
sophisticated application
programs: word processing,
database management,
communications, general
ledger and more, all with
powerful capabilities, sur-
prising speed and ease of use.
With source code, for custom
modifications by you or MMS.

0 The famous MMS support,
including detailed manuals
and examples, telephone tips,
additional programs and
inexpensive program updates,
User Groups worldwide, the
MMSFORTH Newsletter,
Forth-related books, work-
shops and professional
consulting.

A World of
Difference!

Personal licensing for TRS-80:
$129.95 for MMSFORTH, or
“3+4TH” User System with

HANDLER and FORTHCOM
for $399.95.
Personal licensing for IBM
PC: $249.95 for MMSFORTH,
or enhanced “3+4TH” User
System with FORTHWRITE,
DATAHANDLER-PLUS and
FORTHCOM for $549.95.
Corporate Site License Exten-
sions from $1,000.

FORTHWRITE. DATA-

If you recognize the difference
and want to profit from it, ask us
or your dealer about the world
of MMSFORTH.

MILLER MICROCOMPUTER SERVICES
61 Lake Shore Road, Natlck, MA 01760

(61 7) 653-61 36

which are keyboard devices. Our
studio is built around Buchla systems.
Buchla was the first manufacturer in
the early 60’s to produce commercial
synthesizers. These use all analog pro-
gramming with the synthesizer itself.

We were interested in something
that would breathe new life into
analog synthesis. Everyone talks
about digital synthesis and forgets
about the special qualities produced
by analog.

In the arts, the big problem when
you’re forced to learn a language is
that it takes you further away from
your art. In music your concept is
translated into notes, then translated
again into manuscript. Now the poor
computer guy has to translate it one
step further. But in FORTH we can
call a process anything we want.
You’re back to being closer to your
art. We decided FORTH was the way
to go.

We’ve come up with a language call-
ed MASC-Metalanguage for Analog
Synthesizer Control. It’s a series of
about 25 words that lets us do any-
thing we want to do. For instance, we
can cause the synthesizer to play a
major scale, play a minor scale, play it
backwards. We can randomize the
notes in a major scale according to
some format. We can create timing
structures in musical terms, such as
commands called WHOLE-NOTE
and HALF-NOTE .

We can define sequences of things.
For instance, we can either play in or
type in a series of notes. Then we can
read it out in a variety of ways:
backwards, forwards, inside out, to
generate musical events. The events
are used to compile phrases; phrases
are used to compile sections; sections
to compile compositions. The lan-
guage makes it easy for the performer
to reorganize the formal aspects of his
music. The performer can try putting
this part first, then try putting it last,
etc.

We’re now using a Terak Computer,
which is an RT/ll-based system, a
small PDP/l 1 . We conned the campus
computer center into giving us this
thing, and in buying the FORTH
package. The system uses 32 channels.
The computer generates 8 channels of
control output in the range 0 to 10
volts via D/As and 8 channels of
timing pulses to initiate certain events.

~ ~

At the same time there are 8 channels
of A/D input for controlled voltages,
and another 8 channels of input dedi-
cated to timing logic, to start and stop
processes in the computer, count
events, etc.

I’ve been teaching this class for a
couple of semesters. Originally I tried
teaching them this language without
getting into FORTH. But we’ve made
a few additions that make the FORTH
more readable, so now I’m really
teaching FORTH. One of the changes
is that we implemented the word
INTEGER instead Of VARIABLE. INTEGER
returns its value to the stack without
having to say “a”, and you can store
into by saying “number TO name”.
This makes the description more
natural. For instance, we’ll continual-
ly refer back to a number that’s used
for timing information in a DO
LOOP. If you want to change the tem-
po, you just say the new tempo TO the
variable.

The students don’t come out hot-
shot programmers, but they know
what they’re talking about. We’ve
even managed to place a few students
in industry working on video games
where music is very important. It’s un-
usual for a music major to graduate
and be able to step into a relatively
high paying job based on the relation-
ship between music and technology.

When we first started, we had about
a hundred words. After doing this for
two semesters we’ve thrown out most
of these words because they conform-
ed to too narrow an aesthetic. The
danger of including powerful com-
mands is that they imply an aesthetic.
For a lot of people, the language was
getting in the way. So we took it back
to the bare bones.

These questions of aesthetics can be
handled very well by FORTH just by
using this core of words. The students
use : and <BUILDS DOES> to generate
their own aesthetic. MASC itself gives
them only the bare tools to pass infor-
mation back and forth with the
computer. At first the students get
mesmerized and think that the
computer can do everything. But
we’re careful to teach them to use the
computer only for what they need it
for. Like when you need an extra set
of eight hands. But making it
complete enough to use for a complete
performance is too much work, and

FORTH Dimensions 6 Volume V, No. 1

CPU 68K: A/T $695, CSC $850

SPECIFICATIONS:
The CPU 68K operates at 8 MHz assembled and
tested (NT), and 10 MHz for the Certified System
Component (CSC), version of the board.

FORTH HARDWARE REQUIREMENTS:
CompuPro’s DISK 1 floppy disk controller; INTER-
FACER 1, 2, 3, or 4; 64K of RAM and CPU 68K.

COMPLETE FORTH OPERATING SYSTEM: $200. FEATURES: an assembler, full screen editor, CP/M@
file transfer utility, time-of-dayldate stamping, shadow screen printing utility, and line editor, fully compatible
with STARTING FORTH by Leo Brodie, as well as many other useful extensions.

All CompuPro products meet the most demanding mechanical and electrical standards, and are backed with
one of the best warranties in the business (1 year limited warranty on all BOARD LEVEL products, 2 year
limited warranty with exchange program for products qualified under our Certified System Component pro-
gram). Call CompuPro at (415) 562-0636 for additional information or to order.

COMPLETE 68K SYSTEM - $8995
INCLUDES:
0 ENCLOSURE 2 DESK TOP
0 8 MHz CPU 68K
0 SYSTEM SUPPORT 1
0 INTERFACER 4

256K BYTES OF 16-BIT MEMORY
1.5 MBYTES OF M-DRIVE/H

0 DISK 1 CONTROLLER
0 DISK ENCLOSURE WITH 2 QUME

(2.4 MBYTES)
0 ALLCABLES
0 mapFORTH & CP/M-68KTM

DRIVES

CP/M IS a reglsterec trademark of Dlgrtal Research

AUTHORIZED SYSTEMS CENTERS offer complete installation and implementation of our CPU 68K SYSTEM,
Call (415) 562-0636 and ask us for the name of the SYSTEMS CENTER nearest you. Price shown does not
include dealer installation and support services.

CompuPro division Godbout Electronics - Oakland Airport, CA 94614

FORTH Dimensions Volume V, NO. 1 7

FOR 8080,280,8086*, 68000”

M U LTI U S E R
MULTITASKING
A professional quality full feature
FORTH system at a micro price.

TaskFORTH’“
Single. double, triple.

quadruple and floating point
math, trigonometric functions

Case statements

Interactive debugger

Novice Programmer
Protect i o n Pa c ka g eTM

Multiple thread dictionary

System datelcalender clock

Hierarchical file system

Screen and serial editor

Inter-task communications

Unlimited number of tasks

Starting FORTH, FORTH-79
and FORTH-83t compatible

Graphics support

TaskFORTH is the FORTH
system you would write.
if you had the t ime . . .

ALL included for just $395
(plus applicable taxes)

Available for CP/M. Northstar DOS.
Microoolis and Stand-alone

Visa & MC Accepted

* Available soon
t When standard IS approved

CP/M IS a trademark of Dlgltal Research
TaskFORTH IS a reg trademark of Shaw Labs. Ltd

Single user. single computer license agreement
IS required

SHAW LABORATORIES, LIMITED
24301 Southland Drive, Suite 216

Hayward, California 94545
(415) 276-5953

FORTH Dimensions

not worth it. MASC could probably
be critized for not taking care of
certain things such as generating
simple envelopes or random voltages.
But the synthesizer itself does these
things, so there’s no need to submit
that task to the computer. Still, the
vocabulary is there to make these
things, if necessary.

A keyboard makes strong aesthetic
implications. Our synthesizer uses
keys, but keys don’t necessarily mean
pitches. A keyboard is simply a
voltage divider. We can use the
keyboard to call up words. Say we
have a word called FUNl which
produces a bunch of random pitches
and spins the sound around the room
in our quadraphonic studio. (We can
move sounds dynamically.) Then we
have a word called FUN^ which plays a
C major scale in the right hand speak-
er and FUN3 which plays a C major
chord on another speaker. We put
these words in an execution array. If
we hit key 1, FUNl will play, but if we
hit key 16, FUN2 will play, will play,
etc. So we can play the structure of a
composition not by playing notes but
by playing words.

The keyboard is a series of
touchplates that know how hard
you’re hitting by reacting to body
capacitance. So if you press the key
hard it will spin around the room at
one rate; press soft, it will spin at
another rate. You decide what
elements you want to control and what
element you want to control it, then
write the commands that recognize
those actions. Over the last couple of
years we’ve had over 50 people work
on this. What we have is universal so it
should be very useful to a lot of
people.
Note: The system described here will
be taught in a two-week course
starting on July 11, 1983. Contact
Allen Strange, Music Department,
San Jose State.

Multi-Media and Rock Promos
FORTH Dimensions interviewed

Peter Conn, President of Homer and
Associates in Hollywood, California.

We have two main computer
systems that work together. One is a
computer ized opt ica l p r in t e r
interfaced to a paint system (raster
graphics). The other is a 24-channel

visual mixing console that controls 16
slide projectors and four 16mm
projectors, as well as an audio tape
machine with time code and music.
The combination allows you to do a
very complex mix of music and images
in real time. FORTH Inc. was the only
consulting firm who said “we can do
that.” We’ve been using FORTH for
around two years now.

We recently bought a frame store,
originally as a tool for aligning the op-
tical printer. But the one we bought
went far beyond what we needed be-
cause we got a good deal on it. Once
Paul Rother, our programmer, got it
working the software happened very
fast. In a month we had a full fledged
paint function, written completely in
FORTH, with all kinds of features.
It’s 512 by 512 by 7 bits. We can paint
to the RGB monitor, make slides, or
movies that interface to the optical
printer. Since then we’ve used the
paint program on all of our rock
promos, including the film we
developed for Steve Miller’s
A bracadabra.

On that promo we shot actors on
film, then fed it into the digitizer.
Then frame by frame an animator
would draw on top of the picture. The
electronic graphics a r e la te r
recornposited back with the original
movie. It’s a form of electronic
rotoscoping. We created action in the
frames that was not in the original;
sparkles, enhancements, etc. In one
scene there’s a girl juggling scarves, lit
by an overhead light. The animator
tied her hand to the shadow of her
hand on the floor with an electronic
line as if it were a rubber band. That
particular film has won awards all
over the world. It just got nominated
for best director American Video
Awards 1982.

We just did one called Atomic Dog
for George Clinton. We created a
fictitious video game called Atomic
Dog, using the computer graphics.
Then we had a location that matched
the game. The guy goes down into the
game like TRON and the game comes
alive with dancers. At the end of the
four minutes he ends up back at the
video arcade. You can see the live
action doors, with the computer doors
right next to them. We also have
developed a three-screen multi-media
show that will play in all the Six Flags

8 Volume V, No. 1

amusement parks across the country,
and we did The Great Rock and Roll
Time Machine which is playing at
Magic Mountain right now. We
developed these using the mixing
console. Everything transfers to film,
so the actual performance is all done
on three synchronized projectors.

Developing our own paint system
has saved us a lot of money. There are
some products that are similar, but
they’re too expensive, in the $60,000
range. We’ve spent a lot less than that,
and we have special features too. The
best thing about our system is that it’s
programmable. You can sit there and
change it, because it’s in FORTH.
Chuck Moore wrote the inital
application on the mixing console.
Paul Rother has done all the
programming since then, and he’s now
part time. With their work, and with
FORTH, I’m able to set up these
complex scenes myself.

Peter Conn, owner of Homer & Associates, sits at the electronic painting station of thP+
computerized optical printer. From an album cover drawn by Andy Warhol, Peter is creating >
scene for a rock video for Billy Squier. AN software was written in FORTH by Paul Rother.

f JOIN THE APPLICATION
MIGRATION!

PRODUCE MACHINE TRANSPORTABLE CODE.
GENERATE ROMABLE/HEADERLESS CODE.
FORWARD REFERENCING ALLOWED.
PUT FORTH O N OTHER COMPUTERS.
PRODUCE EXECUTABLE IMAGE IN RAM OR O N DISK.
PRODUCE ADDRESS MAP OF APPLICATION.
NO LICENSE FEE OR ROYALTIES ON APPLICATIONS.

fig FORTH CROSS-COMPILERS by NAUTILUS SYSTEMS
Apple, Atari, TRS 80 Model I, Zenith, and Northstar

fig FORTH CROSS COMPILER by LABORATORY MICROSYSTEMS
CP M 80, CP/M 86, IBM P C , and 68000 (requires LAB FORTH at additional cost)

79 Standard Systems by MOUNTAIN VIEW PRESS
CP/M 80

$300.00 + tax and $5.00 shipping and handling
Apple IS a tradernark of Apple Computer Inc Atari IS a trademark of Atari Computer TRS-80 IS a trademark of
Tandy Corp Zenith IS atrademark of Zenith Radio Corporation Northstar isatrademarkof NorthstarComputers
IBM IS a trademark of International Business Machines Inc

Nautilus Systems I
P.O. BOX ~ O ~ ~ S A N T A CRUZ, CA 95061

Volume V, No. 1 9 FORTH Dimensions

3-D Animation
Paul Lutus and Phil Thompson

The following article is reprinted
from a series titled “The Animated
Apple With GraForth ’’ originally ap-
pearing in Softalk Magazine.

In any type of computerized 3-D
graphics system, you start by creating
a set of points, lines, and shapes in
3-D. Every point has a relationship to
every other point: it can be higher or
lower, closer or farther away, and
more to the left or right. And, of
course, this relationship depends on
your point of view. The three different
direction aspects of a point are repre-
sented using three numbers, or coor-
dinates, labeled X, Y, and Z. It’s the
computer’s job to convert your set of
points according to some formula into
points on a two-dimensional screen,
using only X and Y coordinates. Then
the points are connected with the ap-
propriate lines, just as the 3-D points
were connected with lines.

There are two different philosophies
used in creating 3-D graphics. For the
first, imagine a universe in which all of
the 3-D objects exist. You describe the
objects and tell the computer where
they are in the universe. You then
decide where your eye is, and which
direction you’re looking. The com-
puter figures out which objects lie in
that direction, converts them into a
single two-dimensional image, and
draws that image on the screen. This
concept makes it fairly easy to repre-
sent complex scenes, but manipulating
individual objects within that scene
can be more time-consuming.

Another philosophy is to treat each
3-D object separately on the screen.
You describe each 3-D object, then tell
the computer where the objects should
appear on the two-dimensional screen
(or if they should appear at all), what
size to draw them, and how they

This is the technique used by
GraForth.

GraForth allows you to manipulate
3-D objects through direct high-level
commands. For example, the Gra-
Forth word scale sets the displayed size
of a 3-D object, xrot rotates the object
about the X axis, and ypos sets the
vertical position of the object on the
screen. These straight-forward com-
mands provide an easy-to-follow
method of generating 3-D graphics.

The 3-D process can be divided into
two parts: first, the image is created
using the Image Editor supplied on the
GraForth system disk. Then, the
GraForth commands are used to read
the image and draw the object on the
screen with the appropriate rotation
and scale. The image may reside in any
free area of memory and is not chang-
ed by the drawing commands.

Let’s define a couple of words for
this discussion. An “image” is a set of
3-D points and lines as stored in
memory. An “object” is a picture of
the 3-D image as it is manipulated and
actually displayed on the screen. Im-
ages can reside in memory without
being assigned as objects and drawn;
and two objects, though positioned
and oriented differently on the screen,
can both use the same 3-D image in
memory. (For example, two rotating
cubes on the screen can use the same
set of 3-D lines.)

For each image, the X, Y, and Z
coordinates can range from -128 to
127, giving a possible 256 positions
along each of the three axes , which is
plenty for most applications. The ac-
tual number of lines in an image is
limited only by the amount of avail-
able memory. (Each end point of line
entry in the image uses four bytes of
memory.)

should be oriented. Each object is con- Up to sixteen different objects can
verted from three dimensions to two, be manipulated at one time in Gra-
independent of every other object. Forth. They are numbered 0 through
This means complex scenes can 15, and referenced with the GraForth
require more programming to pro- word object. After giving an object
duce, but manipulating each in- command, the 3-D commands will
dividual object is faster and easier. manipulate that object until another

Volume V, No 1 11

object command is given. For ex-
ample, if you type:
3 OBJECT
30 XROT
10 SCALE

then object 3 will be rotated 30 units
around the X axis and scaled to a size
of 10. To manipulate a number of ob-
jects, you select each object in turn
with object, then give the appropriate
commands for that object.

Here is a quick summary of the in-
dividual 3-D commands, their effects,
and the appropriate ranges of num-
bers to use:

Xpos, ypos. These set the X and Y
position on the screen of the 3-D point
(O,O,O) for the object and are used for
positioning the object in the appro-
priate place on the screen. Xpos can
range from 0 to 255 and ypos can
range from 0 to 191. At the extremes,
however, the object may overlap the
edge of the screen, causing wrap-
around.

Scalx, scaly, scale. These commands
determine the size of the object on the
screen. Scalx sets the width and scaly
sets the height. The word scale simply
sets both width and height to the same
number simultaneously. The range is
from -3 1 to 31. A scale of 0 produces
a displayed object with no thickness,
and negative numbers create a mirror-
image effect. Since two objects can use
the same image in memory,
symmetrical objects, such as bird
wings, can be created using two
objects side by side, with positive and
negative scale numbers.

Scalz. This determines the amount
of perspective used. Perspective is
what causes the front of an object to
appear larger than the back. A large
perspective number makes the front a
good deal larger, and negative num-
bers provide “reverse perspective,”
with the back of the object larger than
the front. Zero perspective means the
front and the back will be the same
size. The range, as above, is -3 1 to 3 1.

Xrot, yrot, zrot. These commands
rotate the current object around each
of the three 3-D axes. A complete
rotation is divided up into units from 0

FORTH Dimensions

to 256. Zero is no rotation, 64 is a
right angle, 128 is the same as 180
degrees, and 192 is three-quarters
around the circle. Values greater than
256 or less than 0 can also be used for
rotating more than once around. For
example, a rotation to 258 units is the
same as to 2 units.

Note: The actual rotation of the ob-
ject changes for every other rotation
value. This means that if you rotate an
object in steps of 1 unit per draw, the
view of the object will change every
other draw, making the animation ap-
pear slower. It's best to increment
rotation values in steps of 2.

Xtran, ytran, ztran. These com-
mands translate, or "slide," the ob-
ject in each of the three directions in
space. The object can be shifted as
long as none of its points falls out of
the -128 to 127 position range. If this
happens, a wraparound effect will oc-
cur. Therefore, translation works best
with small images, having room to
move.

Objcolor. This determines what the
object's color will be when it is drawn
if color was not specified when the im-
age was created. If color was speci-
fied, then objcolor is ignored. The
standard GraForth color numbers (1
through 7) are used. Note that obj-
color also sets the normal color com-
mand, so be sure to reset color to the
desired value after using objcolor.

Table 1 shows the 3-D parameters
and the range of values they use. You
can experiment with the definitions by
changing some of the parameters from
the editor and recompiling. Of course,
you can also type the word definitions
directly into GraForth from the
keyboard.

Creat ing animations with
GraForth's 3-D graphics is easy and
straightforward. As we mentioned in
an earlier column, animation is simply
a series of still pictures displayed
rapidly one after another, providing
the effect of movement. One fast way
to generate this movement is with a
do-loop:

257 0 DO I YROT DRAW 4 + LOOP

This example rotates the object a
full circle around the Y axis. Since the
loop is in steps of four, it repeats 64
times, producing 64 separate draws,
one after another. For each draw, the
rotation around the Y axis is set to the

b

loop value, incrementing from 0 to
256.

This type of animation is
straightforward, but for most
applications a number of parameters
need to be manipulated at once. Let's
look at how to do more complicated
manipulations with a few examples.

When using a do-loop, usually one
draw will be performed each time
through the loop. The size of the loop
then determines how many times the
object will be drawn. To change the
parameters, two approaches are
possible: the loop value can be used to
generate the desired parameter values,
or separate variables can be used to
keep track of each parameter.

In the first method, the conversion
from loop value to parameter value is
done with short formulas. For
example, if you want the tetrahedron
to rotate around the Y axis three times
for each rotation around the X axis,
you can use this routine:

: THREE.ROT
257 0 DO
I XROT
13'YROT
DRAW

2 +LOOP;
After entering three.rot into the

editor and compiling (or entering it
directly from the keyboard), it can be
run by simply typing:

THREEBOT
The trick is to find the right formula

for the desired motion. Suppose, with
the above example, you also wanted to
make the tetrahedron grow in size
from 12 scale to 20 scale. The change
from 0 to 256 in the loop must be
translated to change from 12 to 20.
Note that the difference between the
start and end loop values is 256, and
the difference in the scales is 8. If we
divide the loop value by 32, we get a
range of 0 to 8. If we then add 12, we
get the desired range of 12 to 20:

Loop value 0 132 = 0 ... 0 + 12 = 12
Scale value

Loop value 256 132 = 8 ... 8 + 12 = 20
Scale value

The new routine looks like this:
: ROT&SCALE

257 0 DO
I YROT
I3"YROT
1321 12 + SCALE
DRAW

LOOP ;

Parameter
XPOS
YPOS
SCALX
SCALY
SCALE
SCALZ
XROT
YROT
ZROT
XTRAN
YTRAN
ZTRAN
OBJCOLOR

Range
0 10 255
010 191

-31 to31
-31 1031
-311031
-31 1031

0 lo 255
0 to 255
0 to 255

-12810 127

1,2,3,5.6.7

Table 1.

- 128 to 127

-12810127

In steps of
1
1
1
1
1
1
2
2
2
1
1
1

Now we'll look at a program
adap ted f rom the "rolling
tetrahedron" display in the GraForth
demons t r a t ion p rogram. The
tetrahedron moves down and to the
right, rotates end over end, and grows
and shrinks, giving the appearance of
rolling closer, then farther away. You
can use this routine with any image in
memory.

-361
Figure 1.

: ROLLOBJECT

13 'XROT
I5"YROT
16 '25+XPOS
1 3 ' 3 5 + Y P O S
I 18 - ABS CHS 18 + SCALE
DRAW

LOOP ;

37 0 DO

None of these formulas were arrived
at by magic. As the routine was
written, we tweaked each formula
until we got the desired display. Here
are the numbers that come out:

Loop value: 0 to 36
XROT: 0 to 108
YROT: 0 to 180
XPOS 25 to 241
YPOS 35 to 143
SCALE: 0 to 18, then back to 0

The scaling formula deserves more
comment. The desired effect was to
have the object grow and then shrink.

FORTH Dimensions 12 Volume V, No. 1

We could have used two scaling loops
one after another-the first increasing
and the next decreasing. But then we
would have had to keep all the other
parameters moving smoothly through
the transition from one loop to the
next, without a skip in values. For
simplicity, we decided to use a single

With the loop value moving from 0
to 36, we wanted the scaling function
to slide from 0 to 18 and back to 0.
This can be shown with Figure 1.
Figure 2 shows the steps we used to
achieve the effect. Sometimes a more
complicated animation cannot be
performed inside a simple do-loop.
This is especially true if the user is
interacting with the program through
a joystick or keyboard, and the
program must make decisions. In this
case, it’s often best to use separate
variables to keep track of each
parameter. The parameters can then
be updated at any time from the
running program. The following
program duplicates the Roll. Tetra
routine using this technique.

VARIABLE XR (x rotation)
VARIABLE VR (Y rotation)
VARIABLE XB (X position)
VARIABLE YP (Y position)
VARIABLE SC (Scale)
VARIABLE BIR (Scale direction

loop.

larger or smaller?)

: UPDATE.TETRA
XR 3 + DUP -> XR X R M (increase X

Y R5 + DUP -> YR Y R M (increase Y

XP6 + DUP-> XP X W S (increase X

rotation by 3)

rotation by 5)

position by 6)

-36 1
Start with loop value

I

YP 3 + DUP -> YP YPOS (increase Y

DIR IF (if scale is increasing:)
sc 1 + DUP -> sc SCALE (increase

position by 3)

scale by 1)
SC 18 = IF 0 -> DR THEN (change

direction?)
ELSE
sc 1 - DUP -> sc SCALE (Decrease

scale by 1)
THEN ;

: ROLL.TETRA1
o - >XR o -> YR (initialize

variables)
25 ->XP 35-> YP
0 ->sc
1 -> DIR (set scale direction)
DRAW (Draw first object)
36 o DO (Start loop)
UPDATE.TETRA (Set new

parameters)
DRAW (Draw object)
LOOP ; (Loop back)

We used a do-loop to run the
animation since no branching
decisions were needed for this
program. If they were required, the
current value of any 3-D parameter
would always be available.

For smooth an imat ion , the
GraForth 3-D graphics routines
automatically take advantage of both
hi-res screen pages in the Apple
memory. During 3-D animations, one
screen area is displayed while the other
is being invisibly updated. This way,
the lines are not shown being erased
and redrawn. This is only true for 3-D
graphics. GraForth text printing, line
drawing, and character graphics
always draw to both screens
simultaneously. In this way, the

-36 1
Subtract 18

18 -

screen-flipping 3-D graphics can be
mixed with other kinds of graphics
without causing lines and characters to
repeatedly appear and disappear.

The sequence GraForth uses in
putting a 3-D object on the screen is a
four-step process: whenever the word
draw is executed, the drawing routines
are first directed to the graphics screen
that is not currently being displayed.
Then the previous 3-D objects are
individually erased line by line by
following the parameters that were
originally used to draw them. Next,
the new objects are drawn on the
screen using the current parameters.
Lastly, the display is switched to this
screen, so that the new objects can be
seen.

To increase speed, the word draw
only works with the objects that have
been referenced since the last draw
command. This reference can be made
by giving the object one or more new
parameters, or by simply calling it
again with object. This means that
objects that don’t need to be changed
can be left on the screen as they are
and will not slow the drawing of
objects still in motion.

Suppose you’re manipulating two
3-D objects (call them objects 1 and 2)
simultaneously. First, both of them
are in motion, and the animation
toggles between the two graphics
screens with each draw command.
Then you decide to stop the motion of
object 1, while continuing object 2. To
do this, you simply stop giving object
1 any new commands. Since object 1

(Continued on bottom next page)

Take the absolute value
ABS

Figure 2.

Turn it upside-down
CHS

- 36 1
Add 18

18 i

FORTH Dimensions 13 Volume V, No. 1

The Mullard Space Science
laboratory, part of the Department of
Physics and Astronomy of University
College, London, is currently running
polyFORTH on a Motorola EXORset
33 to tackle the problem of displaying
and storing data produced by its latest
generation of imaging detectors.

The detectors will be used on future
space missions to record X-ray images
of distant astronomical objects, and
also at ground based observatories
where their extreme sensitivity will al-
low observations of the faintest and
farthest known galaxies in the
universe.

A desktop microcomputer system
was chosen for the task since it could
meet most of the system requirements
at a much lower cost than commercial
systems, and special features could be
included by writing the necessary con-
trol software. The chosen computer
was the Motorola EXORset 33, based
on the MC6809 microprocessor. To

enable fast software development the
interactive, high-level language
polyFORTH was selected.

For detector development or
ground-based use, each individual
photon registered by the detector has
its coordinate recorded in the memory
of the EXORset, allowing an image to
be built up over a period of minutes.
The multi-tasking capabilities of poly-
FORTH allow an image display to be
generated on the graphics screen and
updated in real time with an overlay of
numerical data, which is also fre-
quently updated, while the data from
the detector is handled on an interrupt
basis. The operator may also enter
commands via the keyboard function
keys during the accumulation of an
image.

The image data may be displayed in
a variety of ways, such as a “contour”
3D projection, or as a “grey-scaled”
image by assigning a different number
of dots to each pixel according to its

brightness. When a satisfactory image
has been accumulated the data may be
saved on floppy disc, and transferred
to a minicomputer for detailed image
processing if required. Since the build
up of the image can be monitored in
real time, the accumulation of useless
data can be stopped at an early stage,
reducing wasted time.

This development would have been
very difficult using the EXORset’s
BASIC, not least because the BASIC
interpreter uses the graphics display
memory, making interactive develop-
ment of graphics impossible! poly-
FORTH and its graphics package
however fit in about 12K bytes, leav-
ing plenty of room for graphics dis-
play, data, and the application pro-
gram.

This article is reprinted from a
periodical published by Comsol Ltd.,
England.

(3-0 Continued)

was previously in motion, the picture
of the object on the two graphics
screens is different. As the animation
continues with object 2, the display
will switch back and forth between the
two screens. The two pictures of
object 1 will alternate back and forth,
rather than remaining still.

The solution to this problem is
simple: when you don’t need to move
an object any more, give it one extra
object command, without any new
parameters:
1 OBJECT

This will cause the same picture of
the object to be drawn on the second
graphics screen. The two pictures of
the object will then be identical, and
the object will remain still while other
objects are manipulated.
Moving Faster. With a little extra
planning, the speed of 3-D graphics
can often be increased considerably.
The line-by-line undrawing of each
3-D object uses as much time as
drawing the new object. A faster
method to remove old images is simply
to erase the area of the screen the

object lies in, and then not to bother
doing a line-by-line erase.

The GraForth word undraw is
designed for doing just this. Undraw
erases a portion of the screen just as
unblk does, on a character-size basis.
However, undraw also sets a flag
telling GraForth not to do a line-by-
line erase of the 3-D object. After
setting the block size and the position
appropriately, you can erase the ob-
ject yourself, so that the 3-D routines
don’t have to erase it. This method
requires that you know what rectangu-
lar area of the screen is used by the ob-
ject and that no other graphics line in
this area, since they would also be
erased.

Here is an example of using undraw.
Starting from scratch, let’s first get an
object onto the screen:
WINDOW ERASE (Optional)

o 40 18 24

CR 132 PUTC PRINT “ BLOAD

OBJERASE
0 OBJECT 5 SCALE
20 XROT 20 YROT
DRAW

CUBE,A2816 ” CR

An easy way to determine the block
size and placement to use with undraw
is to fill the screen with characters,
then draw the object over them:

0 VTAB 1000 0 DO I 10 MOD. LOOP 0
OBJECT DRAW

By simply counting down and
across, you can see that the cube fills a
block nine characters wide by eight
characters tall, starting at 8 vtab 14
htab. The undraw command can be
used to erase this block during a 3-D
animation:

ERASE
9 8 BLKSIZE
Now type this entire line, and then

press the return key:
8 VTAB 14 HTAB 257 0 DO
I YROT UNDRAW DRAW 4 +LOOP

This sets the character position for
the block and rotates the object while
erasing the block with undraw.
Compare it with the same loop
without undraw:

18 VTAB

257 0 DO I YROT
The difference is quite noticeable.

DRAW 4 +LOOP

FORTH Dimensions 14 Volume V, No. 1

7

I

THE FORTH SOURCE"
MVP-FORTH - A Public Domain Product

MVP Forth is fig-FORTH updated to the FORTH-79 Standard Requlred
Word Set The source is public domain Included are an editor, FORTH
assembler, tools and utilities making it compatible with the instructional
book Sfarffng FORTH Except for hardware dependencies all high level
FORTH is transportable between all systems Modifications and exten-
sions can be simplified through the use of MVP-FORTH Programming
Aids and Meta and Cross ComDilers

MVP FORTH Books - A Series
C Volume 1, All about FORTH by Haydon MVP-FORTH

glossary with cross references to fig-FORTH Sfarbng FORTH
and FORTH-79 Standard 2"d Ed $25

C Volume 2, MVP-FORTH Assembly Source Code Includes
CP/M@ IBM-PC@ and APPLEm listing for kernel $20

MVP-FORTH Software - A Transportable FORTH
0 MVP-FORTH Programmer's Kit including disk documen- $1 5C

tation, Volumes 1 & 2 of MVP-FORTH Series (All About
FORTH. 2"d Ed & Assembly Source Code), and Sfarffng +c4
FORTH Specify 0 CP/M 0 CP/M86 0 MSDOS c1 APPLE

0 IBM-PC 0 TRS-80/1B or 3 L7 TRS Color Computer

0 MVP-FORTH Cross Compiler for CP/M Programmer's Kit
Can also generate headerless code for ROM or target
CPU $300

0 MVP-FORTH Mete Compllw for CPlM Programmer's kit. Use
for applicatons on CPlM based computer. Includes public
domain source $1 50

0 MVP-FORTH Fast Floatlng Pdnt for APPLE Programmer's
Kit. Includes 951 1 math chip on board with disk and
documentation. $400

0 MVP-FORTH Programming Aids for CPIM, IBM or APPLE
Programmer's Kit. Extremely useful tool for decompiling.
callfinding, and translating. $1 50

0 MVP-FORTH by ECS Software for IBM-PC or ATARP
400l800. Standalone with screen editor License required.
Upgradeable $1 00

0 MVP-FORTH by ECS Software for IBM-PC or ATARI 400/800.
Enhanced with color animation, multitasking sound, utilities,
and unlimited run time license.

0 MVP-FORTH Professional Application Development System
(PADS) for CPlM, IBM-PC, or APPLE. A three level integrated
system with complete documentation. Complete system $400

0 MVP-FORTH PADS enhanced virtual system $1 50
0 MVP-FORTH PADS Programming Aids $1 50
0 MVP-FORTH PADS Meta Compiler $1 50

$1 75

* * * MVP-FORTH operates under a variety of CPU's. computers, and
operating systems CP/W disks can be supplied 8". SSISD. 3740
format or 5V4 for @borne@ Northstar" Micro Decisions@ Kaypro@ or
H89lZ8P Specify your computer and operating system * * *

FORTH DISKS
FORTH with editor, assembler, and manual.
0 APPLE by MM s1Oo 0 IBM-PC@ by LM $100
0 APPLE by Kuntze c7 NOVA by CCI 8" DS/DD$15O
0 ATARla valFORTH $60 0 280 by LM $50

0 HP-85 by Lange $90 D VIC FORTH byHES, VIC20
0 HP-75 by Cassady+c* $1 50 cartridge $60

Enhanced FORTH with. F-Floating Point, G-Graphics. T-Tutorial.
S-Stand Alone, M-Math Chip Support, MT-Multi-Tasking. X-Other
Extras, 79-FORTH-79.

0 Extensions for LM Specify

$90

0 CPMB by MM $loo 0 8086188 by LM $1 00

0 APPLE by MM,
F, G, & 79 $1 40 IBM. Z80, or 8086

$1 00 0 ATARI by PNS. F,G. & X $90
@ CPlM by MM, F & 79 $140
0 Apple, GraFORTH by I $75 (IBM-PC or 8086) $I 00
0 Multi-Tasking FORTH by SL,

CPIM. X & 79 $395 (Z80 or 8086) $1 00
0 TRS-8011 or 111 by MMS

02EF Floating

0 8087 Support

0 951 1 Support

0 Color Graphics
F, X. & 79 $1 30 (IBM-PC) $1 00

0 Timex by FD. tape G.X, & NEW o ~ ~ ~ $ ~ ~ n t $200
$45 Requires LM FORTH disk. 79

Starting FORTH

and translating. CP/M, IBM-PC, 280, or Apple

by LH3 include$s95 0 Victor 9000 by DE, G,X NEW
$1 50

$1 50
0 fig-FORTH Programming Aids for decompiling, callfinding,

CROSS COMPILERS Allow extending, modifying and compiling for
speed and memory savings. can also produce ROMable code.
*Requires FORTH disk.
0 CP/M $300 0 IBM. $300
0 8086- $300 0 Z80. $300
0 Northstar $300 0 Apple 11/11 + $300

0 FORTH Computer - Jupiter Ace $1 50
$50 +** $1 25

0 ParlSec Interface $1 00

0 16K RAM Pack
0 48K RAM Pack

Key to vendors: LM Laboratory Mlcroiyitems
MM MlcroMotlon
MMS Miller Microcomputer Senlces
NS Nautilus Systems
PNS Pink N o h Studlo
SL Show Labs

CCI Capstone Computlng Inc.
DE Dai-E Systems
FD ForIh Dimension
I lnsofl
LH Laxen and Harris

FORTH MANUALS, GUIDES & DOCUMENTS
0 ALL ABOUT FORTH by

Haydon See above $25 Proc. $25
0 FORTH Encyclopedia by 0 A FORTH Primer $25

Derick & Baker 2°C Ed C Threaded Interpretive
Programmer's manual to fig- Languages $23

0 AIM FORTH User Man $1 2 FORTH with FORTH-79
references Flow charted $25

U APPLE User's Manual

0 1982 Rochester FORTH

4 MM $20

$30
0 Systems Guide to fig-

FORTH $25
0 Caltech FORTH Manual $1 2

0 FORTH Encyclopedia +.
$7 0 METAFORTH by Pocket Guide

college level text

Scnnlon

0 And So FORTH by Huang A
$25

0 FORTH Programming by
_.

0 FORTH on the ATARl by E 0 invitation to FORTH $20
$8 0 PDP-11 User Man. $20

0 CPlM User's Manual,
Floegel

0 Starting FORTH by Brodie
Best instructional manual MM $20

0 Starting FORTH (hard
cover) $22 Conversion $1 0

0 1980 FORML Roc. $25 0 Tlny Pascal fig-FORTH $10
0 1981 FORML Roc 2 Vol $40

0 1981 Rochester FORTH

available (soft cover) $1 8 0 FORTH-79 Standard $1 5
0 FORTH-79 Standard

0 NOVA fig-FORTH by CCI

0 NOVA by CCI User's Manual
includes editor assembler, @
and iutilities $25

0 Installation Manual for fig-fORTH $1 5
Source Listings of Iig-FORTH, for specific CPU's and computers The
Installation Manual is required for implementation Each $1 5

0 1982 FORML Roc. $25 Source Listing $1 5

Proc. $25

0 1802 0 6502 0 6800 0 AlphaMicro
0 8080 0 8086l88 9900 0 APPLE II

0 68000 0 Eclipse VAX 0 280
0 PACE 0 6809 0 NOVA 0 PDP-1 IILSI-11

Ordering Intormatlon: Check Money Order (payable to MOUNTAIN VIEW PRESS
INC) VISA Mastercard COD s $5 extra No billing or unpaid Po s California
residents add sales tax Shipping costs in US included in price Foreign orders pay
in US funds on US bank include for handling and shipping by Air $5 for each item
under $25 $1 0 for each item between $25 and $99 and $20 for each item Over
$1 00 Minimum order 51 5 All prices and products subject to change or withdrawal
without notice Single system andlor single user license agreement required on
some products
DEALER I AUTHOR INQUIRIES INVITED

MOUNTAIN VIEW PRESS, INC.
PO BOX 4656 MOUNTAIN VIEW. CA 94040 (41 5) 961 -4103

Volume V, No. 1 15 FORTH Dimensions

Double-Precision Math Words

DIS Divides a double by single
precision number to yield a ,
double precision quotient.

L . H. Bieman
Energy Development Associates

(a Gulf+ Western Company)
Madison Heights, Michigan

Convinced of the beauty of pro-
gramming in FORTH, I started an ap-
plication to interface a lab experiment
with a microprocessor. (Another fac-
tor was that FORTH was the only lan-
guage available besides Assembler and
I am not fond of programming in
Assembler.) My scientific background
yearned to use floating-point math,
but I decided to stick with the credo of
FORTH programmers: use integer
arithmetic; it's fast and exact. Unfor-
tunately, my application required the
use of double precision numbers for
which there were very few math opera-
tions in my version of FORTH.

There were four basic operations
available: double precision addition
subtraction; multiplication of two
singles to form a double; and division
of a double by a single, yielding a
single. This was not enough for my
application. I needed to take the ratio
of two double precision numbers,
scale double precision numbers, etc.
Thus, I did what a FORTH
programmer must, create the needed
words. Hopefully these words, which
are found on the three screens shown,
will help others who have a version of
FORTH with limited double precision
math.

The math words for signed numbers
include:

D/ Takes the ratio of two double
precision numbers to yield a
single precision quotient.

D m S Multiplies a double times a single
precision number to yield a
double precision product.

120 TRIAD

SCR # 120
0 (DOCIBLE PRECISION MATH WORDS - BIEMAN
1 : 2SWAP (D2vDl --- Df ,I32)

2 ROT >R HOT R> :

4 >R OVER R> SWAP :

6 OVER2 OVER- XOR :
7 : D/ D2vD1 --- NQUOTIENT)
8 D/SIGN >R (FIND SIGN AND STORE 1
9 DABS DUP 1+ DUP >R LI/ SWAP DROP

3 : OVER2 (NBvN2rNl --- N3v N2. N1 v N3)

112. D1. NSIG) 5 : D/SIGN (D2,Dl ---

10 (BREAK DIVISOR INTO Nl*N2)
1 1 >R DABS R> U/ SWAP DROP (DIVIDED BY N1
12 0 R> U/ SWAP DROP
13 R> +- (PUT SIGNON QUOTIENT)
14 ; S
15

(nIVIDEIi BY N2)

SCR # 121
0 (DOUBLE PRECISION MATH WORDS - BIEMCIN)
1 : T* (UDVUN --- UT 1
2 DUF ROT Uo >R >R (MULT UPPER PRECISION PART)
3 U* (MULT LOWER PRECISION PART)
4 0 R> R> D+ (ADD BOTH PARTS) :
5 : T/ (UTVUN --- UD 1
6 >R R U/ SWAP (DIVIDE UFFER PRECISION PART)

7 ROT 0 R U/ SWAP (DIVIDE LOWER PRECISION PART 1
8 ROT R> U/ SWAP DROP (DIVIDE REMAINDER)

9 0 2SWAP SWAP D+ (ADD PARTS > :
10 : U*/ (UD.UNsUN --- UD)

11 >R T* R> T/ :
12 : S
13
14
15

SCR # 122
0 (DOUBLE PRECISION MATH WORDS - BIEMAN)

2 2DlJP XOR >R (FIND AND SAVE SIGN)
3 ABS >R DABS R> R> (CHFINGE TO AES 1 :

D)
5 5 A >R T+ DROP R> D+- (MULT DOUBLE TIMES SINGLE
6 : D/S (DvN --- D I
7 SA >R 0 SWAP T/ R> D+- (DIVIDE DOUBLE BY SINGLE

DABS. ABS, SIGN 1 1 : SA (D.N ---

4 : D*S (DrN ---

D) 8 : D*/ (DvN2rNl ---
9 >R SA R> DUP ROT XOR >R APS (FIND SIGN AND ABS I
10 U*/ R> D+- (CALCULATE AND SET SIGN) !
11 ZS
12
13
14
15

ok

Volume V, No. 1 FORTH Dimensions 16

D ~ I Takes a double precision and
multiplies and divides by single
precision numbers, yielding a
double precision (very useful for
scaling).

The math words for unsigned
numbers include:

T X Multiplies a double times a single
precision number to yield a triple
precision product.

TI Divides a triple by a single precision
number to yield a double
precision quotient.

U S / Takes a double precision and
multiplies and divides by a single
precision number, yielding a
double precision.

In the comments found on the
screens, U stands for unsigned, N
stands for single precision, D stands
for double precision and T stands for
triple precision. For some versions of
FORTH the R must be replaced with
R@. Another item to check is that the
UI works correctly for divisors greater
than hex 7FFF.

There are some modifications of the
words that might suit your application
better. You might want DI to produce a
doubie precision quotient rather than
single precision. This can be done by:
compiling DI after TI,_changing line 11
on screen 120 from 9.2 UI SWAP DROP
to 0 F f) TI, changing line 12 from U/
SWAP DROP to TI, and changing line 13
from +- to D+-. Of course, the
execution time for D/ will greatly
increase. You might want to save the
remainder in TI by changing line 8 on
screen 121 from SWAP DROP to >R
and changing line 9 from D + to D +
R > ROT ROT. If you make this change,
don’t forget to change TI to TI ROT
DROP in U m I, in DIS, and (if it appears)
in DI.

ACKNOWLEDGMENT
I would like to thank Jim Galloway

for introducing me to FORTH and for
being kind enough to review this note.

FORTH Dimensions requested our
resident math operator authority (and
Standards Team Secretary) Robert L.
Smith, to review Mr. Bieman’s
contribution. Mr. Smith writes:

I implemented and tested the
functions described in this article and
found that they worked pretty much
as advertised, and even better than
expected. I expected that the DI routine
would fail because the factoring of the
double precision divisor would yield
two single precision numbers whose
product would not give the original
double precision value. That turns out
to be not as important as I assumed
because of the order in which the
partial quotients are taken. It is likely,
however, that the quotients are just
slightly more inaccurate than one
would obtain from a very precise
technique. I was surprised also at his
suggested method of obtaining the
double precision quotient of two
double precision numbers. However,
if the denominator has a high order
part of zero, then the quotient will be
OK, with proper full precision. If the
most significant par t of the
denominator is non-zero, then the
quotient will have a zero in its most
significant part. The greatest error will
be just one or two least significant
bits.

The routines are written in FORTH,
so some small changes have to be
made to convert to 79-Standard. The
function names are somewhat new to
me, but there is not sufficient
widespread use of these sorts of
functions to say that any names are
traditional. I believe that routines of
this sort are useful, since FORTH’s
traditional 16 bit precision is
insufficient for a number of
mathematical functions, and even for
some measured physical quantities. In
my opinion FORTH badly needs a
good library of useful mathematical
routines in the public domain. The
routines here could possibly be a small
part of that library.

I was asked if the routines are
optimal. They appear to give
approximate results in a much shorter
time than a more precise method
would. There seems to be only trivial
improvements that could be made to
get the same results. This paper has
some rough gems that others might be
able to polish. -Robert L. Smith

Volume V. No. 1 17

FORTH
for

VICTOR 9000
Microcomputer
Dai-E FORTH Level I

Beginner‘s Package in .

Including:
I Fig-FORTH Style

Screen Editor, 8088
Assembler, Graphic Interface,
Sound Generation, Math-
matical extensions, games
and many more.. .
“And So FORTH” (374 page
manual)

US $1 5Ooo

Dai-E FORTH Level II
Professional Level FORTH

Package
W/I/ conform with the

proposed 1983 standard

On-I ine Documentation,
Decompiler, Debugger(trace0,
Viewer (help), Line Editor
and Screen Editor,
8086/8088 Assembler, Meta
Compiler, Double precision
Math extensions, Native
Operating System file
handler, True LRU disk
buffer mechanism, Separate
header, Graphics/Sound
Interface, Hashed dictionary
structure, Multi-tasking.

Available for CP/M, MS-DOS,
or stand-alone versions.

US $35Ooo

Features:

(available in second quarter 1983)

DAI-E
SYST
INC.

’EMS

MULTI- LANGUAGE
COMPUTING SYSTEMS

503/682-3201
29783 Town Center Loop West 0 P.O. Box 790

Wilsonville, Oregon 97070 ’ U.S.A.
FORTH Dimensions

Develop FORTH code for any target
8080/280 system on your current 8080/280
or Cromemco CDOS based system I

FORTH
Fundamentals
0 Program Design
0 Program Documentation
0 FORTH Architecture
0 FORTH Arithmetic
0 Control Structures
0 Input/Output
0 The Vocabulary Mechanism
0 Meta-Defining Words

JULY 11-15 SEPT. 12-16
OCT. 17-21 OCT. 31 -NOV. 4

$395 Incl. Text

8080/280 METAFORTH
CROSSCOMPILER
0 Produces code that may be downloaded to any 280 or

8080 processor
0 Includes 8080 and 280 assemblers
0 Can produce code without headers and link words for up to

30% space savings
0 Can produce ROMable code
0 79 Standard FORTH
0 Price $450 - includes our new tools diskette

Advanced FORTH System
& Tools
0 FORTH Tools 0 FORTH lnternals
0 Engineering Applications 0 Assemblers and Editors
0 Floating Point 0 Other Compilers
0 Communications Cross-Compilation Theory
0 Sorting & Searching 0 Romability, Multitasking,
0 Project Accounting System Timesharing
0 Process Control 0 Task Scheduling
0 Simulations Algorithms

SEPT. 19-23
NOV. 14-18

$495 Incl. Text

No downloading - No trial PROM burning.
This port-addressed RAM on your S-lo0 host
is the ROM of your target system

WORD/BYTE
WIDE ROM SIMULATOR
0 Simulates 16K bytes of memory (8K bytes for 2708 and 2758)
0 Simulates 2708, 2758, 2516, 2716, 2532, 2732, 2564

and 2764 PROMS
0 The simulated memory may be either byte or 16-bit

word organized
0 No S-100 memory is needed to hold ROM data
0 Driver program verifies simulated PROM contents
0 Price $495 each

I CONSULTING SERVICES
Inner Access provides you with Custom Software Design. We have supplied many clients with
both Systems and Application Software tailored to their specific needs. Contact us for your
special programming requirements. I

Inner Access Corporation
P.0 BOX 888 BELMONT, CALIFORNIA 94002 (415) 591-8295

.

8

FORTH Dimensions 18 Volume V, No. 1

Add a Break Point Tool
Here’s a scenario familiar to most

programmers: you have a large section
of an application running, but some-
how right in the middle of things
something bizarre happens-some-
thing that “couldn’t possibly” be hap-
pening. The application either crashes
mysteriously, or continues past the
problem, too late for you to figure out
where things went wrong.

Here’s a very useful, ingenious
debug tool that lets you halt your ap-
plication in mid-operation, then use
the full power of FORTH’s interpreter
to examine the stack, contents of vari-
ables and so on, and then resume.
Before I heard about this tool, I was
prone to editing a QUIT into a suspec-
ted spot in my code to terminate the
application, then poke around for
clues. The technique described in this
article still lets you poke around, but
from within the temporarily suspend-
ed application! (Those of you with
multiprogrammed FORTH systems
and multiple terminals know how use-
ful this can be.)

The technique (originally called
PAUSE GO) was invented by Frank
Seuberling, adapted here by Kim Har-
ris and brought to my attention by
John Clark. The idea is simple: you
edit the word BREAK into your aplica-
tion where you want the breakpoint,
then recompile. When your applica-

tion executes BREAK, you enter a spe-
cial interpreter.

You may type any normal FORTH
commands and press return. After
completion of your commands, the
special interpreter will respond “aok”
instead of “ok” to remind you which
interpreter it is, then await more com-
mands. You can stay in this special in-
terpreter as long as you want.

When you’re ready to have the ap-
plication resume, enter the word GO
and press “return”. GO will exit the
special interpreter and allow the defi-
nitions that had been executing to
resume (their addresses had been nest-
ed and patiently waiting on the return
stack all along).

The real work is done by the BEGIN
... AGAIN loop in BREAK, which ob-
viously is the special interpreter, and
the phrase DROP R > DROP in the word
GO, which unnests two levels: from
EXECUTE inside INTERPRET, and from
INTERPRET inside BREAK.

That’s all the code you really need
except for one aspect of “human
factors.” If BREAK consisted only of
this BEGIN AGAIN loop, then if YOU
were to cause an abort while inside the
BREAK interpreter (by misspelling a
word or underflowing the stack, etc.)
ABORT would call QUIT which would
cause an immediate cessation not only

of the BREAK interpreter but of the
suspended application as well.

At that point, if you don’t happen
to notice you’re back in FORTH’s in-
terpreter and you type GO, you’ll
crash. To prevent such an occurrence
from blasting you off to never-never
land, a “check” has been added-the
value of the return stack pointer is
saved at BREAK time, and checked at
GO time. If they don’t match, you’ve
changed levels, and an error message
will result.

Another pleasant addition has been
the stack dumps-both data stack and
return stack-on line 6. BREAK will
run fine without either of these if you
haven’t got them yet.

Kim Harris has noted a possible en-
hancement in the margin of the listing.
By saving the contents of the return
stack at break-time in an array, then
restoring the return stack to its former
condition at GO, then you could re-
sume even without having to be in the
special interpreter. Come to think of
it, you wouldn’t even need a special in-
terpreter !

The possibility of suspending one
application in mid-stream, performing
any number of other tasks, then re-
suming at your leisure is very interest-
ing for a non-multiprogrammed en-
vironment.

-Leo Brodie

FORTH Dimensions Volume V, No. 1 19

Extending the FORTH Compiler
Luke Seeto

Christchurch, New Zealand

The following discussion deals with
extensions to the FORTH compiler. A
familiarity with the FORTH compiler
and its words is required for
implementation. Readers are referred
to the following manuals.

-fig-FOR TH installation Manual
-Assembly Language Source List-

ing of fig-FOR TH
A description of the FORTH system

used is first discussed.
FORTH can be implemented for

both a development environment and
a target environment. Such a dual en-
vironment has

separate RAM memory for vari-
ables.

separate compiler/operating system
memory.

separate program code memory; this
is RAM in a development environment
and ROM in a target environment.

separate dictionary memory.
In our FORTH systems 8K byte

blocks of memory at 8K boundaries
can be bank selected by controlling
any of eight bank-select registers to al-
low any memory address to be
repeated up to 32 times. Figure 1
shows the memory map used which is
as follows.

RAM memory for variables is at
locations $oooO - $1FFF ($ stands for
hexadecimal). This can be extended to
location $SFFF for the target environ-
ment only. RAM memory also exists
at locations $4OOO - $SFFF as a num-
ber of selectable banks of 8K bytes,
except for the first bank where the
compiler/operating system resides.
RAM memory residing in banks is
handled transparently as is RAM at
locations $oooO - $lFFF; this is the
case also for the development environ-
ment even though the compiler resides
in the same address space.

Locations $2000 - $7FFF for the
f i r s t bank con ta ins the
compiler/operating system and
input/output memory space. Into this
area is placed source compiling code
which is not required for ROMing.
The compiler is extended as required.

Program code resides at locations
$8000 - $FFFF for the first bank.
Program code also resides at locations
$8000 - $9FFF as a number of selec-
table banks of 8K bytes.

Dictionary memory space exists at
locations $AOW - $BFFF as a number
of selectable banks of 8K bytes except
for the first bank where program code
resides. The dictionary is transparent
to the user and is only for the develop-
ment environment.

FIGURE 1 - MEMORY
ORGANIZATION

Why use such an unusual system?
Essentially to extend the memory
space past 64K bytes. This has the
added advantage that no cross-

ROMable code and a huge dictionary
space is available. The dictionary is
fast when accessed and can periodical-
ly be culled. With ample dictionary
space, names can be meaningful rather
than cryptic and the compiler can be
extended to relieve the user’s load.
Number Base

Numbers in FORTH can be ex-
pressed in decimal or hexadecimal
base. Using the words DECIMAL and
HEX establish the base of succeeding
numbers in the source program.

Hexadecimal numbers can also be
entered as characters 0-F preceded by
a $ sign by modifying the compiler as
follows:

define a variable IBASE similar to

NUMBER is to first calculate IBASE as
16 if the first character of the Word is
a S sign; otherwise it is as for BASE.

(NUMBER) is to use IBASE rather than

A listing from the compiler/operat-
ing system is shown (see listing 1). Any
user program which calls NUMBER will
remain correct. Any which calls
(NUMBER) will not; in which case
change (NUMBER) to (INUMBER) in the
listing. Also the Word S is specifically
tested for; this is because interpreta-
tion first mis-matches against the dic-
tionary before doing a number conver-
sion and not vice-versa as in some
FORTH systems.

mica l ly , use of an implicit hex
number scheme avoids confusion.

compilation is required to produce >

a

BASE. 5

.k

BASE.

Data Structure 1
Normally program code can be

structured such that only the contents
of a data structure, and not the
memory address of the data, need to
be referenced. In particular the Words
C@ c! CSETO CINCI ... @ 1 SETO + I ... can
be eliminated from a piece of program
code.

Thus it is possible in FORTH to say
A? 1 + A= to correspond to the BASIC
statement LET A = A+I. Spically
citing A? and A= generates less

FORTH Dimensions 20 Volume V, No. 1

program code and runs faster. Also,
the source program is easier to follow
without excessive manipulation of the
stack. The extra cost is the dictionary
space. Citing A? and A = is
independent of whether the structure
is a byte or a word variable. Hence the
statement A? 1 + A and not A INC1.

The data structure described below
allows a user to define a named data,
and automatically generated are its
fetch/access structure and its store
structure which are cited by name. All
access to the data structure by name
are re-entrant.

The following data structures are an
alternative to the conventional
variable data structure in FORTH;
namely VARNARIABLE CVAR ARRAY.
word data structure

with the data structure
Variable space of 16 bits is allocated

MVAR A

This is equivalent to the statements
VAR AS
: A? AS @ ;
: A = AS!; .

byte data structure

allocated with the data structure
Variable space of one byte is

M-CVAR A

This is equivalent to the statements
CVAR AS
: A ? A S C @ ;
: A = AS C!:

array data structure

allocated with the data structure
Variable space of n bytes is

n MARRAY A
This is equivalent to the statements
n CONSTANT A[L]
A[L] ARRAY A[$]
: A(?] A[$] + C@ ;
: A[=] A[$] + C!;

Thus to fetch/access the fifth
element of the data structure, use 4
A[?]. The limit is also defined by name
for use with DO loops.

implementation details
A description of how M-VAR can be

implemented is given. M-CVAR and
M-ARRAY are similar.

Firstly, program code should be
generated together t o optimize

LISTING 1: NUHBER CONVERSION USED BY COMPILER/OPERATING SYSTEM
VS2.0 JAN 83 PAGE- 1

SCR.. 1

SCR..3

SCR. .5

S (R. .6

S:.R. .7

SCR. .B

? NOTE LISTING FOR NUMBER BASE
$24 IS HEX 24 FOR ASCII I
IBASE? IS IBASE @
IBASE= IS IBASE !
___________-_______---- 6

7
8
0 NOTE ENTRY DOES NOT CONFORM TO FORTH SYSTEMS.
1
2

->

3
4 : (NUMBER)

(START VALUE = 0)
(NEXT POSITION 1

5 0 SWAP
DUPLICATE C@ IEASE? (CONVERT A DIGIT 1

6
(VALID DIGIT?)

7
DIGIT

(- YES.)
8

(ACCUMULATE)
IF >R 9

(SUCCESSIVELY 1
10
1 1 (REPEAT UNTIL STRING) tHILE

(IS TERHINATED BY A 1
12

(NON VALID DIGIT 1
13
14

BEGIN 1+

SWAP IBASE? *
R > + SUAP

15 - >
0
1
2 NOTE . *

CONVERTS A CHARACTER STRING TO A *
EITHER USING CURRENT BASE
NUMBER VALUE. *

OR IMPLICIT (TEHPORARY) HEX BASE
FORMAT IS *

OPTIONAL LEADING - SIGN *
FOR CURRENT BASE,
LEADING S SIGN FOR IMPLICIT HEX BASE *

- >

QUIRKS ARE *
ONLY LAST 4 DIGITS OF HEX/IMPLICIT HEX*

OVERFLOU NOT CATERED FOR DECIMAL BRSE

*
*.

*

BASE IS RELEVANT, * *

* *
ON ENTRY, *
ON RTNr * PSUl = START ADDRESS OF STRING *

PSWl = CONVERTED VALUE *
ABORTS IF NOT A VALID NUMBER *

. I - >

I GEB GfBBT?CHARACTER 1 ,
(- YES.)

)
IF DROP

(WORD IS 5 7 DUPLiCATE C@ 1 =
(- YES, EReOR) IF QUESTION
(ABORT) V E N
(HEX NUMBER 0 1 16 f
(- NO, - SIGN 3)

B8Ft f EWf€ &;4'@
3
4
5
6
7
El ELSE OZD = DUPLICATE

THEN
9 BASE' (CURRENT BASE)

! O

0
1
2
3
4
5
6
7
B
9

10
11
12
13
14
15

IBASE=
ROTATE +
(NUMEER)
CC $20 -
IF QUESTION
THEN
SWAP
IF NEGATE
THEN

(ABORTS)

11
12 NOTE PSWl = BASE/S-BASE, 10116 *

* i 13 PSWZ = LEADING SKIP COUNT, 0 / 1 FOR 5 AND - *
14
15 PSU4 = START ADDRESS OF UORD STRING

PSW3 = MINUS SIGN INDICATOR. 011 FOR - *. - >

SAVE BASE TO USE)
ADDRESS OF 1ST DIGIT)
CONVERT DIGIT STRING)
DIGIT STRING ENDED)
BY A SPACE CHAR. ?) - NO, ERROR)

NOT A NUM5ER)

SIGN ADJUST FOR)
A NEGATIVE VALUE)

(Listing Continued)

Volume V, No. 1 21 FORTH Dimensions

PWSlOlO 8 Bit CPU Card (6801), 8K FORTH Firmware
6K €EPROM, 2K RAM, 16 l l L 110, RS 232C, programma-
ble timer, 2K monitor, 8K FORTH firmware includes: edi-
tor, assembler, high-level interrupt linkage and
communications protocol.

PWSlO80 16 Bit CPU Card (68008) 16K FORTH Firmware
2 K or 8K EEPROM. 8K RAM. RS 232C. 4 Dro-

PWS2030 Expansion Memory Board, JEDEC standard
memory sockets
Maximum of 64K EEPROM, EPROM or RAM.

PWS3010 Color Video Graphics Card (719918)
8K FORTH graphics firmware, 256x192 pixels, 15 color
graphic RS 170 video output, 16K video RAM, ability to

GENLOCK to external video. JEDEC Stan-
dard socket for additional firmware

PWS9010 STD BUS Card Cage
6 Slots, mother board, integral
power supply, 5 volts a t 6 amps 2

NEW
grammable timers Non-multiplexed
memory expansion and waitstate gener-
ator 16K FORTH firmware includes moni-
tor, editor, assembler, high-level
interruDt linkase and communica-

FORTH 12 volts a t 1 amp, on/off and cir-
cuit breaker switch.

tions protocol. -

PWS2010 Interface Card, 8K
extended FORTH firmware
2 16-bit I/O ports, compatible
with industry standard optical
isolation boards, battery back-
up calendarand clock, 2 28-pin
JEDEC standard memory sock-
etsfor2Kor8KCMOS, NMOSor
EPROM memories, software
readable 8-bit switch. Firm-
ware options: P-FORTH Stan-
dard Utilities, P-FORTH PLC
with Ladder Diagrams or P-
FORTH Multi-Tasking.

PWS2020 Interface Card
2 16-bit I/O ports
Compatible with industry
standard optical isolation
boards.

CARDS&
STUFF

We’re racing into tomorrow to give you
a new family of control system prod-
ucts today. Our innovative FORTH team
continues to introduce versatile, pow-
erful and unique firmware with impor-
tant advantages: low cost system
development, interactive FORTH Ian-
guage to speed software creation, EE-
PROM nonvolatile memory and STD
BUS interfacing. Look through our new
FORTH firmware, we know you’ll discov-
er an application for your current or
future projects. For samples, docu-

CUSTOM MADE BOARDS
We will custom make boards to
your exact application if none of
the aforementioned boards
meet your needs.

CONSULTING
Our FORTH Team people are ex-
perts in FORTH based application
development and are excited to
be able to share their special
knowledge with you on a person-
al basis.

watch for new products to come
in 1983

5190 West 76th Street
Minneapolis, MN 55435

P€OPl€ w RR€
/YIT€MI INC.
(612) 831-0827 * T W X 910-576-1735

22 Volume V, No. 1 FORTH Dimensions

memory space. Four words are
generated as follows

address of VAR= (A =)
address of VAR? (A?)
address of Word CONSTANT (AS)
address of data variable

The third and fourth words gener-
ated are the code for VAR AS. This dis-
cussion refers to a ROMable system.
That is, the program code space is
separated from the variable space.
Hence the fourth word generated is an
address, and not the contents as in
most FORTH systems of the data vari-
able.

The code for VAR? need only fetch
the 16 bit word contents from a data
address as given by a pointer which
lies two words from where the code
was called. The code is to end after
popping the top word off the return
stack. The code for VAR= is similar.

Secondly, the dictionary should be
separated from the generated code in
order to implement the code for VAR
and vAR?. The multiple dictionary
entries can be implemented as follows:

of the source program between M-VAR
and A.

WORD is used to scan the source
Word A into a buffer area HERE in
some FORTH systems); this buffer
contains a one byte count (e.g. Word
size of 3 for XYZ) followed by the
characters of the name (e.g. XYZ).

Adjust the buffer to the required
name, e.g. add one to the count, insert
the ASCII character = after the name.

CREATE is used to create the
dictionary; supply other fields (such as
code address) as required for
completing the dictionary entry.

Restore IN and repeat the process
two more times to obtain the names

A listing of an implementation is
given (see listing 2). Unfortunately,
this will not work as is for a fig-
FORTH system. No attempt has been
made to supply a compatible listing as
the implementation details of fig-
FORTH are not familiar.

The listing applies to a system which
scans all Words into a fixed buffer

area rather than a changing HERE.
the dictionary is automatically

separated from program code
(ROMable version) rather than
preceding program code.

I IN is saved; IN points to the position

A = A? AS.

,

L I S T I N G 2: DATA STRUCTURE
VS2.0 JAN 83 PAGE- 1

L ISTING FOR DATA STRUCTURE ___________-________--__-- SCR..l 0 NOTE
1
2
3
4
5 FRON GENERATED CODE

THIS SYSTEM ALREADY SEPARATED DICTIONARY

6
7 CONSIDER

S l ! AS
8 I @ AS y

10 BUT DEALS UITH THE DICTIONARY (AND NOT CODE) SPACE
11
12 FOR DEFINITIONS OF YORDS USED SEE
13 CALTECH FORTH NANUAL - SECOND EDITION JUNE. 1978.
14
15 - >

S C R . . Z 0
1
2 NOTE
3 = 3 FOR ARRAY
4 PSUZ = ? OR = OR S OR L
5
6 ADJUSTS A DICTIONARY NAME
7
8
9

10
11

PSUl = 1 FOR ITEH

NOT A UORKING EXAHPLE - CONCEPTUAL IDEA ONLY .
->

SCR. . 3 f : ADJUST;I[& N T @ @ 4 + (ADD. OF LENGTH FLD)
(LENGTH I N ti.S.8. 1 DUPLICATE l@

DUPLICATE 4 BRING 8 LSHIFT + (NEU LENGTH I N MS8)
(CHANGE LENGTH FLD)
(NEXT NAME POSITION) -8 LSHIFT + 1+
(YHICH NAME TYPE?)

(AND SUPPLY I)
(FOR INSERTION)
(INSERT X OR I)

2
3
4 3 BRING l !
S
6
7
8
9 THEN

10
11

suw 1-
I F SUAP $5800 OR OVER l ! (- ARRAYrINSERT CX)

2+ S5D SUAP

!MAP 8 LSHIFT SWAP l !

12
13 ->

SCR. .S 0 NOTE CCREATEI I S THE ACTION FOR CREATE
1 BUT CREATE I S INMEDIATE

UHILE CCREATEI I S NON IMMEDIATE 2
4"
5
6
?

THE SAtiE RPPLIES TO CCONSTANTI
C VAR 3
CCVARI
[ARRAY I .

SCR. .G 0 NOTE CODE ADDRESS IS NOT SUPPLIED
SINCE THIS SYSTEM ALREADY
SEPARATED DICTIONARY FROM GENERATED CODE.

1
2
3
4
5
6
?
a
S : CREATEX

10 I N @ CCREATEI I N ! (CREATE NAME)
11 CDJUST-NAME
12
13
1 4
15 ->

SCR. .7 0 : CREATE-ITEM
1 CREATEX
2
3
4
5 : CREATE=
6
7
8 : CREATE?
9 i 3F CREATE-ITEH

10
11
12 : ADJUST-ADDRESS-ITEH-NAMES
13 t 2 4 1 ADJUST-NAHE
1 4
15 ->

i 3 D CREATE-ITEH (S3D I S HEX 3D FOR A S C I I =)

(GIVES S 1

(Listing Continued)

: ume V, No 1 23 FORTH Dimensions

interpretation is by calls to
subroutines rather than threaded
code. There is no code address
generated for COLON (:) or SEMI (;).

variable/RAM memory space is
au tomat ica l ly separated f rom
program code (ROMable version)
rather than intermixed with program
code.
Record Structure

Using the same technique as for
data structure, a COBOL-like
structure for contiguous memory
space is easily implemented. Data can
then be described as items or arrays of
word, byte, bit(s), string or decimal.
FORTH systems with program code
space separated from the variable
space (ROMable system) a re
particularly suitable for inclusion of
such a record structure.

The record structure implemented
consists of about 2K bytes of
compiling code and 4K bytes of
program code (ROMable code). This
does not include dictionary space.

Spically citing A? or A = for a
record structure involves an executive
speed of between 4 to 6 times that of
the Word + . The increase in execution
speed due to runtime interpretation is
found to be negligible for applications
on Motorola M6800 and M6809
processors at IMHZ. A typical
application program would be
reasonably interrupt intensive, VDU
display orientated and consist of over
6 4 K bytes of ROMable code.
Dictionary space, while heavily used,
is not included in the target
application.
Implementation Details

A record data structure is described
internally by

the address of an executable
environment pointer.

the relative offset position from the
start of the record structure.

the internal encoded description of
the data structure.

An environment pointer is allocated
when a record header definition
appears in the source program. All
data structures within a record refer to
the same environment pointer which
may be switched by context or
executed as required while the
program is running.

The relative offset position is
determined by the data structures

LlSTING 2: DATA STRUCTURE
US2.0 JAN 83 PAGE- 2

SCR..E 0 : CREATECXI
1 CREATEX ;
7 : CREATE-ARRAY 3 CREATECXI !
: CRERTEC=j

6 13D CREATE-ARRAY
7
9 i3F CREATE-ARRAY

r n

8 : CREATE[?;

)
)

."
(PSWl = LIRIT 1 1 : CREATErLi

12
13 14C 3 ADJUST-NARE
14

IN @ OVER [CONSTANTI IN ! (CREATE NARE

SCR..9 0 NOTE RAY NEED ONE MORE WORD
1 DEPENDING ON UHETHER 'NEXT' INTREPRETATION IS
2 PRE- OR POST- INCREMENTr
J

USE NACHINE CODE FOR SPEED 1!
6 EXAMPLE FOR M6809 PROCESSOR
7 MID JSR/RTS SUBROUTINE CALL IS
8 PULS x
9 LDD C3,Xl SUBROUTINE CALL IS 3 BYTES
10 PSHU D PUSH INTO P-STACK
1 1 RTS DOUBLE EXIT
12 FOR DO-VAR?
13
1 6
15 ->

SCR..lO 0 NOTE LEAVE OUT THE WORD C (NOT POINTED TO)
1 FOR A NON RORABLE SYSTEH
2
3
4
5

EG: R > zt e
FOR DO-VAR?

SCR..11 0
1 : J
4 : DO-VAR?
5 R) zt e e
5
8 : DO-CVAR?
9 I?> 2t e ce

10
1 1
12 : DO-ARRAYC?I
14
15 - >
13 p zt e + ce

2+ FOR 2 BYTES AWRY 1
(EQUALS 1 WORD)

(4 t INSTEAD OF 2+ I
(FOR PTE-INCRERENT 1
('NEXT)

SCR..lZ 0 : DO-VAR=
2 ,
3
4 : DO-CVAR=
5
6

1 R > 4 + @ !

R' 4 t e C!
7
8 : DO-ARRAYC=l
9
10

R > 4 + e + C!

1 1
12
13
14
15 - >

SCR.. 13 0 NOTE MODIFY R-VAR M-CVAR R-ARRAY AS REQUIRED
1
2 SEPARATE DICTIONARY FROM GENERATED CODE,
3 SUPPLYING CODE ADDRESS AS REQUIRED
4
:: CHANGE ORDER OF ACTION

8
9

10
11
12
13
14
15 - >

LISTING IS FOR SYSTEM
UHICH ALREADY SEPARATED DICTIONARY FROR CODE

\ DO-VAR-
IS ERPLACING YHICH GENERATES THE CODE.

7

(Listing Continued)

FORTH Dimensions 24 Volume V, No. 1

following the record header
definition, their order, and the size of
each data item.

The internal description is an
encoded internal representation of the
data structure, and includes the
number of elements for array data.
During program execution, data
structures are interpreted for action
according to the internal description
and checked for range.

An example of a record structure
describing the FORTH dictionary is
given (see listing 3). This is one of
several different types of record
structure. This particular record
structure allows the description of the
record to be switched to any entry to
be cited by name. This is useful to
describe linked lists, queues, tables,
etc. TWO examples of using this record
structure are given.

Example 1
To read the next dictionary entry use

the statement
LINK-ADDRESS? DICTIONARY-ENTRY$
READ-PICTURE-RECORD

When LINK-ADDRESS? is cited the
contents of the link field is placed on
top of the stack. When DICWONARY-
ENTRYS is cited the address of the
record data structure is placed on top
of the stack. When READPICTURE-
RECORD is cited the environment
pointer is switched by context. Since
the address of the environment pointer
is the first word of the internal record
data structure the code for the switch
by context is simply

:READ-PICTURE-RECORD @ ! ;

Whenever LINK-ADDRESS? is now
cited the contents of the new link field,
and not the previous link field, will be
accessed.

Example 2
To invert the precedence (or

immediate) bit, use the statement
PRECEDENCE-BIT? NOT

PRECEDENCE-BIT =
When PRECEDENCE-BIT? is cited,

“bit 7” is placed on top of the stack at
bit 0 with the high order 15 bits all
zeros. This effect is referred to as
transformation; that is, conversion of
data types occurs automatically when
data is cited by name. This can be
simply illustated if PRECEDENCGBIT

(Continued on page 33)

LISTING 2: DATA STRUCTURE
VSZ.0 JAN 83 PAGE- 3

SCR..lS 0
1
2 : M-VAR IMHEDI ATE
3
4
5 IVARI ADJUST-ADDRESS-ITEH-NAMES

CREATE. \ DO-VAR=
CREATE? \ DO-’JAR?

!
8 : M-CVAR IRflEDIATE
9 CREATE= \ DO-CVAR.
10 CREATE? \ DO-CVAR?
1 1 !CVARl ADJUST-ADDRESS-ITEH-NAHES
12
13
14
15 - >

SCR..l6 ?
$: M-ARRAY IRHEDIATE
3 CREATECL 1
4 CREATE[=] \ DO-ARRAY[.]
5 CREATE[?] \ DO-ARRAY[?]
6 !ARRAY1 $24 3 ADJUST-NAHE
7
E

LISTING 3: EXAMPLE OF RECORD STRUCTURE SHOWING FORTH DICTIONARY

SCR.. 1

SCR. .2

SCR. .3

SCR. . 4

VSZ.0 JAN 83 PAGE- 1

0 NOTE EXAHPLE OF RECORD STRUCTURE
1
2 RECORD DESCRIBES FORTH DICTIONARY
3 NAXIHUM ENTRY SIZE IS S H O W
4
5 THIS RECORD STRUCTURE
6
7
8
9
10
1 1
17
13
14
15

0
1
2
3
4
5
!
8
9
10
11
12
13
14
15

31 M-X(.)

0 M-PICTURE-RECORD
1
2 M-1(16)

R-I (16) :

DOES NOT ALLOCATE flEMORY SPACE.

COBOL EGUIVALENT

DICTIONARY-ENTRY (RECORD HEADER)

LINK-ADDRESS (16 BIT FIELD
CODE-ADDRESS

31 M-l(E)-ARRAY
M-REDO

li
!A

NAME-ELEHENTTLI
H-X(.)

i5
14
15 M-END-RECORD

(5 BIT FIELD) H-1(5) LENGTH-OF-NAHE
M-FILLER-1(1) (SPARE BIT 5)

(SPARE BIT 6)
PRECEDENCE-BIT (BIT 7)

NAHE-ELEMENT (31 BYTE ARRAY)
NAHE-ELEMENTCJI (REDEFINE NAHE)

(AS 31)
(CHARACTER)
(STRING) NAME

(RECORD TRAILER)

5
6
7 H-FILLER-l(l)

0
1
2
3
4
5
6
7
8
9
10
1 1
12
13
14
15 End Listing

Volume V, No. 1 25 FORTH Dimensions

80801280 FIG-FORTH for CPIM & CDOS systems
FULL=SCREEN EDITOR for DISK & MEMORY

$50 saves you keying the FIG FORTH model and many published FIG FORTH screens onto diskette and
debugging them. You receive TWO diskettes (see below for formats available). The first disk is readable by
Digital Research CP/M or Cromemco CDOS and contains 8080 source I keyed from the published listings of
the FORTH INTEREST GROUP (FIG) plus a translated, enhanced version in ZILOG 280 mnemonics. This
disk also contains executable FORTH.COM files for Z80 & 8080 processors and a special one for Cromemco
3102 terminals.

The 2nd disk contains FORTH readable screens including an extensive FULL-SCREEN EDITOR FOR
DISK & MEMORY. This editor is a powerful FORTH software development tool featuring detailed terminal
profile descriptions with full cursor function, full and partial LINE-HOLD LINE-REPLACE and LINE-
OVERLAY functions plus line insert/delete, character insert/delete, HEX character display/update and
drive-track-sector display. The EDITOR may also be used to VIEW AND MODIFY MEMORY (a feature not
available on any other full screen editor we know of.) This disk also has formatted memoryand I/O port dump
words and many items published in FORTH DIMENSIONS, including a FORTH TRACE utility, a model data
base handler, an 8080 ASSEMBLER and a recursive decompiler.

The disks are packaged in a ring binder along with a complete listing of the FULL-SCREEN EDITOR and a
copy of the FIG-FORTH INSTALLATION MANUAL (the language model of FIG-FORTH, a complete glossary,
memory map, installation instructions and the FIG line editor listing and instructions).

This entire work is placed in the public domain in the manner and spirit of the work upon which it is based.
Copies may be distributed when proper notices are included.

0 FIG-FORTH & Full Screen EDITOR package
USA Foreign

AIR
Minimum system requi remen ts:
80x24 video screen w/ cursor addressability
8080 or Z80 or compatible cpu
CP/M or compatible operating system w/ 32K or more user RAM

0 8" SSSD for CP/M

0 8" SSSD 0 8" SSDD 0 5%"SSSD 0 5'h" SSDD

0 8" DSSD 0 8" DSDD 0 5%'' DSSD 0 5%" DSDD

Select disk format below, (soft sectored only). $50 $65
(Single Side, Single Density)

Cromemco CDOS formats, Single Side, S/D Density

Cromemco CDOS formats, Double Side, S/D Density

Other formats are being consldered, tell us your needs.
0 Printed Z80 Assembly listing w/ xref (Zilog mnemonics) $15

TOTAL $- -
Price includes postage. No purchase orders without check. Arizona residents add sales tax. Make check

$18
0 Printed 8080 Assembly listing ... $75 $18

or money order in US Funds on US bank, payable to:
Dennis Wilson c/o
Aristotelian Logicians
2631 East Pinchot Avenue
Phoenix, AZ 85016
(602) 956-7678

FORTH Dimensions 26 Volume V, No. 1

More on
Data Bases

Lindsay Doyle

I learned a lot from Robert Wat-
kins’ article, “The Indexer” in Vol.
IV, No. 5 . However, I suspect that the
degree of familiarity he assumed his
readers would have with information-
retrieval techniques may have made it
difficult for newcomers to the field to
grasp the concepts he was presenting.
Also, readers should not assume that
the bit-mapped approach he used is
the only one or even necessarily the be-
st one for solving his problem. On a
rhird point he implies, it seems to me,
that keywords can be added indiscrim-
nately at any time to such a system,
H hich is not the case. I would like to
darify these three points and perhaps
a few others as well in the hope that
the results may be helpful both to
other readers and to Watkins in the
further development of his system.

In the type of information retrieval
system under discussion, records may
consist of data held in computer
storage or (and this is a significant
point not mentioned in the referenced
article) they may be physical
documents such as books, catalogs,
magazines, file folders, coins in a
collection, etc. On acquisition (i.e., at
:he time it is entered into the file) each
record is given a sequential record
number and is characterized by
selecting one or more keywords which
describe its content or other aspects of
significance to users. To retrieve such
a record, the user selects keywords
H hich he thinks will describe the
record or type of record he is
nterested in and links these keywords
isith the logical operators AND, OR,
AND NOT, and OR NOT. The system
returns all records which fulfill the
specifications. O the r logical
Jperators, not provided in Watkins’
system, are also possible, such as
< , > , EARLIER THAN, LATER THAN, etC.

The ideal situation is one where the
Frson who designs the keyword list is
also the only user of the system: where

others use it, the question of personal
interpretation and preferences on
keywords may arise. In either case, it
is important that the keywords used be
taken from a previously constructed
list which has been carefully inspected
to make sure that it contains no
synonyms or unintentional overlaps of
meaning. If, when record number
loo0 is being entered, a new keyword
is invented to cover some apparently
novel feature of that record, who is to
say whether that feature exists,
previously unrecognized, in the first
999 records? The only valid way to
add a new keyword to the system is to
review all existing records in the file to
see whether it applies to them. This
can also become a problem when the
user’s interests change. If I suddenly
become interested in lasers, it does
only a small amount of good to add
the word “laser” to my list of
keywords for indexing magazine
articles, for only future articles will
have that keyword applied unless I go
back and review my entire library of

DESIRED

potential laser-article-containing
magazines and re-index them.

Watkins describes optical incidence
or “peekaboo” cards where there is a
card for each record and punch-hole
positions on each card corresponding
to all keywords, the positions
corresponding to selected keywords
being punched, the others not. The
system he then implements is not the
analog of this, which may have caused
some readers to be confused. His
system is the analog of an inverted file
system, where there is a card for each
keyword and punch-hole positions for
each record. Such systems find limited
use in their manual form because the
number of punch-hole positions one
can put on a reasonably-sized card is
very small, thus limiting the number
of records one can index. The
computerized version has the
advantage that the number of “punch-
hole positions” (1’s and 0’s stored
with the keyword) can be extended as
far as one wishes. This system, which I
shall refer to as the bit-mapped

COnBININQ

RECORD NOS.

RAVGW

M R T I I W
______.

KEYWORD
FILE

WTPUT
RECORD

1 jl::::::::::: 1
2s6 0010oO01010

INDEX FILE
OR BIT I”

SELECTED F7
RECORD
NO. DATA

1 X X X X
2 YYYY
3 zzzz
4 -
s u u w)
6 XYXV

1024 w w y

200.125.8
134.130,10,6
250,220. 100
250,220,99,6
25.20.18.7
50.4O.ZS.B

DATA
FILE

Fig. 1: Bit-Mapped Clpproach.

FORTH Dimensions .I .-ne V, No 1 27

approach, is shown in Fig. 1. It
requires three files to be maintained:
the keyword file, the index file or bit
map, and the data file. Watkins chose
to include the keyword numbers for
each record number within the record
data, but as he points out, this is not
required but is done to give a bit of
redundancy in the event of damage to
the bit map.

There is an improvement one can
make both to the manual inverted card
file system as described and to its
computer equivalent. I don’t know
whether this has a name or not. It no
longer allows the use of “peekaboo”
detection in the manual case, but is
very easy to implement in the
computerized case. As before, there is
a card for each keyword. Instead of
the area of the card being mapped out
in bits, one for each possible record,
the selected record numbers are simply
written on the card in increasing
numerical order. Now the card area is
being used much more efficiently. To
say it another way, when a new record
is to be added to the file, the desired
keyword cards are removed from the
card file and the new record number is
added at the end of the list of record
numbers on each card. This system,
which I shall refer to as the coded
record number approach, is shown in
Fig. 2. It only requires two files and,
as indicated by the broken line, the
keyword file is open-ended.

Previously the maximum number of
records that the entire file could hold
was dictated by the number of
dedicated punch-hole positions on any
one card or the number of bits allowed
per keyword in the computer version.
Now the number of records the file
can hold is no longer limited by the
number which can be put on a card,
but will be controlled by other system
parameters. Clearly it is no longer
possible to have a keyword which
references every record, but such a
keyword is useless in any case. The
question now becomes: what
percentage of the total records should
one keyword be able to reference? My
guess is that the answer is in the range
of from 5% to lo%, and that
keywords which reference more than
this need to be retired or broken down
into multiple, more-specific, new
keywords.

Let us examine my statement above
that “the card area is now being used
more efficiently” as it applies to the
computer version. Instead of
allocating to each keyword one bit for
every possible record, we must now
encode the selected record numbers
and record them with the keyword.
The coding scheme used will define the
maximum number of records the
system can hold as well as the number
of records which can be noted in a
given-sized coding area against one
keyword. If, for a first example, we
limit ourselves to the same sized
coding area that Watkins selected,
which was 1024 bits or 128 bytes per
keyword, some of the possible coding
schemes are shown in Table 1.

The idea of being able to index 64K
different records on a micro is very
interesting. On the Commodore
products, with which I do most of my
work, there are 256 different symbols
available counting graphics or their
lower-case equivalents and reversed-
video versions of everything. It is
therefore possible to represent 16-bit
numbers as two characters. A screen
in the FORTH I use contains lo00

[- z q
DESIRED

KEYrmRDS v
MARTICIN

CHITPUT <GI

instead of 1024 characters, but let us
stay with 1K which is more common.
If we allow each keyword’s record list
to occupy one whole screen instead of
only 128 bytes as in Table 1, what sort
of performance can we get? Some
possibilities are shown in Table 2.

To take this sort of investigation one
step further, let us look at the case
where the maximum number of
records is the same for bit mapping
and for two-byte coding. This occurs
when 8192 bytes are allotted, and is
shown in Table 3.

The penultimate cognitive jump to
make is to realize that in any of these
schemes the bit-map approach must
have the total dedicated space assigned
at all times. The coded versions,
however, and taking case L as an
example, may start with e.g. one
screen per keyword and add extra
screens by chaining as required, but
only on those keywords which require
it: i.e. it is not necessary to predict
how many records per keyword one
may end up with. One can tentatively
conclude that the bit-map approach is
suitable for small files which will not
be called upon to expand beyond the

COnBINI NO

128,200,300,357,429,666,1562
200.201,201,325,456,1589.1590
lI50O,523,677.2345,24M, 2560
2,3,4,12e, 1566.2000.3489
333.345.679S.&800,492S,6926

KEYWORD
F I L E

[BELECTEDI

NO. DATA 3 j
....

1024 w y w

MITA
FILE

Fig . 21 Codrd RmcDrd Numbrr Approach.

FORTH Dimensions 28 Volume V, No. 1

originally-allowed-for limits, but that
the coded approach has advantages
where long files are concerned. I have
not attempted to compare search
techniques for the two, but would
point out that the new words >AND,
>OR, etc. developed by Watkins are
not needed in the coded approach, as
we are simply comparing pairs of
16-bit numbers, which can be done
with the primitives >, =, and < .

My final contribution is the thought
that in systems for indexing physical
libraries, where we are dealing only
with the record number and do not
have to store the record data, the use
of 16-bit numbers, expressed as two
characters means not only that there is
no longer a data file in the sense used
by Watkins but also that a library
containing up to 64K documents can
be completely indexed for multiple-
keyword retrieval on a few 5 ” disks. Is
anybody doing it?

-Lindsay Doyle is
a frequent contributor t o
MicroComputer Printout and other
British microcomputer publications.

BITS/ RECORDS/ M A X I W M
RECORD KEYWORD RECORDS -

A 1 1024 1024
B 8 128 255
c 12 85 4096
D 16 64 65535

X OF MAX
/KEYWORD

100
50
2
0.1

COMMENTS

BIT MAP
NOT AS OOOD
Hnn
wow!

TABLE 1: 128 bytes per keyword w 8 keywords per screen.

BIT MAP
1024 255 POINTLESS
682 4096 17 INTERESTINO

0. 8 WOW !

Table 2:

BITS/
RECORD

12
L 16

1024 bytes per keyword or 1 keyword per screen.

RECORDS/
KEYWORD

65536

4096

 MAXIMUM^ RECORDS x1;; /KEYWORD wx
_____ -I__--

65536
255 >lo0
4096 >lo0
65536 6+ -

Table 3: 8192 bytes per keyword or 8 screens.

COMMENTS

BIT MAP
PO I NTLESS
PO I NTLESS i IN SUQESTED RANOE

1 proFORTH COMPILER
8080/8085,280 VERSIONS

SUPPORTS DEVELOPMENT FOR DEDICATED APPLICATIONS
INTERACTIVELY TEST HEADERLESS CODE

MULTIPLE, PURGABLE DICTIONARIES
IN-PLACE COMPILATION OF ROMABLE TARGET CODE

FORTH-79 SUPERSET
AVAILABLE NOW FOR TEKTRONIX DEVELOPMENT SYSTEMS - $2250

2 MICROPROCESSOR-BASED PRODUCT DESIGN
SOFTWARE ENGINEERING

ELECTRONICS AND PRINTED CIRCUIT DESIGN
PROTOTYPE FABRICATION AND TEST
REAL-TIME ASSEMBLY LANGUAGE/proFORTH
MULTITASKING
DIVERSIFIED STAFF

DESIGN STUDIES - COST ANALYSIS

Volume V, No. 1 29 FORTH Dimensions

Paying the Piper
llm Problem: Metal pipes cannot be manufactured with-
out flaws. When exposed to high pressure and temperature,
such flaws gradually deteriorate and eventually fail.
Metal pipes are used in Nuclear Power Plants.

The Solution: Zetec Corporation devised a technique
with which flaws in installed piping can be measured and
analyzed, allowing for safe operation and life cycle
maintenance of the large piping systems necessary in
nuclear power plants.
The technique involves pushing a probe through the pipe.
The probe emits vibrations which produce Eddy currents
between the prohe and the walls of the pipe. Flaws cause
abnormalities in the frequency of the Eddy currents which
are detectable by coils in the probe. This data is recorded
onsite on an 8-channel analog data recorder and
evaluated offsite by ZETEC personnel.
The Analog Data is read from the type, converted to
digital, and analized by a Hewlett Packard Model 9836
68000 based computer running Multi-FORTH. The HP
9836 features built-in disc drives, an 80 x 24 alpha151 2 x
390 graphics CRT, HPlB interface and up to 2%
megabytes of RAM. Multi-FORTH provides a Real Time
Multitasking programming environment. On the right is a
graphics screen dump of a flaw. Note that the two
columns on the left are a strip chart window into the much
larger data base (in excess of 1 Mb of data). The current
display shows a section of data recorded on Channel 1 at
400 kHz. The active channel and display mode are
selected on the right side of the screen. Channel
frequency, span of sample, and phasing rotation may be
modified through a simple sequence of soft labeled special
function keys.
The data in the small window in the far left most column is
expanded in the lower center window, and the view size
may be increased or decreased by the operator. The
center upper window is an XY plot of the data in the
expanded strip chart below. All windows are continuously
refreshed in real time as the operator scrolls through the
database. The "fuzzy balls" in both center windows are
the result of a least squares fit on the data and further
indicate the point of maximum deflection.

The results indicate 97% through wall flaw in the pipe at
49 degrees, at location 4280 in the pipe. Obviously this
pipe is not in service.
Two mixer channels are provided to differentially remove
the effects of structural supports for the pipe so that flaws
under such supports may be detected.
Under Multi-FORTH the strip chart windows, tape control
and analog to digital conversion, and analytical functions
operate as multiple background tasks, while the operator
interface operates in the foreground, i.e., the strip charts
may be scrolling up or down through the database while
the operator is selecting channels, viewing data, or
initiating computations

We think that Lloyd Lamb and Howard Houserman of
ZETEC deserve a lot of credit. After attempting this
application with HP Basic (an unusually fast Basic at
that), they stopped after three months due to insufficient
display performance. The project was converted and
completed in Multi-FORTH in about 1 ' /z months. While
both men are acknowledged industry experts in Eddy
current technology and data acquisition, neither has had
extensive training in computer science.

Gentlemen, we salute you. (And boy are we proud!)
MULTI-FORTH IS AVAILABLE ON ALL HEWLEll
PACKARD SERIES 200 COMPUTERS (9816, 9826,
9836) AND MOST68000 SINGLE BOARD COMPUTERS:
KDM, VMOl, VM02, OB68K-1, BRI, EXORMACS,
VMEllO, ENG696, DUAL. FOR MORE INFORMATION
GET IN TOUCH WITH US.

Creative Solutions ~nc.
) 11 (Problem Solving For Business and Computer Applications

4801 Randolph Road Rockville, MD 20852
Phone (301) 984-0262

FORTH Dimensions 30 Volume V, No. 1

New Product Announcements

METACRAFTS FORTH
FOR APPLE Ill lle

Metacrafts Limited announces the
release of Metacrafts FORTH V1.2
for Apple 111 IIe computers with 48K
RAM and at least one Disk I1 drive.

The system, which runs the Byte
prime number benchmark in 164
seconds, includes: 79 Standard
required word set; double number ex-
tension; CASE; strings; arrays; on-
stack local variables; vocabulary
stacks; dictionary overlays; heap
store; block buffer control; hi- and
lores graphics (including turtle
graphics); I/O execution vectors; mac-
ro assembler; full-screen editor with
“undo” and “syntax-check” features;
interactive source-level debugger; in-
telligent multi-block copy; memory
dumper; threaded code decoder;
paginated printer output; screen IN-
DEX; and OUTLINE words. Support
for 40180 column display; language
card; and multiple disk drives. l00+
screens of source code for upper levels
of system. 170-page User’s Guide
(assumes knowledge of FORTH).
Price: 57940 (+ 15% VAT in UK) in-
cludes shipping. Manual only, €8,00.
Information leaflet available. Dealer
inqui r ies welcome. Con tac t :
Metacrafts Lts., 144 Crewe Rd.,
Shavington, Crewe CW2 5AJ,
England. Phone: (0270) 666274.

FORTH COMPUTER
This C-MOS Eurocard module gives

faster software and hardware develop-
ment times than assembler level pro-
gramming. Software costs in in-
dustrial applications cannot be amor-
tized over the large quantities as-
sociated with personal computers and
electronic games. This C-MOS
embedded computer card aims at
resolving this problem by including
FORTH high level language program-
ming and developmental facilities.
Using FORTH rather than machine
assembler gives a fast reaction time to
market opportunities. Production pro-
ducts use the same board as employed
in the prototypes.

No microprocessor development
system is needed since the card con-
tains a screen editor working with

simple visual display units (VDUs). It
also has the compiler for the FORTH
source code. Debugging is inherent in
the FORTH language and once the
code is working, this can be output to
a PROM programmer.

Use of C-MOS throughout has
brought the power consumption down
to 28mA, making the TDS900 espe-
cially suitable for portable and
battery-driven applications. The
TDS900 price is 5179.95 and in
hundreds versions are available at €87
- €120. In the U.S. the FORTH
Computer is available from Stynetic
Systems Inc., Flo werfield, Bldg. I ,
Saint James, N Y 11780 (516)
862- 7670.

Extensible Text FormatterlEditor
QTF + is a powerful documentation

tool, ideal for technical writing and
documentation of FORTH programs.
The formatter features string and for-
matting macro defining capability;
justification; centering; tabbing;
hanging indent; automatic page and
chapter numbering; page headers and
footers; soft hyphenation; automatic
page number referencing to tables,
figures and topics elsewhere in your
document; and formatting of FORTH
screens, as well as full utilization of
the Epson printer fonts, underlining
and boldface. The cursor-controlled
wrap-around text editor offers insert,
delete, replace, and string-move. Au-
thored by Leo Brodie. Requires IBM
PC with 64K running Laboratory Mic-
rosystems’ PC/FORTH. Available for
$50.00 from: Laboratory Microsys-
terns, 4147 Beethoven St., Los An-
geles, CA 90066.

LOOK-SEE
The SOFT-WRIGHTS ’ new screen

design package FORTH LOOK-SEE
provides a model for the design of
screedmenu input for FIG 8080
FORTH. LOOK-SEE allows the user
to design screedmenu input in a man-
ner that is similar to the way the
screen/menu is to look to the user.
This provides extreme ease in the
des ign /ma in tenance /upda te of
screedmenu driven programs in
FORTH, thus reducing costs and
design change turnaround time.

Cost: $10.00 postpaid in the U.S.
Comes as a listing with a clear concise
user manual. LOOK-SEE utilizes user

screen I/O. Contact: THE SOFT-
WRIGHTS, 840 Van Ness #107, San
Francisco, CA 94109

FORTH-79 VER. 2 FOR 2-80
CPlM 81 APPLE USERS

MicroMotion has announced an ex-
panded line of formats available for
2-80 1.4 & 2.x users. These include
APPLE, Micropolis Mod 11, Vector
Grahics, Micropolis & Tandon, North-
Star, Cromemco, Heath/Zenith, Os-
borne I, Kaypro 11, Xerox 820, and
TRS-80 Model 11. Meets all provisions
of the FORTH-79 Standard. Base sys-
tem includes a screen editor, macro-
assembler, string-package, 3-bit in-
teger arithmetic and 200 page tutorial
and reference manual. Floating Point
available for all versions, HIRES for
APPLE & Northstar. $99.95-$139.95.
Contact: MicroMotion, 12077 Wil-
shire Blvd., #506, Los Angeles, CA
90025, 21 3 182 1-4340.

SOFTWARE WORKSHOPS IN
MMSFORTH

Miller Microcomputer Services
introducers a regular series of Boston-
area MMSFORTH Workshops on a
variety of topics and ability levels.

The schedule of offerings for the
remainder of the 1983 is as follows.

Level Cost Days Workshop

Introduction to Elem $250 2
MMSFORTH

Applications in Int $250 2
MMSFORTH

Database Design and Adv $950 5
Implementation

MetaForth & Other Adv $950 5
Advanced Topics

Forthwrite User Elem $150 1
Techniques

Datahandler User Elem $150 1
Techniques

Forthcom User Elem $150 1
Techniques

Schedules and further information
a r e ava i lab le f r o m Miller
Microcomputer Services, 61 Lake
Shore Road, Natick, MA 01760
(617/653-6136, 9 a.m. to 6 p.m.
Eastern Time Zone).

FORTH Dimensions Volume V. No. 1 31

A PREMIER OFFERING TO THE FORTH
COMMUNITY!

A limited number of R65FI 1 Microcomputer FORTH
Development System . at a special price. ..

k 1 0 0 mm

By the time you read this ad we should
receive our first shipment of production
R65F11 Microcomputers, the 6502 based
single chip microcomputers with the run
time portions of FORTH in ROM. This chip
features a complete FORTH based
operating system and is ideal for dedicated
microcomputer applications. Our board, the
NMIX-001 1, surrounds the R65F1 1 with
equally innovative circuitry that allows the
chip to be a complete FORTH development
system. (We call the board the "1 00
squared' for short, due to its extremely small
size). All that is needed to do program
development in FORTH is a CRT terminal or
microcomputer that speaks RS232 (seven
data, one start, two stoD bits).

Look for a complete
Eu ro card board line

coming soon -

The "1 00 squared features on board - Expandable to 16K bytes of external
rectification and regulation of power from a
9 volt AC or DC power source Terminals are
there if you prefer to use your own regulated
5V supply An on board DC to DC convertor
can provide negative voltage for the RS232
interface either way Address decoding is
accomplished by a bi-polar PROM that can
be replaced by the user if necessary A
standard development PROM decoder is
provided with the board Three JEDEC 28
pin sockets are provided which will accept

RAM'S 2016, 2128.5517, 6116
5564

EPROM s 2716, 2732, 2764
EEPROMs 2816A

R28 16A 2764'
The board can program in circuit

'requires additional VPP voltage supply
All this plus the powerful R65F1 1 which
features

- FORTH kernel in ROM
- Enhanced 6502 CPU
- 192-byte static RAM

16 bidirectional, TTL-compatible 1/0
lines (twoports. R65F11)

latched input
TWO 16-bit programmable counter/

- One &bit port with programmable

timers, with latches

memory
- Flexible clock circuitry
- 1 us minimum instruction execulion

- NMOS silicon gate, depletion load

- Single +5V power supply
- 12 mW standby power for 32 bytes of

the 1 %?-byte RAM
- 40-pin DIP (R65F11)

time 8 2 MHr

technology

We will be advertising very soon in the
major trade journals We anticipate demand
to be so great that this will quickly become a
limited availability item We wanted to offer it
first to the people that made the R65F1 1
possible. the people involved with the
FORTH Interest Group We are offering a
special order price of $220 00 This is $30
off our list price, but to reserve your board
WE MUST HAVE YOU ORDER NOW1 This is
a limited time offering1 ACT NOW

~~

Enclose Payment
Wifh Order To:

New Micros, Inc.
21 00 N. Hwv. 360
Suite 1607
Grand Prairie, Texas 75050

Telex 79-5551

- Ten interrupts

(214) 660-1 106

.

FORTH Dimensions 32 Volume V. No. 1

was described as decimal with the
structure ~ - 9 (1) which corresponds to
PICTURE qi) in COBOL. In this case
the data variable is either ASCII 0 or
ASCII 1 in memory while
PRECEDENCE-BIT? when cited places
binary 0 or binary 1 on top of the
stack. When NOT (or o =) is cited bit 0
of the top word of the stack is
inverted; the high order 15 bits are
irrelevant.

When PRECEDENCE-BIT= is cited bit
0 of the top word of the stack is stored
in ’bit 7’. The LENGTH-OFNAME field is
not manipulated even though
PRECEDENCE-BIT lies in the Same
memory byte.

FORTH the following is required.

4 + DUP C@ $80 XOR SWAP C!

To do the same in conventional

FETCH-ADDRESSOFLINK-FIELD

The following irrelevant code exists
the offset is required to be known

(4).
the address of the precedence bit is

required to be specifically calculated
(+ I .

the structure of the memory cell is
required to be known to be a byte (C@
C!) .

the position of the precedence bit is
required to be known to be in bit 7
($80).

the memory address is manipulated
on the stack (DUP SWAP).

Furthermore, the code is not self-
documenting; it is not obvious that the
precedence bit is inverted.
Conclusion

It is desirable to extend the FORTH
compiler. Experience shows it is viable
to adapt features from another
language to FORTH. This is best done
in FORTH source to allow portability
and could be implemented by runtime
interpretation for an increase in
execution speed.

Many areas of the FORTH compiler
need addressing to incorporate
language/operating system features.
With the availability of large
development systems for generating
target applications, falling memory
prices, and languages with an
increasing number of features, the
time may not be too far away when
very large compilers are readily
available. As to memory size for the
FORTH compiler, why not heed the
directive to “go forth and multiply”?

5th Annual
FORTH NATIONAL CONVENTION

FORTH- Based Systems:
A Look into the-Future

October 14-15, 1983
Hyatt Palo Alto, Palo Alto, California

Exhibits Equipment Demonstrations
Speakers Discussion Groups
Tutorials Worldwide FIG Meeting
Vendor Meetings Banquet
Panel Discussions Awards

FORTH is for everyone. The FORTH computer language is used in video
games, operating systems, real-time control, wordprocessing, spread sheet
programs, business packages, DBMS, robotics, engineering & scientific cal-
culations and more.

Learn about FORTH and make your life easier. The convention will show
you how!

FORTH-Based Systems: A Look into the Future i s the theme and will
cover FORTH applications, FORTH-based instruments and FORTH-based
operating systems. Those wishing to participate and be speakers and/or
panelists are urged to contact the Program Coordinator immediately.
(Telephone the FIG hotline 41 5/962-8653)

Convention registration i s $5.00. Special convention room rates are available at the
Hyatt Palo Alto. Contact FIG or the hotel and mention the FORTH convention.

The FORTH Convention is sponsored by the FORTH Interest Group (FIG). The
FORTH Interest Group is a nonprofit organization of over 3,800 members and 40
chapters worldwide, devoted to the dissemination of FORTH-related information.
FIG membership of $1 5.00/year ($27.00 overseas) includes a one year subscription
to FORTH Dimensions, the bimonthly publication of the group.
,11-1-11-111111111111-1-1-

0 Yes! I want to attend the FORTH Convention. Enclosed i s my check for

0 I want to be an exhibitor, please send exhibitor information.
0 Yes! I want to join FIG and receive FORTH Dimensions. Enclosed is my

check for $15.00 ($27.00 foreign).

for - pre-registered admission/s.

Name
Address
City
Phone (

Return to: FORTH Interest Group

State - Zip

P.O. Box 1105, San Carlos, CA 94070 415/962-8653

FORTH Vendors (Continued from page 43)

Metalogic Corp. Schleisiek, Klaus
4325 Miraleste Dr.
Rancho Palos Verdes, CA 90274
213/519-7013 West Germany

Eppendorfer Landstr. 16
D 2000 Hamburg 20

(040)480 8154
Schrenk, Dr. Walter
Postfach 904
7500 Karlstruhe-41
West Germany

Petri, Martin B.
15508 Lull St.
Van Nuys, CA 91406
2 13/908-0160

Redding Co. Software Engineering
P.O. Box 498
Georgetown, CT 06829

6308 Troost Ave. E l 0
Kansas City, MO 64131

203/938-9381 8 16/363- 1024

Softweaver
P.O. Box 7200
Santa Cruz, CA 95061
4081425-8700

Technology Management, Inc.
1520 S. Lyon St.
Santa Ana, CA 92705
714/835-9512

Timin, Mitchel
3050 Rue d’Orlean #307
San Diego, CA 921 10
61 9/222-4185

Volume V, No. 1 33 FORTH Dimensions

1

LEAST EXPENSIVE
FORTH SYSTEM AVAILABLE
MULTI-FORTH for the SlNCLAlR
ZX/81 (TIMEX/SINCLAIR 1000) BY
TREE SYSTEMS
Compiler Directive (not Interpretive)
Compilers (DO LOOP, IF ELSE THEN,
etc) need not be put in a definition to
run
Single user Multi-tasking
Event Scheduling (32 Bit clock, 2-yrs)

Schedu le w i th AT, IN, EVERY

maximum resolution 1/60th second
commands

Task Options:
LOCK, UNLOCK, START, STOP
Tasks can dynamically reschedule

Up to 10 tasks scheduled at one time
Tasks can be linked to run in the

Each task has its own 32 bit clock
Task execute according to priority
Wait execution in 31 deep event que

Unique Editor:
User defined split screens
Complete visual editor
Run editor while execution screen is
running program
Cursor oriented
Delete lines
Delete characters
Store line in pad
Insert line from pad
Automatic character insert
Compile Lines

Technical Information:
extremely fast,

themselves

background

run 300000 DO LOOP in 1 second.
(real time 32 bit clock with user

defined periods)
high priority task runs constantly

for detection of stack underflow.
has separate character stack, user

stack, and processor stack.
RESlDENTON64K EPROM. HOUSED
INSIDE YOUR ZX/81 SWITCH BE-
TWEEN BASIC AND FORTH RE-
QUIRES only 2K RAM TO OPERATE
Works with 16K and 64K RAM modules.
Turns the SlNCLAlR into:

excellent real time controller
home environment controller (tem-
perature zones, time zones).
real time data acquisition of analog
and digital signals.
even use it to control your model
railroad.
has DELAY Variables, and CLAMP
Variables as in most real t imecontrol
languages.

Complete instruction booklet describ-
ing the language and applications.

EPROM Extension $49.95
Complete System

(including Sinclair). $149.95
Prices include shipping.
Free information available.

Write to:

Tree Systems
Suite 233

3645 28th St.. S.E.
Grand Rapids, Mi. 49508

(616) 949-8506

Technotes

ENCLOSE Encounters

Nicholas L. Pappas, Ph.D.

Here are two tests and a practical

In many applications a natural

HEX 1 ’ BlSCR ! (blocks/screen = 1)
400 ‘ BlBUF ! (bytedblock buffer =

1024)
One consequence is the enclose bug

may get you.* The ENCLOSE
primative in many Forth listings uses a
one byte counter to accumulate the
(blank) delimiter and character
counts. When B/BUF holds less than
100 hex, the counter’s capacity is
adequate. however, a two byte counter
is needed when B/BUF holds a
number greater than the one byte
counter’s FF capacity.

If a screen has more than FF
delimiters in a row, call this a bad
string; two kinds of wrong events may
occur. A bad string before the end of
the screen will cause the system to lock
up so that OK is not returned. We
have a crash requiring a reset. A bad
string elsewhere may confound
loading the screen (see IN in WORD)
or crash. Testing for existence of the
enclose bug is easy to do. Fill screen in
with b l anks , set b / s c r = l ,
b/buf = 1024, and n LOAD. If you get
OK, all is okay. A more direct test is to
set up for 1024 byte buffers and

HEX FIRST 2 + 400 BLANKS
(blanks a block buffer)
If the response prints as 400 401 400

addr, there is no bug. If the response
prints 0 1 0 addr, you have the bug.

A simple, practical solution is
breaking up bad strings with a
harmless ()**, and a long term
solution is to rewrite* your ENCLOSE
primitive using a two byte counter.

solution for the ENCLOSE bug.

decision to take is

*for a gotcha and an 8080 rewrite, see
Forth Dimensions, Vol 111, #2, pages
35 and 41.
**2 blanks or more.

(Continued)

Perlfel
Eoftwure Systems

presents
MARX FORTH V1.4

$1 50

For the
ATAR I

RADIO SHACK
NORTH STAR DOS

CPM
POLYMORPHIC

blarx Forth is not just another warmed
iver Fig Forth. This 79-83 standard
Iorth has been completely rewritten to
nclude advanced coding techniques not
ivailable in most systems.

illarx Forth package includes: . C o m p l e t e source c o d e . Screen e d i t o r
D o u b l e n u m b e r w o r d set . F o r t h s ty le m a c r o assembler
Standard M a r x F o r t h extens ion w o r d set

. Case . F i l e system
m A r g u m e n t s - Results

Pr in ter c o n t r o l
Cursor c o n t r o l . Recurs ion

ixtensions include:

. Disk d i rector ies . Str ing w o r d set

nternal advancements include: . L i n k s i n f r o n t o f names . Fast m a t h . No names on in ternal w o r d s . Super fast c o m p i l e r . N e w 83-standard c i rcu lar D O - L O O P
D O - L O O P executes 0 t imes i f arguments - L E A V E leaves i m m e d i a t e l y - M u l t i p l e W H I L E S . Vocabulary trees w i t h o u t vocabulary l inks . C o m p i l e r secur i ty
1 b y t e re la t ive branches f o r condi t ionals

m S m a r t C M O V E - Machine c o d e where i t c o u n t s

are equal

All Marx Forthr are compatible and most code
iritten on one system wil l run on any other with no
iodifications

Also available. the Marx Forth target compiler This
llows your program to be compiled into a stand alone
bject file that doesn’t need Forth in the system to run

The Marx Forth application software development
ystem is available t o software houses. This package in-
ludes Marx Forth for all systems we support including
i e target compilen. This allows software to be devel-
ped for many computer systems simultaneously as
(ell as having the most powerful compiler available.
here applications can be target compiled to run on all
omputers for which Marx Forth i s available and mar
eted without the end user ever knowing i t was written
1 Forth. Call for details.

Marx Forth model license isavailable for Forth ven-
ors who want to improve their product or implement
larx Forth for another machine. Call for marketing
icentives

COMING SOON. Marx Forth for the IBM PC and
,pple and Marx Multi-tasking Forth for the larger
{sterns

PerReZ Software Systems
1452 NORTH C L A Y

S P R I N G F I E L D , MO. 65802
(417) 862-9830 or (417) 883-3709

Consulting Services available

FORTH Dimensions 34 Volume V. No. 1

Technotes (Continued)

UI Bug Fumigated

K. G. Lander, Crewe, England
In “Technotes” IV-D Vol. IV, pg.

2, Jack Haller identified a bug in UI,
(79 standard UMOD) for which he
proposed a correction. Unfortunately
his solution is only partially correct, as
the following entries demonstrate:

1048576. 65535 U/MODok
U. 31 ok (Quotient should be 16)
U. 31 ok (Remainder should be 16)
The problem is that the N I + ROL,

instruction on line 7 accumulates ALL
the carries that would have been lost
by the original version, instead of just
the latest. The corrected version (see
listing) clears N + 1 after the
remembered 17th bit has been
processed.

Incidentally, while checking out the
corrected solution, I discovered that
the urn carry bug correction in the
Installation Model has not been
incorporated into the 6502 Assembly
iis t ing .

A Better CRC

Mike Steckmyer
I am writing to comment about your

article entitled: “Checksum for Hand-
Entered Source Screens” which
appeared in FORTH IV, 3. I became
mterested in the algorithm after
reading the part about being patient.
Waiting up to 2 seconds per screen was
noted. This seems to be a little too
long.

One of my past projects was to
develop a Pseudo-Random Binary
Sequence (PRBS) register. PRBS is
just another name for a CRC register.
As you suggested, an evaluation of the
given algorithm was in order.

I simulated the algorithm to
determine if it has a maximal length
sequence. A PRBS register will cycle
through states and eventually start
repeating. The number of states
before repeating is the length of the
register. A 16 bit register is maximal if
it has a 2*16 state PRBS. I found that
the register in “ACCUMULATE” is
2*15 states long.

The number 4002 H (16386) defines
the feedback used in the given
algorithm. I found that a feedback
value of 148C H (5260) produced a
maximal length PRBS. I also
determined that the byte shift left (256
*) and bit shift left loop (8 0 DO ...
LOOP) did not effect the length of the
sequence. So both operations can be
removed wi thout a loss of
performance and help improve the
speed of checksumming.

I propose using this new definition:
: PRBS (oldcrdchar - newcrc)

XOR DUP O < IF 5260 XOR DUP +
(SHL) 1 + ELSE DUP + THEN ;

I found that “PRBS” executes 9
times faster than “ACCUMULATE”
because there is far less computing
being done. It should also be noted
that this optimization produces a
different PRBS than the original
algorithm.

loaded in Decimal Mode

C64-FORTH
for the

Commodore 64

FORTH SOFTWARE
FOR THE

COMMODORE 64

C64-FORTH (TM) for the Commodore 64 -
$99 95

Fig Forth-79 implementation with extensions
Full feature screen editor and macro

Trace feature for easy debugging
320x200, 2 color bit mapped graphics
16coIor spr i teand character graphics
Compatible with VIC peripherals including
disks data set, modem printer and cartridges
Extensive 144 page manual with examples and

assembler

application screens

application program distribution without
”SAVETURNKEY normally allows

licensing o r royalties

C64-XTEND (TM) FORTH Extension for c64-
FORTH - $50 95

(Requires original C64-FORTH copy)
Fully compatible floating p a n t package
including arithmetic, relational, logical and
transcendental functions
Floating point range of 1Et38 t o 2E-30
String extensions including LEFT$, RIGHT$,
and MID$
BCD functions for IOdigit numbers including
multiply, divide and percentage BCD
numbers may by used for DOLLAR CENTS
calculations without the round-off error
inherent in BASIC real numbers

outputting DOLLAR CENTS values

applications screens
 cornm mod ore 64 isa trademarkofCommodore)

Special words are provided for inputting and

Detailed manual with examples and

TO ORDER- Specify disk o r cassette version
- Check, money order, bank card,
COD’S add $1 50
- Add $4 00 postage and handling in
USA and Canada
- Mass orders add 5% sales tar:
- Foreign orders add 20% shipping
and handling
- Dealer inquiries welcome

PERFORMANCE
MICRO

PRODUCTS
770 Dedham Street, S-2

Canton, MA 02021
(617) 828-1209

Next- Generation
Micro-Computer Products

FORTH Dimensions

DESIGNED BY EXPERTS IN THE FIELD OF MICRO-COMPUTERS
RICHARD ALTWASSER AND STEVEN VtCKERS

Order Form: Product Price Qty.
Send To
Computer Distribution Assoc. Jupiter Ace $1 50

Oxford, Penna. 19363 48K Ram Pack $1 25
ParlSer Interface $100

Shipping and Handling

56 South 3rd Street 16K Ram Pack $ 50

$4.95 Credit Card No. Exp. Date

Steven Vickers
Steven gained his degree in Math at King’s College, Cambridge, England, and his Ph.D in Algebra at Leeds University. His
first assignment after school was to create the Sinclair ZX-81 or Timex 1000 8K ROM, and to write the ZX-81 manual. Subse-
quently he wrote most of the ROM for the Sinclair Spectrum or Timex 2000.

Richard Altwasser
Richard gained his honors degree in Engineering at Trinity College, Cambridge, England. He joined Sinclair in September
1980, and was instrumental in the research that led to the development of the Spectrum or Timex 2000.

Recently these two experts started their own company and developed the Jupiter Ace range of hardware which is based on
the exciting new language for micro-computers “FORTH”.

Total

For the FORTH enthusiast
The Jupiter Ace closely follows the FORTH 79 standard with extensions for floating point, sound and
cassette. It has a unique and remarkable editor that allows you to list and alter words that have been
previously compiled into the dictionary. This avoids the need to store screens of source, allowing the dic-
tionary itself to be saved on cassette. Comprehensive error checking removes the worry of accidentally
crashing your programs.

Sign at u re FD I V / 6 Total Order I
I

FORTH Dimensions 36 Volume V, No. 1

A Simple Overlay System
Christian Mahr

This article presents a simple
overlay system. The overlays are
binary images of pre-compiled
FORTH code, i.e. programming tools
or other ready-to-run programs.

In my FORTH system I like to have
all the programming tools at hand that
I need in program generation and
testing: the assembler, editor, disk-
maintenance-programs, disassembler,
the FORTH-discompiler and some
others. Most of them are mutually
exclusive; they refer only t o
definitions of the main FORTH
system but not to definitions of each
other. Unfortunately, these tools are
eating up a lot of valuable dictionary
space, decreasing the amount of free
memory for my application programs.
On the other hand, a loading
(compiling) of a tool for each time of
use would be very time consuming.
Some tools can't be discarded from
memory after use because they
generate code themselves, i.e. the
assembler.

These facts in mind, I wrote this
overlay system to rapidly load a tool
as a binary image. All tools use the
same memory space, counted
backwards from the end of available
dictionary memory. So there is only
need for enough memory for the tool I
actually want to use. The overlay
system is divided into a resident part
located behind the system definitions,
and a second part that is loaded during
the generation of a binary overlay
image only.

The following concept is certainly a
BFBI approach (brute force and
bloody ignorance), but it works well
for my needs: An overlay occupies a
multiple of I K Byte counted
backwards from the end of available
dictionary memory (determined by my
system constant EM). The first eight
words of an overlay block contains the
following loading and linking
information:

block address +
0 contains the start
block of the overlay

e
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

8
1
2
3
4
5
6
7
8
Y

18
11
12
13
1'4
15

8
1
2
3
4
5

7
8

10
11
13
13
1 4
15

8
1
2
3
4

5

9

.z

0

7
e
9

18
11
12
13
14
15

< o v e r l a y s y s t e m - r e s i d e n t s e c t i o n c m 8 5 . 8 3 . 8 3 I

FORTH DEFIN IT ION5 HEX
C e n d of a a ~ a i l i a b l e d i c mentor:' ' 9FFF CONSTANT E l l DECIMUL

0 VARIABLE OV#
8 VARIABLE OVA

< c u r r e n t o v e r l a ? number
a. c u r r e n t o u e r l a ; ~ a d d r

C t h e i n p u t dumm;y 1 i n k detini t i o n J : X ; -4 ALLOT
I t h e o u t p u t durrmj l i n k d e f i n i t i o n I : Y ; -4 ALLOT

: RELINK C .' L LFA 1 LITERciL ' : 1 l i n k i n t o o " e r l a . 5

: CANCEL ' X NFA RELINk 0 CIt.J# ; 8~ i:.ncel o ' , e r I a , v

: GET.IMAGE '~ addr .,. I t a r t -b 1 I.. ~, dr # \ tf 1 k s . . . '
< l o a d < b l k s > c o n t i n g o u s b lc rcks . f r o m d i c l . . , c t a r t i n q a t '
i t s t a r t - b l k : , d r i u r t d r # ; , d e s - t i n a t i o n addres .5 c a d d r . '

'>R c dr i v e # > 1 b do h r e a d R i R ' R ' - D I 5 k :
8 * ;R I s e c t o r s J SWHP 8 t : R 1~ : t a r t c e r t o r 1

DECIMAL --;

< a v e r l a y s r s . t e m - r e s . i d e n t c e c t i o n C: r r
: OVERLAY c h l k . . .) I c r e a t e a n o u e r l , . c a l l e r

<HLIILDS [)UP OFFSET a t 258 ,,MilD SWAP , ,
DUP BLOCK DUP 2 ROT - 12 iERPOF: 1~ 8 ~) 3 1 I j e v e r 1 a. =' I

4 t HERE 4 i'l-lO?)E 4 ciLLOT 1. c o p > ' load i n f o r m a t i o n I

DOES> DUP 0 t a HERE U C Z ?ERROR ' d o e s n o t f I ? I

DLIP ii CiU# i i - I F < n o t i n merrtorv 5 CHIKEL
,R R d t d R i l

H 6 t a < a d d r 3

DCIP a R) a - 12 ?ERROR
DUP 8 t J b, t h i s i s LFH of f i r ~ t d e f 1

[' X NFA 1 L ITERAL SI.IAP ' 5. 1 i n k . :<. t o t h e f i r s t 5

DUP 1 8 t RELINk I. t h i s 15. I,IFii o f l a s t d e t
[)LIP QVH ' '2 Ot.!# ' I s e t C i ? k a n d O'J#

R Zt i i R 4 t i i GET. IHAGE 5~ I oad I rl t 0 memor , '

I t ~ ~ i r a n q b l o c k i

-_ ~ ELSE [)HOP THEN ;

1 o u e r l a y % . , ' ~ t e m - r e s i d e n t s e c t i o n C rr,
: EYG < a d d r 1 a d d r Z . . . > (> e:.:change " s r i a b l e r o r n t e n t :

[)UP ' R a SWAP DLIP a R ' ' ' ;

: OL-SWITCH 8~ . . .) I itch f r o m m a i n d i c t i o n a r) t o cfz~'er13,' '
1. ~ r e a a n d back

DEC.IMciL ;S I e n d of r e s . i d e n t ~ e c t i c ~ r ~ e f t ctrierla:' s > . m t e m 1

d c m ' t f o r g e t to p l a c e t h i s e r r o r n i c e s a g e or, . r r # 4 l i n e 12:
'I no ual i d o v e r 1 a x b lock . f o u n d ' 'I

o v e r l a v r v r t e m - n c c n - r e e . i d e n t z r c t i o n cnt 8 5 . 6 3 . 8 3 J

These d e f i n i t i o n s a r e n e c e c S a r r t o c r e a t e t h e b i n a r . ' i m a g e s
a n d c a v e t h e m t o d i s k . P l e a r e s e e i f f o u r z.,s.tem has. i

1824 Hrtes:'block a n d 258 B l o c k s d r i v e o r n o t .

FQRTH DEFINIT IONS DECIl lc iL

SAVE.IPl64GE < a d d r 'l s t a r t - b l k .. d r # ~% b l l r . . .
CR . " w r i t i n g a v e r l a y i ~ ~ a g . ~ o n c c r e e n z . "

iR 25M x t R 1 CII.IER t SWAP DO

B.iBUF t LOOP DROP FLUSH :
DLIP I . I OFFSET a - BL0C.k' WBUF CflO"E UPDATE

@ ,, o v e r l a * s y s t e m - n a n - r e s i d e n t s e c t i o n c m
1
2 : LINLII.16 '~ . . . 1 i n k l \ . I i n k 2 > 8, u n l i n k the o v e r l a y d e f i n i ? i o n c . 6

3
J LeTEST C R . " u n l i n k : "

5 BEGIN
6 DUP I D . Z SPACES f p r i n t u n l i n k e d J

7 DUP PFH LFA ii U I H a U,. 8= IJHILE

3 REPEkT C.R :

b, f rom m a i n d i c

r PFA LFci i I

18 --;

(Listing Continued)

Volume V, No. 1 37 FORTH Dimensions

8 8~

1
r i :
3
4
5
4 -
8
5'

1 M
1 1
12
13
14
15 -

o'i e r 1 a Y z y5 t em - n on -r e e I de n t s e c t I 6 n c m !

8 < o u e r l a r s v r t e m - n a n - r e : i d e n t s e c t i o n C m
1
2 : C-LOSE-OOERLAr 1, . . . i b~ c 1 ctse ewer 1 a y a r e a 7

3 L i r iL~ t%iK PFA L F ~ ti:>.+ ,ii 8 t ! I c a ~ v e n u t - l i n k I

4
5 Eri HERE cis. i 3 ?ERROF: 1 ob!er 1 a-. a r e a t o o zrnal 1 I

4 O'JA a R
7 F: A t a R J F? Z t a RI 4 t 3 Sn~!E.IPI&GE
8 C-ANC E L :
9 ; S

O?! - SW I T C H

19
1 1 don t f o r g e t t o p l a c e t h i s e r r o r mezsagr or, s c r # 4 l i n e 1 3 :
I 2 " a v e r 1 a? a r e a taco smal 1 ' "
13
14
15

@ < ouer 1 a y s y 5 t e m - n u n - r e s I dent s r c t I on cr , 2 3 . 1 2 . 8 1 1

1 ; s
2
3 FFA o f an overlay caller:
4 BLK DFc# ELKS O'JA
5 + % t 2 t 4 t h
6
7 p a r a m e t e r - b l o c k o f t h e o u e r l a r :
8 HLK <DR#) B L k S OVA OUT-LINK I N - L I N K O'J-UP W C .Sf$JE
9 +0 + 2 + 4 + d +8 + 1 0 + 1 2 t 1 4

10
11
12
13
14
15

i

3 81;LilHD I t h e non-r e c I d e n t w c r 1 a,' g e n e r a t o r d e f i rr i t I on5 >
4
.% 232 t, OPEN-O'.~'ERLrir c o'.*er 1 a y beg! n s a t s c r # 2 3 2 , r e s e r v e J

7 58 Lori" l o a d t h e s o u r c e t e x t of t h e ASSEMBLER >
s. 8 t o be c o ~ { p i I e d i n t o t h e orrer lay a r e a)

c - - -

' c, P B f t e = c. e c r e e n ~

1 8 1 ~ e e hoi.,? f a r the cc'>erIa,w a r e a i s . filled: 5

1 1 CP . " l a s t memor v l o c a t i on =3 " HEPE HE:.: 0 C,. DECIMAL
1 2

1 4 FOFGET T *, t h e b i n a r v image tc. d i r . C , f o r g e t a l l
1 3, r e s e t p o i n t e r s t o m a i n d i c t i o n r r + , a n d s a v e I

15 :s

8 I 1 oad c c r een f o r C S ~ J ~ ~ I a,v ar.sembl er i

c r e a t e t h e a . , ' e r l a r c a l l e r riSSO'J, i
- _ r

(. ouer 1 a ? I r on s c r e e n LJL i

4
5 k5'5O1.! m j g e t t h i e . ob~erla, ' f o r t h e f o l l o w i n g d e f i i n i t i u n r >

7 n. m a k e t h e f a l l o r ~ i n g d e f i n i t i o n g l o b a l b y i n c l u d i n g t h e I

8 I c ~ u e r 1 a1 i a l I e r a n d r e d e f i n e t h i G. d e f i n i t iccnz : ,
'7

1 8 : kS'5EtIBLEP '-'CiV tC.CiI"IPILE1 +iSSEIlBLER :
1 1 : CODE O?, [COMPI L E I CCIDE
12 : 1.1: HSSCIV [C-CIWILEI P.1: I

13 : Ll iHEL GSSO'! [COMPI L E 1 LABEL
14 : EOLIHTE ASSOU [C.CiMPI L E I EOClciTE
15 :';

(Listing Continued)

2 is reserved
4 contains the number of
blocks to be loaded

6 contains the
overlay start address

8 contains the
output link address

10 contains the
input link address

12 contains the
overlay dictionary pointer

14 contains the
overlay VOC-LINK
To invoke (load from disk if

necessary) an overlay caller must be
defined in the main dictionary. The
PFA of this caller looks similar to the
first 4 bytes in the overlay:

PFA of the overlay-caller +
0 contains the start block of the

2 contains the drive # to load the

4 contains the number of blocks to

6 contains the overlay start address

If you now want to convert a
program or programming tool to an
overlay, proceed as follows:
1. Make the resident section of the
overlay system a part of your cold-
start system, or make sure that it is
always loaded to the same address
(scr# 80 to 82).
2. Your program becoming an overlay
should be debugged; calculate the size
of it in K byte and determine some
continuous free blocks on the disk
where the binary image will reside. If
you proceed as shown on screen #88,
the image will be created and saved on
disk. No dictionary space will be
consumed after this procedure, and
this compilation is only done once.
3. To invoke the overlay, you have to
compile what I have named an overlay
caller into the main dictionary, as
shown on scr #89, where the assembler
overlay caller ASSOV is created. Each
time ASSOV is executed, it checks
whether this overlay is in memory and
loads it from disk if not. Now you can
make some key definitions "global",
by redefining them with the overlay
caller included. In the example, the

overlay

overlay from

be loaded

FORTH Dimensions Volume V. No 1 38

word CODE will automatically ask for
the right overlay.

In order to not waste time while
loading a binary image, I highly
recommend you use a fast multiple
block loader like the one which is
accessible in my FORTH. In case you
don't need or want it, use the high
level version on scr B1 .

There is an extra goodie when
keeping the assembler in a separate
overlay area: the use of local labels. It
is possible to compile local LABELS or
EQUATES as constants into the overlay
area which is never written back to
disk. These labels are valid as long as
the assembler overlay is not canceled,
but they consume no memory of the
main dictionary. A proposal for such
a LABEL and EQUATE definition is
shown on scr 490.

In conclusion, I want to mention
some points that I regard as
drawbacks or as open questions:

How to handle multiple
vocabularies from the inside to the
outside of an overlay. This system

requires one link into and one out of
the overlay. A vocabulary inside the
overlay has to begin and end within
this overlay.

If anything in the FORTH system
up to the resident part of the overlay
system is changed (recompilation of
the system) the images have to be
recompiled as well.

How to relocate a precompiled
image. Perhaps by using an additional
link table (?).

How to invoke an overlay from
another and return to the old after
execution.

If the compiler flags an error
during generation of an overlay, keep
in mind that the DP is now in the
overlay area while compiling: First
FORGET everything before trying to
compile the overlay again.

If you have difficulties in adapting
this program to your system: I mainly
use a FIG-FORTH version on a 6809
or a 6502 with 1024 Byte/Buffers and
250 Blocks/Drive.

_.
cm 2-1.12.82 1

End Listing

Glossa ry

addr = 16-bit address
n = signed 16-bit integer
d = signed 32-bit integer

resident section

EM constant gives end address of
available dictionary memory in your
system.
o v # variable keeps the screen number
of the current overlay in memory, zero
means no valid overlay in memory.
OVA variable keeps the address where
the current overlay begins.
x and Y are dummy definitions that
are renamed to blank and used to link
the overlay into the main dictionary.
RELINK nfa ... links this nfa into the
dummy definition Y.
CANCEL no stack effect cancels the
current overlay.
GETIMAGE addr start.blk dr# blks ...
loads < blks > continuous blocks
from disk, drive <dr#> , starting at
block < start.blk > to the destinatikon
address <addr> . Accesses the disk
driver directly, not via BLOCK.
ExG addrl addr2 ... exchanges the
contents of addrl and addr2.
OVSWITCH no stack effect switches
from overlay area to main dictionary
and back.

non-resident section

SAVE.IMAGE addr start.blk dr# blks
. . . writes < blks > continuous blocks
to disk, drive <dr#>, starting at
block cstart.blk> from the source
address '< addr > .
UNLINK no stack effect unlinks all
definitions in overlay area from the
main dictionary.
OPEN-OVERLAY start.blk blks ... sets
pointers for compilation into the
overlay area; the overlay shall start at
cstart.blk> and be <blks> KByte
of size.
CLOSE-OVERLAY no stack effect stops
compilation into overlay area, unlinks
overlay from main dictionary, saves it
to disk and resets pointers back to
main dictionary.

Volume V, No. 1 39 FORTH Dimensions

FIG Chapter News
~~

Southern Ontario

The fifth quarterly meeting of Fig
Southern Ontario was held on March
5 , 1983 with 15 people present. During
the meeting, Dr. N. Solntseff outlined
the FORTH-related work being
carried out within the Unit for Com-
puter Science at McMaster University.

Implementation
a) Continuing work on implemen-

tation of fig-FORTH 78/79 on Ohio
Scientific Instruments C2-8P and C3
computers. The aim of this work is to
investigate floppy-disc, Winchester,
and 0s interfaces, as well as achieving
improvements to the fig model.

6) Development of a portable
FORTH system (undergraduate pro-
ject to be completed by Aprjl 1, 1983).
The idea behind this is the design of
pseudo-microcode to implement an
Abstract FORTH Machine (see paper
with this title in 1982 Rochester Con-
ference Proceedings, pp. 157-160).
The FORTH-system kernel has been
rewritten in the pseudo-microcode

(called Fcode, by analogy with the
Pcode of the Pascal system). Currently
this implementation strategy is being
tested via an implementation on
McMaster’s CYBER/170 with a mic-
rocode interpreter written in ETH
Pascal, A macroprocessor for generat-
ing host-computer machine code is
being designed.

c) Implementation of figFOR TH78
on a VAX11/780 under VMS (gradu-
ate project). This project is complete
and is being written up.

Applications
a) Animated-Graphics Thtorial Sys-

tem (funded by McMaster’s) Instruc-
tional Development Centre-pilot
project completed). A script-based
tutorial development system has been
designed cabable of acting as an
“animated text-book” to be used in
conjunction with computer organiza-
tion and computer architecture class-
es. The present version is too machine
dependent for general distribution as
it is based on OSI equipment.

6) High-Level FORTH Graphics
Pr im it i v es (u n d erg r a d u a t e pro -
ject-April 1, 1983 completion). This
project is aimed at the comparison of
several line-drawing and other plotting
primitives that could be used to pro-
vide a machine-independent graphics
system.

c) Graphics Primitives for the
TRS-80 Colour Computer
(undergraduate project-April 1, 1983
comple t ion) . Th i s pro jec t
complements (b) above and is looking
at graphics primitives for the TRS-80
Colour Computer.

d) Document Preparation System
(graduate project-December 1983
completion). The aim of this project is
to combine graphics with word pro-
cessing to produce a system capable of
handling lecture notes for computer
organization and computer architec-
ture courses. (An IBM PC is being
used as the development system.)

Ver. 2 For your APPLE II/II+
The complete professional software system, that meets
ALL provisions of the FORTH-79 Standard (adopted Oct.
1980). Compare the many advanced features of FORTH-
79 with the FORTH you are now using, or plan to buy!

OURS OTHERS FEATURES

79~Standard system gives source portabi l i ty.
Professionally writ ten tutorial & user manual
Screen editor wi th userdefinable controls.
Macro-assembler wi th local labels
Virtual memory.
Both 13& 16-sector format.
Multiple disk drives.
Double~number Standard & String extensions
Upper/lower case keyboard input.
LO-Res graphics.
80 column display capability
Z-80 CP/M Ver 2 x & Northstar also available
A f f orda b I e 1
Low cost erihancernent option
Hi-Res turtle-graphics.
Float i ng-point mat hemat ics.
Powerful pdckaqe w i th own manual,
50 fiinctions in a l l ,
AM951 1 compatible.

YES ~

200PG -
YES ~

YES -
YES -
YES -
YES -
YES -
YES -
YES ~

YES -
YES -

$ 9 9 9 5 -
YES -
YES -

FORTH--79 V 2 (requrres 48K & 1 disk drive) $ 9 9 9 5
ENHANCEMENT PACKAGE FOR V 2

$ 4 9 9 5
COMBINATION PACKAGE $1 39 9 5

Floating point & Hi Res turt le graphics

(CA res add 6% tax COD accepted)

MicroMotion
12077 Wilshire Blvd # 506
L A , CA 90025 (213) 821 4340
Specify APPLE, CP/M or Northstar

Version 2 For 2-80, CP/M (1.4 & 2.x),
& NmthStar DOS Users

The complete professional software system, that meets
A L L provisions of the FORTH-79 Standard (adopted Oct.
1980). Compare the many advanced features of FORTH-
79 with the FORTH you are now using, or plan to buy!

FEATURES OURS OTHERS

79-Standard system gives source portabi l i ty. YES -
Professionally writ ten tutorial & user manual. 200 PG. -
Screen editor w i th userdefinable controls. YES -

YES - Macro-assembler wi th local labels. . ._
Virtual memory Y t S -
BDOS, BlOS & console control functions (CP/M) YES -
FORTH screen files use standard resident

~

f i le format. YES -
Double-number Standard & String extensions. YES -
Upper/lower case keyboard input. YES -
APPLE I l / l I+ version also available YES -
Low cost enhancement options.
Affordable! $99.95 -

Floating point mathematics
Tutorial reference manual

YES -
50 functions (AM951 1 compatible format)

Hi Res turt le graphics (NoStar Adv only) YES -
FORTH 79 V 2 (requires CP/M Ver 2 x)
ENHANCEMENT PACKAGE FOR V 2

COMBINATION PACKAGE (Base & Floating point)

$99 9 5

Floating point $ 4 9 9 5
$139 9 5

(advantage usersadd $49 9 5 for Hi Res)
(CA res add 6% tax COD & dealer inquiries welcome)

MicroMotion
12077 Wilshire Blvd ?$ 506

(213) 821-4340
CP/M or Northstar

Volume V, Nc FORTH Dimensions 40

Fig Chapters

U.S. NEVADA

ARIZONA Las Vegas Chapter
Suite 900
101 Convention Center Drive
Las Vegas, NV 89109

Phoenix Chapter
Dennis L. Wilson

2121 E. Magnolia
Samaritan Health Services 702/737-5670

Phoenix, AZ
602/257-6875

CALIFORNIA

Los Angeles Chapter
Monthly, 4th Sat., 11 a.m.
Allstate Savings
8800 So. Sepulveda Boulevard
Los Angeles
Phillip Wasson

Northern California Chapter
Monthly, 4th Sat., 1 p.m.
FORML Workshop at 10 a.m.
Palo Alto area.
Contact FIG Hotline

Orange County Chapter
Monthly, 4th Wed., 12 noon.
Fullerton Savings
18020 Brookhurst
Fountain Valley

San Diego Chapter
Weekly, Thurs., 12 noon.
Call Guy Kelly
7 14/268-3 100 ext .4784

21 3/649-1428

41 5/962-8653

7 14/523-4202

MASSACHUSETTS

Boston Chapter
Monthly, 1st Wed., 7 p.m.
Mitre Corp. Cafeteria
Bedford, MA
Bob Demrow
617/688-5661 after 5 p.m.

MICHIGAN
Detroit Chapter
Call Dean Vieau
3 13/493-5 105

MINNESOTA

MNFIG Chapter
Monthly, 1st Mon.
MNFIG
1156 Lincoln Avenue
St. Paul, MN 55105
Call Mark Abbot (days)
612/854-8776 or
Fred Olson
61 2/588-9532

MISSOURI

St. Louis Chapter
Call David Doudna
314/867-4482

NEW JERSEY

New Jersey Chapter
Call George Lyons
201/451-2905 eves.

NEW YORK

New York Chapter
Call Tom Jung
21 2/746-4602

OKLAHOMA

Tulsa Chapter
Monthly, 3rd Tbes.,
The Computer Store
4343 South Peoria
Tulsa, OK
Call Bob Giles
918/599-9304 or
Art Gorski
918/743-0113

OHIO

7:30 p.m.

Dayton Chapter
Monthly, 2nd Tbes.
Datalink Computer Center
4920 Airway Road
Dayton, OH 45431
Call Gary Granger
5 13/849-1483

OREGON

Portland Chapter
Call Timothy Huang
9529 Northeast Gertz Circle
Portland, OR 9721 1
503/289-9135

PENNSYLVANIA

Philadelphia Chapter
Continental Data Systems
1 Bala Plaza, Suite 212
Bala Cynwid, PA 91004
Call Barry Greebel

TEXAS

Austin Chapter
Call John Hastings
512/327-5864

Dallas/Ft. Worth Chapter
Monthly, 4th Thurs., 7 p.m.
Software Automation
1005 Business Parkway
Richardson, TX
Call Marvin Elder
214/231-9142 or
Bill Drissel
214/264-9680

UTAH

Salt Lake City Chapter
Call Bill Haygood
801/942-8000

VERMONT

Vermont Fig Chapter
Monthly, 3rd Mon., 7:30 p.m.
Vergennes Union High School
Room 210, Monkton Road
Vergennes, VT 05491
Contact Hal Clark
RD #1 Box 810
Starksboro, VT 05487
802/877-2911 days;
802/453-4442 eves.

VIRGINIA

Potomac Chapter
Monthly, 1st Tues., 7 p.m.
Lee Center
Lee Highway at Lexington St.
Arlington, VA
Call Joel Shprentz
703/437-9218 eves.

FOREIGN

AUSTRALIA

Australia Chapter
Contact Lance Collins
65 Martin Road
Glen Iris, Victoria 3146
(03)292600

CANADA

Southern Ontario Chapter
Contact Dr. N. Solntseff
Unit for Computer Science
McMaster University
Hamilton, Ontario L8S 4K1
416/525-9140 ext. 2065

Quebec Chapter
Call Gilles Paillard
418/871-1960 or
418/643-2561

ENGLAND

English Chapter
FORTH Interest Group
38 Worsley Road
Frimley, Camberley
Surrey, GU16 5AU, England

JAPAN

Japanese Chapter
Masa Tasaki
Baba-Building 8F
3-23-8 Nishi-Shimbashi
Minato-ku, Tokyo
105 Japan

NETHERLANDS

HCC-FORTH Interest
Group Chapter
F.J. Meijer
Digicos
Aart V.D. Neerweg 31
Ouderkerk A.D.
Amstel, The Netherlands

WEST GERMANY

West German Chapter
Klaus Schleisiek
FIG Deutschland
Postfach 202264
D 2000 Hamburg 20
West Germany

SPECIAL GROUPS
Apple Corps FORTH
Users Chapter
Twice Monthly, 1st &
3rd Tbes., 7:30 pm
1515 Sloat Boulevard, #2
San Francisco, CA
Call Robert Dudley Ackerman

Detroit Atari FORTH
Monthly, 1st Wed.
Call Tom Chrapkiewicz
313/524-2100 or

Nova Group Chapter
Contact Mr. Francis Saint
2218 Lulu
Witchita, KS 6721 1
3 16/261-6280 days
MMSFORTH Users Groups
Monthly, 3rd Wed., 7 p.m.
Cochituate, MA
Dick Miller

(25 groups world-wide)

4 151626-6295

313/772-8291

617/653-6136

Volume V, No. 1 41 FORTH Dimensions

Computers
FORTH System Vendors

(Codes refer to alphabetical listing
e.g., A1 signifies AB Computers, etc.)

Processors

1802 . . , , C1, C2, F3, F6, L3
6502(AIM, KIM, SYM) R1, R2, S1
6800 . C2, F3, F5, K1, L3, M6, T1
6801 P4
6809 . C2, F3, L3, M6, S11, T1
68000 C2, C4, D1, El, K1
68008 P4
8080/85 A5, C1, C2, F4, 15, L1, L3, M3,

M6, R1, T3
Z80/89 . A3, AS, C2, F4, 13, L1, M2, M3,

M5, N1, T3
Z8oooO . I3
8086/88 C2, F2, F3, L1, L3, M6
9900 . E2, L3

Operating Systems

CP/M A3, A5, C2, F3, 13, L3, M1, M2,
M6, T3

CP/M86 C2

FORTH Vendors (Alphabetical)
The following vendors offer FORTH systems, applications, or con-

sultation. FIG makes no judgement on any product, and takes no
responsibility for the accuracy of this list. We encourage readers to

FORTH Systems
A

1. AB Computers
252 Bethlehem Pike
Colmar, PA 18915
215/822-7727

2. Acropolis
17453 Via Valencia
San Lorenzo, CA 94580
415/276-6050

4. Applied Analytics Inc.
8910 Brookridge Dr., #300
Upper Marlboro, MD 20870

5 . Aristotelian Logicians
2631 E. Pinchot Ave.
Phoenix, AZ 85016

7. Abstract Systems, etc.
RFD Lower Prospect Hill
Chester, MA 0101 1

8. Armadillo Int’l Software
P.O. Box 7661
Austin, TX 78712
512/459-7325

B
1. Blue Sky Products

729 E. Willow
Signal Hill, CA 90806

C
1. CMOSOFT

P.O. Box 44037
Sylmar, CA 91342

2. COMSOL, Ltd.
Treway House
Hanworth Lane
Chertsey, Surrey
England KT16 9LA

3. Consumer Computers
8907 La Mesa Blvd.
La Mesa, CA 92041

4. Creative Solutions, Inc.
4801 Randolph Rd.
Rockville, MD 20852

5640 Southwyck Blvd., B E
Toledo, OH 43614

7 14/698-8088

5. Capstone Computing, Inc.

41 9/866-5503

AlphaMicro P3, S3
Apple . A4, F4, 12, 14, J1, L4, M2, M6,

M8,
02, 03

Atari . M6, P2, Q1, V1
Compaq M5
Cromemco. A5, M2, M6
DEC PDP/LSI-11 C2, F3, L2, S3
Heath-89 M2, M6, M7
Hewlett-Packard 85
Hewlett-Packard 9826/36 .-. . . C4
IBMPC AS, C2, F3, L1, M5, M6, Q2, S9,

w 2
IBMOther L3, W1
Kaypro II/Xerox 820 M2
Micropolis A2, M2, S2
NorthStar 15, M2, P1, S7
Nova .. C5
OhioScientific A6, B1, C3, 01, S6, T2
Osborne M2
PetSWTPC Al, A6, B1, C3, 01 , S6, T2, T5
Poly Morphic Systems A7
TRS-80 I, 11, and/or 111 15, M2, M5, M6, S4, S5, S10
TRS-8OColor A3, A8, F5, M4, S11, T1
Vector Graphics M2

Other Products/Services

Applications P4
Boards, Machine F3, M3, P4, R2
Consultation C2, C4, N1, P4, T3, W1
CrossCompilers C2, F3, 13, M6, N1, P4
Products, Various AS, C2, F3, 15, S8, W2
Training C2, F3, 13, P4, W1

keep us informed on availability of the products and services listed.
Vendors may send additions and corrections to the Editor, and must
include a copy of sales literature or advertising.

E
1. Emperical Research Group

P.O. Box 1176
Milton, WA 98354
206/63 14855

2. Engineering Logic
1252 13th Ave.
Sacramento, CA 95822

F
1. Fantasia Systems, Inc.

1059 The Alameda
Belmont, CA 94002
415/593-5700

3. FORTH, Inc.
2309 Pacific Coast Highway
Hermosa Beach, CA 90254
213/372-8493

4. FORTHWare
639 Crossridge Terrace
Orinda, CA 94563

5. Frank Hogg Laboratory
130 Midtown Plaza
Syracuse, NY 13210
3 15/474-7856

6. FSS
P.O. Box 8403
Austin, TX 78712
512/477-2207

1

1. IDPC Company
P.O. Box 11594
Philadelphia, PA 191 16
21 5/676-3235

2. IUS (Cap’n Software)
281 Arlington Ave.
Berkeley, CA 94704
415/525-9452

3. Inner Access
517K Marine View
Belmont, CA 94002
41 5/591-8295

4. Insoft
10175 S.W. Barbur Blvd.
Suite #202B
Portland, OR 97219
503/2444181

Volume V, No. 1 FORTH Dimensions 42

5. Interactive Computer
Systems, Inc.
6403 Di Marco Rd.
Tampa, FL 33614

J
1. JPS Microsystems, Inc.

361 Steelcase Rd., W.
Markham, Ontario
Canada L3R 3V8
416/475-2383

K
1. Kukulies, Christoph

Ing. Buro Datentec
Heinrichsallee 35
Aachen, 5100
West Germany

L
1. Laboratory Microsystems

4147 Beethoven St.
Los Angeles, CA 90066
2 13/306-74 12

2. Laboratory Software
Systems, Inc.
3634 Mandeville Canyon
Los Angeles, CA 90049
21 3/472-6995

3301 Ocean Park, #301
Santa Monica, CA 90405

3. Lynx

213/450-2466
4. Lyons, George

280 Henderson St.
Jersey City, NJ 07302
201/451-2905

M
1. M & B Design

820 Sweetbay Dr.
Sunnyvale, CA 94086

12077 Wilshire Blvd., #506
Los Angeles, CA 90025
213/821-4340

2500 E. Foothill Blvd., #I02
Pasadena, CA 91 107

2. MicroMotion

3. Microsystems, Inc.

213/577-1477
4. Micro Works, The

P.O. Box 1110
Del Mar, CA 92014

5 . Miller Microcomputer
61 Lake Shore Rd.
Natick, MA 01760

6. Mountain View Press

714/942-2400

617/653-6136

P.O. Box 4656
Mountain View, CA 94040
41 5 / % 1 -4103

8 Newfield Ln.
Newtown, CT 06470

8. Metacrafts Ltd.
Beech Trees, 144 Crewe Rd.
Shavington, Crewe CWI
5AJ
England

7. MCA

N
1. Nautilus Systems

P.O. Box 1098
Santa Cruz, CA 95061
408/475-746 1

0
1. OSI Software & Hardware

3336 Avondale Court
Windsor, Ontario
Canada N9E 1x6

2. Offete Enterprises
1306 S “B” St.
San Mateo, CA 94402

3. On-Going Ideas
RD #I, Box 810
Starksboro, VT 05487
802/453-4442

5 19/969-2500

P
1. Perkel Software Systems

1636 N. Sherman
Springfield, MO 65803

2. Pink Noise Studios
P.O. Box 785
Crockett, CA 94525
415/787-1534

3. Professional Mgmt. Services
724 Arastradero Rd., #I09
Palo Alto, CA 94306

4. Peopleware Systems Inc.
5190 West 76th St.
Minneapolis, MN 55435
612/831-0872

408/252-22 18

Q
1. Quality Software

6660 Reseda Blvd., #lo5
Reseda, CA 91335

2. Quest Research, Inc.
P.O. Box 2553
Huntsville, AL 35804
800/558-8088

R
2. Rockwell International

Microelectronics Devices
P.O. Box 3669
Anaheim, CA 92803
7 14/632-2862

S
1. Saturn Software, Ltd.

P.O. Box 397
New Westminister, BC
V3L 4Y7 Canada

2. Shaw Labs, Ltd.
P.O. Box 3471
Hayward, CA 94540

3. Sierra Computer Co.
41 5/276-6050

617 Mark NE
Albuquerque, NM 87123

4. Sirius Systems
7528 Oak Ridge Highway
Knoxville, TN 37921
615/693-6583

5. Software Farm, The
P.O. Box 2304
Reston, VA 22090

6. Software Federation
44 University Drive
Arlington Hts., IL 6ooo4
3 12/259-1355

7. Software Works, The
1032 Elwell Ct., #210
Palo Alto, CA 94303

8. Supersoft Associates
415/960-1800

P.O. Box 1628
Champaign, IL 61820

9. Satellite Software Systems
217/359-2112

288 West Center
Orem, UT 84057
801/224-8554

10. Spectrum Data Systems
5667 Phelps Luck Dr.
Columbia, MD 21045

11. Steams, Hoyt Electronics
4131 E. Cannon Dr.
Phoenix, AZ 85028

301,992-5635

602/W6- 17 17
T

1. Talbot Microsystems
1927 Curtis Ave.
Redondo Beach, CA 90278

2. Technical Products Co.
P.O. Box 12983
Gainsville, FL 32604

3. Emin Engineering Co.
904/372-8439

C/o Martian Technologies
8348 Center Dr. Suite F
La Mesa, CA 92041

4. Transportable Software
619/464-2924

P.O. Box 1049
Hightstown, NJ 08520
609/448-4 175

V
1. Valpar International

3801 E. 34th St.
ncson, AZ 85713
800/528-7070

W

1. Ward Systems Group
8013 Meadowview Dr.
Frederick, MD 21701

2. Worldwide Software
2555 Buena Vista Ave.
Berkeley, CA 94708
41 5/644-2850

Z

1. Zimmer, Tom
292 Falcato Dr.
Milpitas, CA 95035

Boards & Machines Only
See System Vendor Chart
for others
Controlex Corp.
16005 Sherman Way
Van Nuys, CA 91406
21 3/780-8877

Datricon
7911 NE 33rd Dr., #200
Portland, OR 9721 1

Golden River Corp.
7315 Reddfield Ct.
Falls Church, CA 22043
Triangle Digital Services Ltd.
23 Campus Road
London El7 5PG
England

503/284-8277

Application Packages Only
See System Vendor Chart
for others
Curry Associates
P.O. Box 11324
Palo Alto, CA 94306

InnoSys
2150 Shattuck Ave.
Berkeley, CA 94704

41 5/322-I463

415/843-8114

Consultation & Mining Only
See System Vendor Chart
for others
Bartholomew, Alan
2210 Wilshire Blvd. #289
Santa Monica, CA 90403
213/394-0796
Boulton, Dave
581 Oakridge Dr.
Redwood City, CA 94062
Brodie, Leo
9720 Baden Ave.
Chatsworth, CA 91311

Eastgate Systems Inc.
P.O. Box 1307
Cambridge, MA 02238
Girton, George
1753 Franklin
Santa Monica, CA 90404

Go FORTH
504 Lakemead Way
Redwood City, CA 94062

Harris, Kim R.
Forthright Enterprises
P.O. Box 50911
Palo Alto, CA 94303
415/858-0933
Intersystems Management
Computer Consultancy
Story Hill Rd. RFD3
Dunbarton, NH 03045
603/774-7762
Laxen, Henry H.
1259 Cornell Ave.
Berkeley, CA 94706

McIntosh, Norman
2908 California Ave., #3
San Francisco, CA 941 15

2 13/W8-8302

2131829-1074

41 5/366-6124

415/525-8582

415/563-1246

(Continued on page 33)

FORTH Dimensions Volume V, No. 1 43

1 FORTH INTEREST GROUP

MAIL ORDER

I

OMeemberahip in FORTH Interest Group and

OBack Volumes of FORTH DIMENSIONS. Rka pa d-

Ofig-FORTH Installation Manual, containing the language model

OAssembly Language Source Listings o f fig-FORTH for specific CPUS

Volume V of FORTH DIMENSIONS

0 1 0 11 OIU 0 1 v

of fig-FORTH, a complete glossary, mcmory map and installation instructions

and machines. The above manual is required for installation.
Check appropriate box(es). R i pa ad^.
01802 06502 06800 06809 OVAX 0 2 8 0
nweo O8086/8088 omo OAPPLE 11 O E a r P s E
UPACE JNOVA OPW-11 068000 OALPHA MICRO

n'5tart ing FORTH" by Brodie. BEST book on FORTH. (Paperback)
O"Starting FORTH' by Brodie. (Hard Cover)
OPROCEEDINGS 1980 FORML (FORTH Modification Lab) Conference
OPROCEEDINGS 1981 FORML Conference, Both Volumes

DVoIume I, Language Structure
OVolume 11, Systems and Applications

OPROCEEDINGS 1982 FORML Conference
OPROCEEDINGS 1981 FORTH u l i v . of Rochester Conference
gPROCEEDINGS 1982 FORTH ul iv. of Rochester Conference
OFORTH-79 Standard, a publication of the FORTH Standard8 Team
O K i t t Peak Primer, by Stevens. An in-depth self-study primer.
OBYTE Magazine Reprints of FORTH articles, 8/80 to 4/81
OFIG T-shirts: OSmall OMedium OLarge OX-Larqe
OPoster, August 1980 BYTE cover, 16" x 22"
UFORTH Programmer's Reference Card. If ordered separately,

0 0 1 . Dobb's Journal, Tvo FORTE Iacnrcs, 9/81 6 9/82
send a stamped, addressed envelope.

LlsA
$15

$15

$15

$15

$18
$22

$25
$40
$25
$25
$2 5
$25
$25
$15
$25
$ 5
$10
$ 3

$ 7

FOREIGN
AIR
$27

$18

$18

$18

$22
$27
$35
$55
$35
$35
$35
$55
$35
$18
$35
$10
$12
$ 5

FREE

$10

FORTH INTEREST GROUP* PO BOX 1108 *SAW CARLO8. CA 94070
I _ _ _ -.-.-- 1..-.- -_..__-_- ~" _- - I --- -- .--__I

c-_ I - ____-
TH INTER ST GROUP

,-' 13. BOX 1105
5,-:r.i Carlos, CA 94070

I

Address Correction Requested

