
Gforth
for version 0.6.2, August 25, 2003

Neal Crook
Anton Ertl
David Kuehling
Bernd Paysan
Jens Wilke

This manual is for Gforth (version 0.6.2, August 25, 2003), a fast and portable implemen-
tation of the ANS Forth language

Copyright c© 1995, 1996, 1997, 1998, 2000, 2003 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Free Documentation License, Version 1.1 or any later
version published by the Free Software Foundation; with no Invariant Sections,
with the Front-Cover texts being “A GNU Manual,” and with the Back-Cover
Texts as in (a) below. A copy of the license is included in the section entitled
“GNU Free Documentation License.”

(a) The FSF’s Back-Cover Text is: “You have freedom to copy and modify
this GNU Manual, like GNU software. Copies published by the Free Software
Foundation raise funds for GNU development.”

i

Table of Contents

Preface . 1

1 Goals of Gforth . 2

2 Gforth Environment . 3
2.1 Invoking Gforth . 3
2.2 Leaving Gforth . 6
2.3 Command-line editing . 6
2.4 Environment variables . 7
2.5 Gforth files . 7
2.6 Gforth in pipes . 7
2.7 Startup speed . 8

3 Forth Tutorial . 10
3.1 Starting Gforth . 10
3.2 Syntax . 10
3.3 Crash Course . 11
3.4 Stack . 11
3.5 Arithmetics . 11
3.6 Stack Manipulation. 12
3.7 Using files for Forth code . 13
3.8 Comments . 13
3.9 Colon Definitions . 14
3.10 Decompilation . 14
3.11 Stack-Effect Comments . 14
3.12 Types . 16
3.13 Factoring . 16
3.14 Designing the stack effect . 17
3.15 Local Variables . 17
3.16 Conditional execution . 18
3.17 Flags and Comparisons . 19
3.18 General Loops . 20
3.19 Counted loops . 21
3.20 Recursion. 22
3.21 Leaving definitions or loops . 22
3.22 Return Stack . 23
3.23 Memory . 24
3.24 Characters and Strings . 25
3.25 Alignment . 26
3.26 Files . 26

3.26.1 Open file for input . 26
3.26.2 Create file for output . 26

ii

3.26.3 Scan file for a particular line. 27
3.26.4 Copy input to output . 27
3.26.5 Close files . 28

3.27 Interpretation and Compilation Semantics and Immediacy
. 28

3.28 Execution Tokens . 29
3.29 Exceptions. 30
3.30 Defining Words . 31
3.31 Arrays and Records . 33
3.32 POSTPONE . 33
3.33 Literal . 34
3.34 Advanced macros . 35
3.35 Compilation Tokens . 36
3.36 Wordlists and Search Order . 36

4 An Introduction to ANS Forth 38
4.1 Introducing the Text Interpreter . 38
4.2 Stacks, postfix notation and parameter passing 40
4.3 Your first Forth definition . 43
4.4 How does that work? . 44
4.5 Forth is written in Forth . 46
4.6 Review - elements of a Forth system . 47
4.7 Where To Go Next . 47
4.8 Exercises . 48

5 Forth Words. 49
5.1 Notation . 49
5.2 Case insensitivity . 50
5.3 Comments . 51
5.4 Boolean Flags . 51
5.5 Arithmetic . 51

5.5.1 Single precision . 52
5.5.2 Double precision . 52
5.5.3 Bitwise operations . 53
5.5.4 Numeric comparison . 53
5.5.5 Mixed precision . 54
5.5.6 Floating Point . 55

5.6 Stack Manipulation. 57
5.6.1 Data stack . 57
5.6.2 Floating point stack . 58
5.6.3 Return stack . 58
5.6.4 Locals stack . 59
5.6.5 Stack pointer manipulation . 59

5.7 Memory . 59
5.7.1 ANS Forth and Gforth memory models 59
5.7.2 Dictionary allocation . 60
5.7.3 Heap allocation . 61
5.7.4 Memory Access . 61

iii

5.7.5 Address arithmetic . 62
5.7.6 Memory Blocks . 64

5.8 Control Structures . 65
5.8.1 Selection . 65
5.8.2 Simple Loops . 66
5.8.3 Counted Loops . 67
5.8.4 Arbitrary control structures . 69

5.8.4.1 Programming Style . 70
5.8.5 Calls and returns . 71
5.8.6 Exception Handling . 71

5.9 Defining Words . 73
5.9.1 CREATE . 73
5.9.2 Variables . 74
5.9.3 Constants . 75
5.9.4 Values . 76
5.9.5 Colon Definitions . 76
5.9.6 Anonymous Definitions. 76
5.9.7 Supplying the name of a defined word 77
5.9.8 User-defined Defining Words . 77

5.9.8.1 Applications of CREATE..DOES> 80
5.9.8.2 The gory details of CREATE..DOES> 81
5.9.8.3 Advanced does> usage example. 81
5.9.8.4 Const-does> . 83

5.9.9 Deferred words . 83
5.9.10 Aliases . 85

5.10 Interpretation and Compilation Semantics 86
5.10.1 Combined Words . 86

5.11 Tokens for Words . 88
5.11.1 Execution token . 88
5.11.2 Compilation token . 89
5.11.3 Name token . 90

5.12 Compiling words . 91
5.12.1 Literals . 91
5.12.2 Macros . 92

5.13 The Text Interpreter . 94
5.13.1 Input Sources . 96
5.13.2 Number Conversion . 97
5.13.3 Interpret/Compile states . 99
5.13.4 Interpreter Directives . 99

5.14 The Input Stream . 100
5.15 Word Lists . 102

5.15.1 Vocabularies . 104
5.15.2 Why use word lists? . 104
5.15.3 Word list example . 105

5.16 Environmental Queries . 105
5.17 Files . 107

5.17.1 Forth source files . 107
5.17.2 General files . 108

iv

5.17.3 Search Paths . 109
5.17.3.1 Source Search Paths. 109
5.17.3.2 General Search Paths 110

5.18 Blocks. 110
5.19 Other I/O . 114

5.19.1 Simple numeric output . 114
5.19.2 Formatted numeric output 115
5.19.3 String Formats . 118
5.19.4 Displaying characters and strings 118
5.19.5 Input . 120
5.19.6 Pipes . 121

5.20 Locals . 122
5.20.1 Gforth locals . 122

5.20.1.1 Where are locals visible by name? 123
5.20.1.2 How long do locals live? 125
5.20.1.3 Locals programming style. 125
5.20.1.4 Locals implementation 127

5.20.2 ANS Forth locals . 128
5.21 Structures . 129

5.21.1 Why explicit structure support? 129
5.21.2 Structure Usage . 131
5.21.3 Structure Naming Convention 132
5.21.4 Structure Implementation . 132
5.21.5 Structure Glossary . 133

5.22 Object-oriented Forth . 133
5.22.1 Why object-oriented programming? 134
5.22.2 Object-Oriented Terminology 134
5.22.3 The ‘objects.fs’ model . 135

5.22.3.1 Properties of the ‘objects.fs’ model
. 135

5.22.3.2 Basic ‘objects.fs’ Usage 135
5.22.3.3 The ‘object.fs’ base class 136
5.22.3.4 Creating objects . 136
5.22.3.5 Object-Oriented Programming Style . . 137
5.22.3.6 Class Binding . 137
5.22.3.7 Method conveniences 138
5.22.3.8 Classes and Scoping 139
5.22.3.9 Dividing classes . 139
5.22.3.10 Object Interfaces 140
5.22.3.11 ‘objects.fs’ Implementation 141
5.22.3.12 ‘objects.fs’ Glossary 142

5.22.4 The ‘oof.fs’ model . 145
5.22.4.1 Properties of the ‘oof.fs’ model 145
5.22.4.2 Basic ‘oof.fs’ Usage 145
5.22.4.3 The ‘oof.fs’ base class. 146
5.22.4.4 Class Declaration 147
5.22.4.5 Class Implementation 148

5.22.5 The ‘mini-oof.fs’ model . 148

v

5.22.5.1 Basic ‘mini-oof.fs’ Usage 148
5.22.5.2 Mini-OOF Example 149
5.22.5.3 ‘mini-oof.fs’ Implementation 150

5.22.6 Comparison with other object models 151
5.23 Programming Tools . 152

5.23.1 Examining data and code . 152
5.23.2 Forgetting words . 153
5.23.3 Debugging . 154
5.23.4 Assertions . 154
5.23.5 Singlestep Debugger . 156

5.24 Assembler and Code Words . 157
5.24.1 Code and ;code . 157
5.24.2 Common Assembler . 158
5.24.3 Common Disassembler . 159
5.24.4 386 Assembler . 159
5.24.5 Alpha Assembler . 161
5.24.6 MIPS assembler . 161
5.24.7 Other assemblers . 162

5.25 Threading Words . 162
5.26 Passing Commands to the Operating System 164
5.27 Keeping track of Time . 164
5.28 Miscellaneous Words . 164

6 Error messages . 165

7 Tools . 166
7.1 ‘ans-report.fs’: Report the words used, sorted by wordset

. 166
7.1.1 Caveats . 166

8 ANS conformance . 167
8.1 The Core Words . 168

8.1.1 Implementation Defined Options 168
8.1.2 Ambiguous conditions . 171
8.1.3 Other system documentation 174

8.2 The optional Block word set . 174
8.2.1 Implementation Defined Options 174
8.2.2 Ambiguous conditions . 174
8.2.3 Other system documentation 175

8.3 The optional Double Number word set 175
8.3.1 Ambiguous conditions . 175

8.4 The optional Exception word set . 175
8.4.1 Implementation Defined Options 175

8.5 The optional Facility word set . 175
8.5.1 Implementation Defined Options 175
8.5.2 Ambiguous conditions . 176

8.6 The optional File-Access word set . 176

vi

8.6.1 Implementation Defined Options 176
8.6.2 Ambiguous conditions . 177

8.7 The optional Floating-Point word set 177
8.7.1 Implementation Defined Options 177
8.7.2 Ambiguous conditions . 178

8.8 The optional Locals word set . 179
8.8.1 Implementation Defined Options 179
8.8.2 Ambiguous conditions . 179

8.9 The optional Memory-Allocation word set 179
8.9.1 Implementation Defined Options 180

8.10 The optional Programming-Tools word set 180
8.10.1 Implementation Defined Options 180
8.10.2 Ambiguous conditions . 180

8.11 The optional Search-Order word set 181
8.11.1 Implementation Defined Options 181
8.11.2 Ambiguous conditions . 181

9 Should I use Gforth extensions? 182

10 Model . 183

11 Integrating Gforth into C programs 184

12 Emacs and Gforth . 185
12.1 Installing gforth.el . 185
12.2 Emacs Tags. 185
12.3 Hilighting . 186
12.4 Auto-Indentation. 186
12.5 Blocks Files . 187

13 Image Files . 188
13.1 Image Licensing Issues . 188
13.2 Image File Background . 188
13.3 Non-Relocatable Image Files . 189
13.4 Data-Relocatable Image Files . 189
13.5 Fully Relocatable Image Files . 190

13.5.1 ‘gforthmi’ . 190
13.5.2 ‘cross.fs’ . 191

13.6 Stack and Dictionary Sizes . 191
13.7 Running Image Files . 191
13.8 Modifying the Startup Sequence . 192

vii

14 Engine . 193
14.1 Portability . 193
14.2 Threading . 194

14.2.1 Scheduling . 194
14.2.2 Direct or Indirect Threaded? 195
14.2.3 Dynamic Superinstructions 195
14.2.4 DOES> . 197

14.3 Primitives . 197
14.3.1 Automatic Generation . 197
14.3.2 TOS Optimization . 199
14.3.3 Produced code . 199

14.4 Performance . 200

15 Cross Compiler . 202
15.1 Using the Cross Compiler . 202
15.2 How the Cross Compiler Works . 204

Appendix A Bugs . 205

Appendix B Authors and Ancestors of Gforth
. 206
B.1 Authors and Contributors . 206
B.2 Pedigree . 206

Appendix C Other Forth-related information
. 207

Appendix D Licenses . 208
D.1 GNU Free Documentation License . 208

D.1.1 ADDENDUM: How to use this License for your
documents . 214

D.2 GNU GENERAL PUBLIC LICENSE 214
Preamble . 214
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION

AND MODIFICATION . 215
How to Apply These Terms to Your New Programs 220

Word Index . 222

Concept and Word Index . 231

Preface 1

Preface

This manual documents Gforth. Some introductory material is provided for readers
who are unfamiliar with Forth or who are migrating to Gforth from other Forth compilers.
However, this manual is primarily a reference manual.

Chapter 1: Goals of Gforth 2

1 Goals of Gforth

The goal of the Gforth Project is to develop a standard model for ANS Forth. This can
be split into several subgoals:

• Gforth should conform to the ANS Forth Standard.

• It should be a model, i.e. it should define all the implementation-dependent things.

• It should become standard, i.e. widely accepted and used. This goal is the most difficult
one.

To achieve these goals Gforth should be

• Similar to previous models (fig-Forth, F83)

• Powerful. It should provide for all the things that are considered necessary today and
even some that are not yet considered necessary.

• Efficient. It should not get the reputation of being exceptionally slow.

• Free.

• Available on many machines/easy to port.

Have we achieved these goals? Gforth conforms to the ANS Forth standard. It may
be considered a model, but we have not yet documented which parts of the model are
stable and which parts we are likely to change. It certainly has not yet become a de
facto standard, but it appears to be quite popular. It has some similarities to and some
differences from previous models. It has some powerful features, but not yet everything
that we envisioned. We certainly have achieved our execution speed goals (see Section 14.4
[Performance], page 200)1. It is free and available on many machines.

1 However, in 1998 the bar was raised when the major commercial Forth vendors switched to native code
compilers.

Chapter 2: Gforth Environment 3

2 Gforth Environment

Note: ultimately, the Gforth man page will be auto-generated from the material in this
chapter.

For related information about the creation of images see Chapter 13 [Image Files],
page 188.

2.1 Invoking Gforth

Gforth is made up of two parts; an executable “engine” (named gforth or gforth-fast)
and an image file. To start it, you will usually just say gforth – this automatically loads
the default image file ‘gforth.fi’. In many other cases the default Gforth image will be
invoked like this:

gforth [file | -e forth-code] ...

This interprets the contents of the files and the Forth code in the order they are given.

In addition to the gforth engine, there is also an engine called gforth-fast, which is
faster, but gives less informative error messages (see Chapter 6 [Error messages], page 165)
and may catch some stack underflows later or not at all. You should use it for debugged,
performance-critical programs.

Moreover, there is an engine called gforth-itc, which is useful in some backwards-
compatibility situations (see Section 14.2.2 [Direct or Indirect Threaded?], page 195).

In general, the command line looks like this:

gforth[-fast] [engine options] [image options]

The engine options must come before the rest of the command line. They are:

--image-file file
-i file Loads the Forth image file instead of the default ‘gforth.fi’ (see Chapter 13

[Image Files], page 188).

--appl-image file
Loads the image file and leaves all further command-line arguments to the
image (instead of processing them as engine options). This is useful for building
executable application images on Unix, built with gforthmi --application

....

--path path
-p path Uses path for searching the image file and Forth source code files instead of

the default in the environment variable GFORTHPATH or the path specified at
installation time (e.g., ‘/usr/local/share/gforth/0.2.0:.’). A path is given
as a list of directories, separated by ‘:’ (on Unix) or ‘;’ (on other OSs).

--dictionary-size size
-m size Allocate size space for the Forth dictionary space instead of using the default

specified in the image (typically 256K). The size specification for this and sub-
sequent options consists of an integer and a unit (e.g., 4M). The unit can be one
of b (bytes), e (element size, in this case Cells), k (kilobytes), M (Megabytes), G
(Gigabytes), and T (Terabytes). If no unit is specified, e is used.

Chapter 2: Gforth Environment 4

--data-stack-size size
-d size Allocate size space for the data stack instead of using the default specified in

the image (typically 16K).

--return-stack-size size
-r size Allocate size space for the return stack instead of using the default specified in

the image (typically 15K).

--fp-stack-size size
-f size Allocate size space for the floating point stack instead of using the default

specified in the image (typically 15.5K). In this case the unit specifier e refers
to floating point numbers.

--locals-stack-size size
-l size Allocate size space for the locals stack instead of using the default specified in

the image (typically 14.5K).

--help

-h Print a message about the command-line options

--version

-v Print version and exit

--debug Print some information useful for debugging on startup.

--offset-image

Start the dictionary at a slightly different position than would be used otherwise
(useful for creating data-relocatable images, see Section 13.4 [Data-Relocatable
Image Files], page 189).

--no-offset-im

Start the dictionary at the normal position.

--clear-dictionary

Initialize all bytes in the dictionary to 0 before loading the image (see Sec-
tion 13.4 [Data-Relocatable Image Files], page 189).

--die-on-signal

Normally Gforth handles most signals (e.g., the user interrupt SIGINT, or the
segmentation violation SIGSEGV) by translating it into a Forth THROW. With
this option, Gforth exits if it receives such a signal. This option is useful when
the engine and/or the image might be severely broken (such that it causes
another signal before recovering from the first); this option avoids endless loops
in such cases.

--no-dynamic

--dynamic

Disable or enable dynamic superinstructions with replication (see Section 14.2.3
[Dynamic Superinstructions], page 195).

--no-super

Disable dynamic superinstructions, use just dynamic replication; this is useful
if you want to patch threaded code (see Section 14.2.3 [Dynamic Superinstruc-
tions], page 195).

Chapter 2: Gforth Environment 5

--ss-number=N
Use only the first N static superinstructions compiled into the engine (default:
use them all; note that only gforth-fast has any). This option is useful for
measuring the performance impact of static superinstructions.

--ss-min-codesize

--ss-min-ls

--ss-min-lsu

--ss-min-nexts

Use specified metric for determining the cost of a primitive or static superin-
struction for static superinstruction selection. Codesize is the native code size
of the primive or static superinstruction, ls is the number of loads and stores,
lsu is the number of loads, stores, and updates, and nexts is the number
of dispatches (not taking dynamic superinstructions into account), i.e. every
primitive or static superinstruction has cost 1. Default: codesize if you use
dynamic code generation, otherwise nexts.

--ss-greedy

This option is useful for measuring the performance impact of static superin-
structions. By default, an optimal shortest-path algorithm is used for selecting
static superinstructions. With ‘--ss-greedy’ this algorithm is modified to as-
sume that anything after the static superinstruction currently under considera-
tion is not combined into static superinstructions. With ‘--ss-min-nexts’ this
produces the same result as a greedy algorithm that always selects the longest
superinstruction available at the moment. E.g., if there are superinstructions
AB and BCD, then for the sequence A B C D the optimal algorithm will select
A BCD and the greedy algorithm will select AB C D.

--print-metrics

Prints some metrics used during static superinstruction selection: code size is
the actual size of the dynamically generated code. Metric codesize is the sum
of the codesize metrics as seen by static superinstruction selection; there is a
difference from code size, because not all primitives and static superinstruc-
tions are compiled into dynamically generated code, and because of markers.
The other metrics correspond to the ‘ss-min-...’ options. This option is useful
for evaluating the effects of the ‘--ss-...’ options.

As explained above, the image-specific command-line arguments for the default image
‘gforth.fi’ consist of a sequence of filenames and -e forth-code options that are interpreted
in the sequence in which they are given. The -e forth-code or --evaluate forth-code option
evaluates the Forth code. This option takes only one argument; if you want to evaluate
more Forth words, you have to quote them or use -e several times. To exit after processing
the command line (instead of entering interactive mode) append -e bye to the command
line.

If you have several versions of Gforth installed, gforth will invoke the version that was
installed last. gforth-version invokes a specific version. If your environment contains the
variable GFORTHPATH, you may want to override it by using the --path option.

Not yet implemented: On startup the system first executes the system initialization file
(unless the option --no-init-file is given; note that the system resulting from using this

Chapter 2: Gforth Environment 6

option may not be ANS Forth conformant). Then the user initialization file ‘.gforth.fs’
is executed, unless the option --no-rc is given; this file is searched for in ‘.’, then in ‘~’,
then in the normal path (see above).

2.2 Leaving Gforth

You can leave Gforth by typing bye or Ctrl-d (at the start of a line) or (if you invoked
Gforth with the --die-on-signal option) Ctrl-c. When you leave Gforth, all of your
definitions and data are discarded. For ways of saving the state of the system before leaving
Gforth see Chapter 13 [Image Files], page 188.

bye – tools-ext “bye”

Return control to the host operating system (if any).

2.3 Command-line editing

Gforth maintains a history file that records every line that you type to the text inter-
preter. This file is preserved between sessions, and is used to provide a command-line recall
facility; if you type Ctrl-P repeatedly you can recall successively older commands from this
(or previous) session(s). The full list of command-line editing facilities is:

• Ctrl-p (“previous”) (or up-arrow) to recall successively older commands from the
history buffer.

• Ctrl-n (“next”) (or down-arrow) to recall successively newer commands from the his-
tory buffer.

• Ctrl-f (or right-arrow) to move the cursor right, non-destructively.

• Ctrl-b (or left-arrow) to move the cursor left, non-destructively.

• Ctrl-h (backspace) to delete the character to the left of the cursor, closing up the line.

• Ctrl-k to delete (“kill”) from the cursor to the end of the line.

• Ctrl-a to move the cursor to the start of the line.

• Ctrl-e to move the cursor to the end of the line.

• 〈RET〉 (Ctrl-m) or 〈LFD〉 (Ctrl-j) to submit the current line.

• 〈TAB〉 to step through all possible full-word completions of the word currently being
typed.

• Ctrl-d on an empty line line to terminate Gforth (gracefully, using bye).

• Ctrl-x (or Ctrl-d on a non-empty line) to delete the character under the cursor.

When editing, displayable characters are inserted to the left of the cursor position; the
line is always in “insert” (as opposed to “overstrike”) mode.

On Unix systems, the history file is ‘~/.gforth-history’ by default1. You can find out
the name and location of your history file using:

history-file type \ Unix-class systems

history-file type \ Other systems

1 i.e. it is stored in the user’s home directory.

Chapter 2: Gforth Environment 7

history-dir type

If you enter long definitions by hand, you can use a text editor to paste them out of the
history file into a Forth source file for reuse at a later time.

Gforth never trims the size of the history file, so you should do this periodically, if
necessary.

2.4 Environment variables

Gforth uses these environment variables:

• GFORTHHIST – (Unix systems only) specifies the directory in which to open/create the
history file, ‘.gforth-history’. Default: $HOME.

• GFORTHPATH – specifies the path used when searching for the gforth image file and for
Forth source-code files.

• GFORTH – used by ‘gforthmi’, See Section 13.5.1 [gforthmi], page 190.

• GFORTHD – used by ‘gforthmi’, See Section 13.5.1 [gforthmi], page 190.

• TMP, TEMP - (non-Unix systems only) used as a potential location for the history file.

All the Gforth environment variables default to sensible values if they are not set.

2.5 Gforth files

When you install Gforth on a Unix system, it installs files in these locations by default:

• ‘/usr/local/bin/gforth’

• ‘/usr/local/bin/gforthmi’

• ‘/usr/local/man/man1/gforth.1’ - man page.

• ‘/usr/local/info’ - the Info version of this manual.

• ‘/usr/local/lib/gforth/<version>/...’ - Gforth ‘.fi’ files.

• ‘/usr/local/share/gforth/<version>/TAGS’ - Emacs TAGS file.

• ‘/usr/local/share/gforth/<version>/...’ - Gforth source files.

• ‘.../emacs/site-lisp/gforth.el’ - Emacs gforth mode.

You can select different places for installation by using configure options (listed with
configure --help).

2.6 Gforth in pipes

Gforth can be used in pipes created elsewhere (described here). It can also create pipes
on its own (see Section 5.19.6 [Pipes], page 121).

If you pipe into Gforth, your program should read with read-file or read-line from
stdin (see Section 5.17.2 [General files], page 108). Key does not recognize the end of input.
Words like accept echo the input and are therefore usually not useful for reading from a
pipe. You have to invoke the Forth program with an OS command-line option, as you have
no chance to use the Forth command line (the text interpreter would try to interpret the
pipe input).

Chapter 2: Gforth Environment 8

You can output to a pipe with type, emit, cr etc.

When you write to a pipe that has been closed at the other end, Gforth receives a
SIGPIPE signal (“pipe broken”). Gforth translates this into the exception broken-pipe-

error. If your application does not catch that exception, the system catches it and exits,
usually silently (unless you were working on the Forth command line; then it prints an error
message and exits). This is usually the desired behaviour.

If you do not like this behaviour, you have to catch the exception yourself, and react to
it.

Here’s an example of an invocation of Gforth that is usable in a pipe:

gforth -e ": foo begin pad dup 10 stdin read-file throw dup while \
type repeat ; foo bye"

This example just copies the input verbatim to the output. A very simple pipe containing
this example looks like this:

cat startup.fs |
gforth -e ": foo begin pad dup 80 stdin read-file throw dup while \
type repeat ; foo bye"|

head

Pipes involving Gforth’s stderr output do not work.

2.7 Startup speed

If Gforth is used for CGI scripts or in shell scripts, its startup speed may become a
problem. On a 300MHz 21064a under Linux-2.2.13 with glibc-2.0.7, gforth -e bye takes
about 24.6ms user and 11.3ms system time.

If startup speed is a problem, you may consider the following ways to improve it; or you
may consider ways to reduce the number of startups (for example, by using Fast-CGI).

An easy step that influences Gforth startup speed is the use of the ‘--no-dynamic’
option; this decreases image loading speed, but increases compile-time and run-time.

Another step to improve startup speed is to statically link Gforth, by building it with
XLDFLAGS=-static. This requires more memory for the code and will therefore slow down
the first invocation, but subsequent invocations avoid the dynamic linking overhead. An-
other disadvantage is that Gforth won’t profit from library upgrades. As a result, gforth-
static -e bye takes about 17.1ms user and 8.2ms system time.

The next step to improve startup speed is to use a non-relocatable image (see Sec-
tion 13.3 [Non-Relocatable Image Files], page 189). You can create this image with gforth -

e "savesystem gforthnr.fi bye" and later use it with gforth -i gforthnr.fi This
avoids the relocation overhead and a part of the copy-on-write overhead. The disadvantage
is that the non-relocatable image does not work if the OS gives Gforth a different address
for the dictionary, for whatever reason; so you better provide a fallback on a relocatable
image. gforth-static -i gforthnr.fi -e bye takes about 15.3ms user and 7.5ms system
time.

The final step is to disable dictionary hashing in Gforth. Gforth builds the hash table on
startup, which takes much of the startup overhead. You can do this by commenting out the
include hash.fs in ‘startup.fs’ and everything that requires ‘hash.fs’ (at the moment

Chapter 2: Gforth Environment 9

‘table.fs’ and ‘ekey.fs’) and then doing make. The disadvantages are that functionality
like table and ekey is missing and that text interpretation (e.g., compiling) now takes much
longer. So, you should only use this method if there is no significant text interpretation
to perform (the script should be compiled into the image, amongst other things). gforth-
static -i gforthnrnh.fi -e bye takes about 2.1ms user and 6.1ms system time.

Chapter 3: Forth Tutorial 10

3 Forth Tutorial

The difference of this chapter from the Introduction (see Chapter 4 [Introduction],
page 38) is that this tutorial is more fast-paced, should be used while sitting in front
of a computer, and covers much more material, but does not explain how the Forth system
works.

This tutorial can be used with any ANS-compliant Forth; any Gforth-specific features
are marked as such and you can skip them if you work with another Forth. This tutorial
does not explain all features of Forth, just enough to get you started and give you some
ideas about the facilities available in Forth. Read the rest of the manual and the standard
when you are through this.

The intended way to use this tutorial is that you work through it while sitting in front
of the console, take a look at the examples and predict what they will do, then try them
out; if the outcome is not as expected, find out why (e.g., by trying out variations of the
example), so you understand what’s going on. There are also some assignments that you
should solve.

This tutorial assumes that you have programmed before and know what, e.g., a loop is.

3.1 Starting Gforth

You can start Gforth by typing its name:

gforth

That puts you into interactive mode; you can leave Gforth by typing bye. While in
Gforth, you can edit the command line and access the command line history with cursor
keys, similar to bash.

3.2 Syntax

A word is a sequence of arbitrary characters (expcept white space). Words are separated
by white space. E.g., each of the following lines contains exactly one word:

word
!@#$%^&*()
1234567890
5!a

A frequent beginner’s error is to leave away necessary white space, resulting in an error
like ‘Undefined word’; so if you see such an error, check if you have put spaces wherever
necessary.

." hello, world" \ correct

."hello, world" \ gives an "Undefined word" error

Gforth and most other Forth systems ignore differences in case (they are case-insensitive),
i.e., ‘word’ is the same as ‘Word’. If your system is case-sensitive, you may have to type all
the examples given here in upper case.

Chapter 3: Forth Tutorial 11

3.3 Crash Course

Type

0 0 !
here execute
’ catch >body 20 erase abort
’ (quit) >body 20 erase

The last two examples are guaranteed to destroy parts of Gforth (and most other sys-
tems), so you better leave Gforth afterwards (if it has not finished by itself). On some
systems you may have to kill gforth from outside (e.g., in Unix with kill).

Now that you know how to produce crashes (and that there’s not much to them), let’s
learn how to produce meaningful programs.

3.4 Stack

The most obvious feature of Forth is the stack. When you type in a number, it is pushed
on the stack. You can display the content of the stack with .s.

1 2 .s
3 .s

.s displays the top-of-stack to the right, i.e., the numbers appear in .s output as they
appeared in the input.

You can print the top of stack element with ..

1 2 3 . . .

In general, words consume their stack arguments (.s is an exception).

Assignment:
What does the stack contain after 5 6 7 .?

3.5 Arithmetics

The words +, -, *, /, and mod always operate on the top two stack items:

2 2 .s
+ .s
.
2 1 - .
7 3 mod .

The operands of -, /, and mod are in the same order as in the corresponding infix
expression (this is generally the case in Forth).

Parentheses are superfluous (and not available), because the order of the words unam-
biguously determines the order of evaluation and the operands:

3 4 + 5 * .
3 4 5 * + .

Assignment:
What are the infix expressions corresponding to the Forth code above? Write
6-7*8+9 in Forth notation1.

1 This notation is also known as Postfix or RPN (Reverse Polish Notation).

Chapter 3: Forth Tutorial 12

To change the sign, use negate:

2 negate .

Assignment:
Convert -(-3)*4-5 to Forth.

/mod performs both / and mod.

7 3 /mod . .

Reference: Section 5.5 [Arithmetic], page 51.

3.6 Stack Manipulation

Stack manipulation words rearrange the data on the stack.

1 .s drop .s
1 .s dup .s drop drop .s
1 2 .s over .s drop drop drop
1 2 .s swap .s drop drop
1 2 3 .s rot .s drop drop drop

These are the most important stack manipulation words. There are also variants that
manipulate twice as many stack items:

1 2 3 4 .s 2swap .s 2drop 2drop

Two more stack manipulation words are:

1 2 .s nip .s drop
1 2 .s tuck .s 2drop drop

Assignment:
Replace nip and tuck with combinations of other stack manipulation words.

Given: How do you get:
1 2 3 3 2 1
1 2 3 1 2 3 2
1 2 3 1 2 3 3
1 2 3 1 3 3
1 2 3 2 1 3
1 2 3 4 4 3 2 1
1 2 3 1 2 3 1 2 3
1 2 3 4 1 2 3 4 1 2
1 2 3
1 2 3 1 2 3 4
1 2 3 1 3

5 dup * .

Assignment:
Write 17^3 and 17^4 in Forth, without writing 17 more than once. Write a
piece of Forth code that expects two numbers on the stack (a and b, with b on
top) and computes (a-b)(a+1).

Reference: Section 5.6 [Stack Manipulation], page 57.

Chapter 3: Forth Tutorial 13

3.7 Using files for Forth code

While working at the Forth command line is convenient for one-line examples and short
one-off code, you probably want to store your source code in files for convenient editing
and persistence. You can use your favourite editor (Gforth includes Emacs support, see
Chapter 12 [Emacs and Gforth], page 185) to create file.fs and use

s" file.fs" included

to load it into your Forth system. The file name extension I use for Forth files is ‘.fs’.

You can easily start Gforth with some files loaded like this:

gforth file1.fs file2.fs

If an error occurs during loading these files, Gforth terminates, whereas an error during
INCLUDED within Gforth usually gives you a Gforth command line. Starting the Forth
system every time gives you a clean start every time, without interference from the results
of earlier tries.

I often put all the tests in a file, then load the code and run the tests with

gforth code.fs tests.fs -e bye

(often by performing this command with C-x C-e in Emacs). The -e bye ensures that
Gforth terminates afterwards so that I can restart this command without ado.

The advantage of this approach is that the tests can be repeated easily every time the
program ist changed, making it easy to catch bugs introduced by the change.

Reference: Section 5.17.1 [Forth source files], page 107.

3.8 Comments

\ That’s a comment; it ends at the end of the line
(Another comment; it ends here:) .s

\ and (are ordinary Forth words and therefore have to be separated with white space
from the following text.

\This gives an "Undefined word" error

The first) ends a comment started with (, so you cannot nest (-comments; and you
cannot comment out text containing a) with (...)2.

I use \-comments for descriptive text and for commenting out code of one or more line;
I use (-comments for describing the stack effect, the stack contents, or for commenting out
sub-line pieces of code.

The Emacs mode ‘gforth.el’ (see Chapter 12 [Emacs and Gforth], page 185) supports
these uses by commenting out a region with C-x \, uncommenting a region with C-u C-x

\, and filling a \-commented region with M-q.

Reference: Section 5.3 [Comments], page 51.

2 therefore it’s a good idea to avoid) in word names.

Chapter 3: Forth Tutorial 14

3.9 Colon Definitions

are similar to procedures and functions in other programming languages.

: squared (n -- n^2)
dup * ;

5 squared .
7 squared .

: starts the colon definition; its name is squared. The following comment describes its
stack effect. The words dup * are not executed, but compiled into the definition. ; ends
the colon definition.

The newly-defined word can be used like any other word, including using it in other
definitions:

: cubed (n -- n^3)
dup squared * ;

-5 cubed .
: fourth-power (n -- n^4)

squared squared ;
3 fourth-power .

Assignment:
Write colon definitions for nip, tuck, negate, and /mod in terms of other Forth
words, and check if they work (hint: test your tests on the originals first). Don’t
let the ‘redefined’-Messages spook you, they are just warnings.

Reference: Section 5.9.5 [Colon Definitions], page 76.

3.10 Decompilation

You can decompile colon definitions with see:

see squared
see cubed

In Gforth see shows you a reconstruction of the source code from the executable code.
Informations that were present in the source, but not in the executable code, are lost (e.g.,
comments).

You can also decompile the predefined words:

see .
see +

3.11 Stack-Effect Comments

By convention the comment after the name of a definition describes the stack effect:
The part in from of the ‘--’ describes the state of the stack before the execution of the
definition, i.e., the parameters that are passed into the colon definition; the part behind
the ‘--’ is the state of the stack after the execution of the definition, i.e., the results of the
definition. The stack comment only shows the top stack items that the definition accesses
and/or changes.

Chapter 3: Forth Tutorial 15

You should put a correct stack effect on every definition, even if it is just (--). You
should also add some descriptive comment to more complicated words (I usually do this
in the lines following :). If you don’t do this, your code becomes unreadable (because you
have to work through every definition before you can understand any).

Assignment:
The stack effect of swap can be written like this: x1 x2 -- x2 x1. Describe the
stack effect of -, drop, dup, over, rot, nip, and tuck. Hint: When you are
done, you can compare your stack effects to those in this manual (see [Word
Index], page 222).

Sometimes programmers put comments at various places in colon definitions that de-
scribe the contents of the stack at that place (stack comments); i.e., they are like the first
part of a stack-effect comment. E.g.,

: cubed (n -- n^3)
dup squared (n n^2) * ;

In this case the stack comment is pretty superfluous, because the word is simple enough.
If you think it would be a good idea to add such a comment to increase readability, you
should also consider factoring the word into several simpler words (see Section 3.13 [Factor-
ing], page 16), which typically eliminates the need for the stack comment; however, if you
decide not to refactor it, then having such a comment is better than not having it.

The names of the stack items in stack-effect and stack comments in the standard, in this
manual, and in many programs specify the type through a type prefix, similar to Fortran
and Hungarian notation. The most frequent prefixes are:

n signed integer

u unsigned integer

c character

f Boolean flags, i.e. false or true.

a-addr,a-

Cell-aligned address

c-addr,c-

Char-aligned address (note that a Char may have two bytes in Windows NT)

xt Execution token, same size as Cell

w,x Cell, can contain an integer or an address. It usually takes 32, 64 or 16 bits
(depending on your platform and Forth system). A cell is more commonly
known as machine word, but the term word already means something different
in Forth.

d signed double-cell integer

ud unsigned double-cell integer

r Float (on the FP stack)

You can find a more complete list in Section 5.1 [Notation], page 49.

Assignment:
Write stack-effect comments for all definitions you have written up to now.

Chapter 3: Forth Tutorial 16

3.12 Types

In Forth the names of the operations are not overloaded; so similar operations on different
types need different names; e.g., + adds integers, and you have to use f+ to add floating-
point numbers. The following prefixes are often used for related operations on different
types:

(none) signed integer

u unsigned integer

c character

d signed double-cell integer

ud, du unsigned double-cell integer

2 two cells (not-necessarily double-cell numbers)

m, um mixed single-cell and double-cell operations

f floating-point (note that in stack comments ‘f’ represents flags, and ‘r’ repre-
sents FP numbers).

If there are no differences between the signed and the unsigned variant (e.g., for +), there
is only the prefix-less variant.

Forth does not perform type checking, neither at compile time, nor at run time. If you
use the wrong oeration, the data are interpreted incorrectly:

-1 u.

If you have only experience with type-checked languages until now, and have heard how
important type-checking is, don’t panic! In my experience (and that of other Forthers),
type errors in Forth code are usually easy to find (once you get used to it), the increased
vigilance of the programmer tends to catch some harder errors in addition to most type
errors, and you never have to work around the type system, so in most situations the lack
of type-checking seems to be a win (projects to add type checking to Forth have not caught
on).

3.13 Factoring

If you try to write longer definitions, you will soon find it hard to keep track of the stack
contents. Therefore, good Forth programmers tend to write only short definitions (e.g.,
three lines). The art of finding meaningful short definitions is known as factoring (as in
factoring polynomials).

Well-factored programs offer additional advantages: smaller, more general words, are
easier to test and debug and can be reused more and better than larger, specialized words.

So, if you run into difficulties with stack management, when writing code, try to define
meaningful factors for the word, and define the word in terms of those. Even if a factor
contains only two words, it is often helpful.

Good factoring is not easy, and it takes some practice to get the knack for it; but even
experienced Forth programmers often don’t find the right solution right away, but only
when rewriting the program. So, if you don’t come up with a good solution immediately,
keep trying, don’t despair.

Chapter 3: Forth Tutorial 17

3.14 Designing the stack effect

In other languages you can use an arbitrary order of parameters for a function; and since
there is only one result, you don’t have to deal with the order of results, either.

In Forth (and other stack-based languages, e.g., PostScript) the parameter and result
order of a definition is important and should be designed well. The general guideline is
to design the stack effect such that the word is simple to use in most cases, even if that
complicates the implementation of the word. Some concrete rules are:

• Words consume all of their parameters (e.g., .).

• If there is a convention on the order of parameters (e.g., from mathematics or another
programming language), stick with it (e.g., -).

• If one parameter usually requires only a short computation (e.g., it is a constant), pass
it on the top of the stack. Conversely, parameters that usually require a long sequence
of code to compute should be passed as the bottom (i.e., first) parameter. This makes
the code easier to read, because reader does not need to keep track of the bottom item
through a long sequence of code (or, alternatively, through stack manipulations). E.g.,
! (store, see Section 5.7 [Memory], page 59) expects the address on top of the stack
because it is usually simpler to compute than the stored value (often the address is just
a variable).

• Similarly, results that are usually consumed quickly should be returned on the top of
stack, whereas a result that is often used in long computations should be passed as
bottom result. E.g., the file words like open-file return the error code on the top of
stack, because it is usually consumed quickly by throw; moreover, the error code has
to be checked before doing anything with the other results.

These rules are just general guidelines, don’t lose sight of the overall goal to make the
words easy to use. E.g., if the convention rule conflicts with the computation-length rule,
you might decide in favour of the convention if the word will be used rarely, and in favour
of the computation-length rule if the word will be used frequently (because with frequent
use the cost of breaking the computation-length rule would be quite high, and frequent use
makes it easier to remember an unconventional order).

3.15 Local Variables

You can define local variables (locals) in a colon definition:

: swap { a b -- b a }
b a ;

1 2 swap .s 2drop

(If your Forth system does not support this syntax, include ‘compat/anslocals.fs’
first).

In this example { a b -- b a } is the locals definition; it takes two cells from the stack,
puts the top of stack in b and the next stack element in a. -- starts a comment ending
with }. After the locals definition, using the name of the local will push its value on the
stack. You can leave the comment part (-- b a) away:

: swap (x1 x2 -- x2 x1)
{ a b } b a ;

Chapter 3: Forth Tutorial 18

In Gforth you can have several locals definitions, anywhere in a colon definition; in
contrast, in a standard program you can have only one locals definition per colon definition,
and that locals definition must be outside any controll structure.

With locals you can write slightly longer definitions without running into stack trouble.
However, I recommend trying to write colon definitions without locals for exercise purposes
to help you gain the essential factoring skills.

Assignment:
Rewrite your definitions until now with locals

Reference: Section 5.20 [Locals], page 122.

3.16 Conditional execution

In Forth you can use control structures only inside colon definitions. An if-structure
looks like this:

: abs (n1 -- +n2)
dup 0 < if

negate
endif ;

5 abs .
-5 abs .

if takes a flag from the stack. If the flag is non-zero (true), the following code is
performed, otherwise execution continues after the endif (or else). < compares the top
two stack elements and prioduces a flag:

1 2 < .
2 1 < .
1 1 < .

Actually the standard name for endif is then. This tutorial presents the examples
using endif, because this is often less confusing for people familiar with other programming
languages where then has a different meaning. If your system does not have endif, define
it with

: endif postpone then ; immediate

You can optionally use an else-part:

: min (n1 n2 -- n)
2dup < if

drop
else

nip
endif ;

2 3 min .
3 2 min .

Assignment:
Write min without else-part (hint: what’s the definition of nip?).

Reference: Section 5.8.1 [Selection], page 65.

Chapter 3: Forth Tutorial 19

3.17 Flags and Comparisons

In a false-flag all bits are clear (0 when interpreted as integer). In a canonical true-flag
all bits are set (-1 as a twos-complement signed integer); in many contexts (e.g., if) any
non-zero value is treated as true flag.

false .
true .
true hex u. decimal

Comparison words produce canonical flags:

1 1 = .
1 0= .
0 1 < .
0 0 < .
-1 1 u< . \ type error, u< interprets -1 as large unsigned number
-1 1 < .

Gforth supports all combinations of the prefixes 0 u d d0 du f f0 (or none) and the
comparisons = <> < > <= >=. Only a part of these combinations are standard (for details
see the standard, Section 5.5.4 [Numeric comparison], page 53, Section 5.5.6 [Floating Point],
page 55 or [Word Index], page 222).

You can use and or xor invert can be used as operations on canonical flags. Actually
they are bitwise operations:

1 2 and .
1 2 or .
1 3 xor .
1 invert .

You can convert a zero/non-zero flag into a canonical flag with 0<> (and complement it
on the way with 0=).

1 0= .
1 0<> .

You can use the all-bits-set feature of canonical flags and the bitwise operation of the
Boolean operations to avoid ifs:

: foo (n1 -- n2)
0= if

14
else

0
endif ;

0 foo .
1 foo .

: foo (n1 -- n2)
0= 14 and ;

0 foo .
1 foo .

Assignment:
Write min without if.

Chapter 3: Forth Tutorial 20

For reference, see Section 5.4 [Boolean Flags], page 51, Section 5.5.4 [Numeric compari-
son], page 53, and Section 5.5.3 [Bitwise operations], page 53.

3.18 General Loops

The endless loop is the most simple one:

: endless (--)
0 begin

dup . 1+
again ;

endless

Terminate this loop by pressing Ctrl-C (in Gforth). begin does nothing at run-time,
again jumps back to begin.

A loop with one exit at any place looks like this:

: log2 (+n1 -- n2)
\ logarithmus dualis of n1>0, rounded down to the next integer
assert(dup 0>)
2/ 0 begin

over 0> while
1+ swap 2/ swap

repeat
nip ;

7 log2 .
8 log2 .

At run-time while consumes a flag; if it is 0, execution continues behind the repeat; if
the flag is non-zero, execution continues behind the while. Repeat jumps back to begin,
just like again.

In Forth there are many combinations/abbreviations, like 1+. However, 2/ is not one of
them; it shifts its argument right by one bit (arithmetic shift right):

-5 2 / .
-5 2/ .

assert(is no standard word, but you can get it on systems other then Gforth by
including ‘compat/assert.fs’. You can see what it does by trying

0 log2 .

Here’s a loop with an exit at the end:

: log2 (+n1 -- n2)
\ logarithmus dualis of n1>0, rounded down to the next integer
assert(dup 0 >)
-1 begin

1+ swap 2/ swap
over 0 <=

until
nip ;

Until consumes a flag; if it is non-zero, execution continues at the begin, otherwise
after the until.

Chapter 3: Forth Tutorial 21

Assignment:
Write a definition for computing the greatest common divisor.

Reference: Section 5.8.2 [Simple Loops], page 66.

3.19 Counted loops

: ^ (n1 u -- n)
\ n = the uth power of u1
1 swap 0 u+do

over *
loop
nip ;

3 2 ^ .
4 3 ^ .

U+do (from ‘compat/loops.fs’, if your Forth system doesn’t have it) takes two numbers
of the stack (u3 u4 --), and then performs the code between u+do and loop for u3-u4

times (or not at all, if u3-u4<0).

You can see the stack effect design rules at work in the stack effect of the loop start
words: Since the start value of the loop is more frequently constant than the end value, the
start value is passed on the top-of-stack.

You can access the counter of a counted loop with i:

: fac (u -- u!)
1 swap 1+ 1 u+do

i *
loop ;

5 fac .
7 fac .

There is also +do, which expects signed numbers (important for deciding whether to
enter the loop).

Assignment:
Write a definition for computing the nth Fibonacci number.

You can also use increments other than 1:

: up2 (n1 n2 --)
+do

i .
2 +loop ;

10 0 up2

: down2 (n1 n2 --)
-do

i .
2 -loop ;

0 10 down2

Reference: Section 5.8.3 [Counted Loops], page 67.

Chapter 3: Forth Tutorial 22

3.20 Recursion

Usually the name of a definition is not visible in the definition; but earlier definitions
are usually visible:

1 0 / . \ "Floating-point unidentified fault" in Gforth on most platforms
: / (n1 n2 -- n)
dup 0= if

-10 throw \ report division by zero
endif
/ \ old version

;
1 0 /

For recursive definitions you can use recursive (non-standard) or recurse:

: fac1 (n -- n!) recursive
dup 0> if
dup 1- fac1 *

else
drop 1

endif ;
7 fac1 .

: fac2 (n -- n!)
dup 0> if
dup 1- recurse *

else
drop 1

endif ;
8 fac2 .

Assignment:
Write a recursive definition for computing the nth Fibonacci number.

Reference (including indirect recursion): See Section 5.8.5 [Calls and returns], page 71.

3.21 Leaving definitions or loops

EXIT exits the current definition right away. For every counted loop that is left in this
way, an UNLOOP has to be performed before the EXIT:

: ...
... u+do
... if

... unloop exit
endif
...

loop
... ;

LEAVE leaves the innermost counted loop right away:

: ...

Chapter 3: Forth Tutorial 23

... u+do
... if

... leave
endif
...

loop
... ;

Reference: Section 5.8.5 [Calls and returns], page 71, Section 5.8.3 [Counted Loops],
page 67.

3.22 Return Stack

In addition to the data stack Forth also has a second stack, the return stack; most Forth
systems store the return addresses of procedure calls there (thus its name). Programmers
can also use this stack:

: foo (n1 n2 --)
.s
>r .s
r@ .
>r .s
r@ .
r> .
r@ .
r> . ;

1 2 foo

>r takes an element from the data stack and pushes it onto the return stack; conversely,
r> moves an elementm from the return to the data stack; r@ pushes a copy of the top of
the return stack on the return stack.

Forth programmers usually use the return stack for storing data temporarily, if using
the data stack alone would be too complex, and factoring and locals are not an option:

: 2swap (x1 x2 x3 x4 -- x3 x4 x1 x2)
rot >r rot r> ;

The return address of the definition and the loop control parameters of counted loops
usually reside on the return stack, so you have to take all items, that you have pushed on the
return stack in a colon definition or counted loop, from the return stack before the definition
or loop ends. You cannot access items that you pushed on the return stack outside some
definition or loop within the definition of loop.

If you miscount the return stack items, this usually ends in a crash:

: crash (n --)
>r ;

5 crash

You cannot mix using locals and using the return stack (according to the standard;
Gforth has no problem). However, they solve the same problems, so this shouldn’t be an
issue.

Chapter 3: Forth Tutorial 24

Assignment:
Can you rewrite any of the definitions you wrote until now in a better way using
the return stack?

Reference: Section 5.6.3 [Return stack], page 58.

3.23 Memory

You can create a global variable v with

variable v (-- addr)

v pushes the address of a cell in memory on the stack. This cell was reserved by variable.
You can use ! (store) to store values into this cell and @ (fetch) to load the value from the
stack into memory:

v .
5 v ! .s
v @ .

You can see a raw dump of memory with dump:

v 1 cells .s dump

Cells (n1 -- n2) gives you the number of bytes (or, more generally, address units
(aus)) that n1 cells occupy. You can also reserve more memory:

create v2 20 cells allot
v2 20 cells dump

creates a word v2 and reserves 20 uninitialized cells; the address pushed by v2 points to
the start of these 20 cells. You can use address arithmetic to access these cells:

3 v2 5 cells + !
v2 20 cells dump

You can reserve and initialize memory with ,:

create v3
5 , 4 , 3 , 2 , 1 ,

v3 @ .
v3 cell+ @ .
v3 2 cells + @ .
v3 5 cells dump

Assignment:
Write a definition vsum (addr u -- n) that computes the sum of u cells, with
the first of these cells at addr, the next one at addr cell+ etc.

You can also reserve memory without creating a new word:

here 10 cells allot .
here .

Here pushes the start address of the memory area. You should store it somewhere, or
you will have a hard time finding the memory area again.

Allot manages dictionary memory. The dictionary memory contains the system’s data
structures for words etc. on Gforth and most other Forth systems. It is managed like a
stack: You can free the memory that you have just alloted with

Chapter 3: Forth Tutorial 25

-10 cells allot
here .

Note that you cannot do this if you have created a new word in the meantime (because
then your alloted memory is no longer on the top of the dictionary “stack”).

Alternatively, you can use allocate and free which allow freeing memory in any order:

10 cells allocate throw .s
20 cells allocate throw .s
swap
free throw
free throw

The throws deal with errors (e.g., out of memory).

And there is also a garbage collector (http://www.complang.tuwien.ac.at/forth/garbage-collection.zip),
which eliminates the need to free memory explicitly.

Reference: Section 5.7 [Memory], page 59.

3.24 Characters and Strings

On the stack characters take up a cell, like numbers. In memory they have their own
size (one 8-bit byte on most systems), and therefore require their own words for memory
access:

create v4
104 c, 97 c, 108 c, 108 c, 111 c,

v4 4 chars + c@ .
v4 5 chars dump

The preferred representation of strings on the stack is addr u-count, where addr is the
address of the first character and u-count is the number of characters in the string.

v4 5 type

You get a string constant with

s" hello, world" .s
type

Make sure you have a space between s" and the string; s" is a normal Forth word and
must be delimited with white space (try what happens when you remove the space).

However, this interpretive use of s" is quite restricted: the string exists only until the
next call of s" (some Forth systems keep more than one of these strings, but usually they
still have a limited lifetime).

s" hello," s" world" .s
type
type

You can also use s" in a definition, and the resulting strings then live forever (well, for
as long as the definition):

: foo s" hello," s" world" ;
foo .s
type
type

Chapter 3: Forth Tutorial 26

Assignment:
Emit (c --) types c as character (not a number). Implement type (addr u

--).

Reference: Section 5.7.6 [Memory Blocks], page 64.

3.25 Alignment

On many processors cells have to be aligned in memory, if you want to access them with
@ and ! (and even if the processor does not require alignment, access to aligned cells is
faster).

Create aligns here (i.e., the place where the next allocation will occur, and that the
created word points to). Likewise, the memory produced by allocate starts at an aligned
address. Adding a number of cells to an aligned address produces another aligned address.

However, address arithmetic involving char+ and chars can create an address that is
not cell-aligned. Aligned (addr -- a-addr) produces the next aligned address:

v3 char+ aligned .s @ .
v3 char+ .s @ .

Similarly, align advances here to the next aligned address:

create v5 97 c,
here .
align here .
1000 ,

Note that you should use aligned addresses even if your processor does not require them,
if you want your program to be portable.

Reference: Section 5.7.5 [Address arithmetic], page 62.

3.26 Files

This section gives a short introduction into how to use files inside Forth. It’s broken up
into five easy steps:

1. Opened an ASCII text file for input

2. Opened a file for output

3. Read input file until string matched (or some other condition matched)

4. Wrote some lines from input (modified or not) to output

5. Closed the files.

3.26.1 Open file for input

s" foo.in" r/o open-file throw Value fd-in

3.26.2 Create file for output

s" foo.out" w/o create-file throw Value fd-out

The available file modes are r/o for read-only access, r/w for read-write access, and w/o
for write-only access. You could open both files with r/w, too, if you like. All file words

Chapter 3: Forth Tutorial 27

return error codes; for most applications, it’s best to pass there error codes with throw to
the outer error handler.

If you want words for opening and assigning, define them as follows:

0 Value fd-in
0 Value fd-out
: open-input (addr u --) r/o open-file throw to fd-in ;
: open-output (addr u --) w/o create-file throw to fd-out ;

Usage example:

s" foo.in" open-input
s" foo.out" open-output

3.26.3 Scan file for a particular line

256 Constant max-line
Create line-buffer max-line 2 + allot

: scan-file (addr u --)
begin

line-buffer max-line fd-in read-line throw
while

>r 2dup line-buffer r> compare 0=
until

else
drop

then
2drop ;

read-line (addr u1 fd -- u2 flag ior) reads up to u1 bytes into the buffer at addr,
and returns the number of bytes read, a flag that is false when the end of file is reached,
and an error code.

compare (addr1 u1 addr2 u2 -- n) compares two strings and returns zero if both
strings are equal. It returns a positive number if the first string is lexically greater, a
negative if the second string is lexically greater.

We haven’t seen this loop here; it has two exits. Since the while exits with the number
of bytes read on the stack, we have to clean up that separately; that’s after the else.

Usage example:

s" The text I search is here" scan-file

3.26.4 Copy input to output

: copy-file (--)
begin

line-buffer max-line fd-in read-line throw
while

line-buffer swap fd-out write-file throw
repeat ;

Chapter 3: Forth Tutorial 28

3.26.5 Close files

fd-in close-file throw
fd-out close-file throw

Likewise, you can put that into definitions, too:

: close-input (--) fd-in close-file throw ;
: close-output (--) fd-out close-file throw ;

Assignment:
How could you modify copy-file so that it copies until a second line is
matched? Can you write a program that extracts a section of a text file, given
the line that starts and the line that terminates that section?

3.27 Interpretation and Compilation Semantics and
Immediacy

When a word is compiled, it behaves differently from being interpreted. E.g., consider
+:

1 2 + .
: foo + ;

These two behaviours are known as compilation and interpretation semantics. For nor-
mal words (e.g., +), the compilation semantics is to append the interpretation semantics to
the currently defined word (foo in the example above). I.e., when foo is executed later,
the interpretation semantics of + (i.e., adding two numbers) will be performed.

However, there are words with non-default compilation semantics, e.g., the control-flow
words like if. You can use immediate to change the compilation semantics of the last
defined word to be equal to the interpretation semantics:

: [FOO] (--)
5 . ; immediate

[FOO]
: bar (--)
[FOO] ;

bar
see bar

Two conventions to mark words with non-default compilation semnatics are names with
brackets (more frequently used) and to write them all in upper case (less frequently used).

In Gforth (and many other systems) you can also remove the interpretation semantics
with compile-only (the compilation semantics is derived from the original interpretation
semantics):

: flip (--)
6 . ; compile-only \ but not immediate

flip

: flop (--)
flip ;

flop

Chapter 3: Forth Tutorial 29

In this example the interpretation semantics of flop is equal to the original interpretation
semantics of flip.

The text interpreter has two states: in interpret state, it performs the interpretation
semantics of words it encounters; in compile state, it performs the compilation semantics of
these words.

Among other things, : switches into compile state, and ; switches back to interpret state.
They contain the factors] (switch to compile state) and [(switch to interpret state), that
do nothing but switch the state.

: xxx (--)
[5 .]

;

xxx
see xxx

These brackets are also the source of the naming convention mentioned above.

Reference: Section 5.10 [Interpretation and Compilation Semantics], page 86.

3.28 Execution Tokens

’ word gives you the execution token (XT) of a word. The XT is a cell representing the
interpretation semantics of a word. You can execute this semantics with execute:

’ + .s
1 2 rot execute .

The XT is similar to a function pointer in C. However, parameter passing through the
stack makes it a little more flexible:

: map-array (... addr u xt -- ...)
\ executes xt (... x -- ...) for every element of the array starting
\ at addr and containing u elements
{ xt }
cells over + swap ?do

i @ xt execute
1 cells +loop ;

create a 3 , 4 , 2 , -1 , 4 ,
a 5 ’ . map-array .s
0 a 5 ’ + map-array .
s" max-n" environment? drop .s
a 5 ’ min map-array .

You can use map-array with the XTs of words that consume one element more than they
produce. In theory you can also use it with other XTs, but the stack effect then depends
on the size of the array, which is hard to understand.

Since XTs are cell-sized, you can store them in memory and manipulate them on the
stack like other cells. You can also compile the XT into a word with compile,:

: foo1 (n1 n2 -- n)
[’ + compile,] ;

Chapter 3: Forth Tutorial 30

see foo

This is non-standard, because compile, has no compilation semantics in the standard,
but it works in good Forth systems. For the broken ones, use

: [compile,] compile, ; immediate

: foo1 (n1 n2 -- n)
[’ +] [compile,] ;

see foo

’ is a word with default compilation semantics; it parses the next word when its inter-
pretation semantics are executed, not during compilation:

: foo (-- xt)
’ ;

see foo
: bar (... "word" -- ...)
’ execute ;

see bar
1 2 bar + .

You often want to parse a word during compilation and compile its XT so it will be
pushed on the stack at run-time. [’] does this:

: xt-+ (-- xt)
[’] + ;

see xt-+
1 2 xt-+ execute .

Many programmers tend to see ’ and the word it parses as one unit, and expect it
to behave like [’] when compiled, and are confused by the actual behaviour. If you are,
just remember that the Forth system just takes ’ as one unit and has no idea that it
is a parsing word (attempts to convenience programmers in this issue have usually re-
sulted in even worse pitfalls, see State-smartness—Why it is evil and How to Exorcise it
(http://www.complang.tuwien.ac.at/papers/ertl98.ps.gz)).

Note that the state of the interpreter does not come into play when creating and execut-
ing XTs. I.e., even when you execute ’ in compile state, it still gives you the interpretation
semantics. And whatever that state is, execute performs the semantics represented by the
XT (i.e., for XTs produced with ’ the interpretation semantics).

Reference: Section 5.11 [Tokens for Words], page 88.

3.29 Exceptions

throw (n --) causes an exception unless n is zero.

100 throw .s
0 throw .s

catch (... xt -- ... n) behaves similar to execute, but it catches exceptions and
pushes the number of the exception on the stack (or 0, if the xt executed without exception).
If there was an exception, the stacks have the same depth as when entering catch:

.s
3 0 ’ / catch .s
3 2 ’ / catch .s

Chapter 3: Forth Tutorial 31

Assignment:
Try the same with execute instead of catch.

Throw always jumps to the dynamically next enclosing catch, even if it has to leave
several call levels to achieve this:

: foo 100 throw ;
: foo1 foo ." after foo" ;
: bar [’] foo1 catch ;
bar .

It is often important to restore a value upon leaving a definition, even if the definition
is left through an exception. You can ensure this like this:

: ...
save-x
[’] word-changing-x catch (... n)
restore-x
(... n) throw ;

Gforth provides an alternative syntax in addition to catch: try ... recover ...

endtry. If the code between try and recover has an exception, the stack depths are
restored, the exception number is pushed on the stack, and the code between recover and
endtry is performed. E.g., the definition for catch is

: catch (x1 .. xn xt -- y1 .. ym 0 / z1 .. zn error) \ exception
try

execute 0
recover

nip
endtry ;

The equivalent to the restoration code above is

: ...
save-x
try

word-changing-x 0
recover endtry
restore-x
throw ;

This works if word-changing-x does not change the stack depth, otherwise you should
add some code between recover and endtry to balance the stack.

Reference: Section 5.8.6 [Exception Handling], page 71.

3.30 Defining Words

:, create, and variable are definition words: They define other words. Constant is
another definition word:

5 constant foo
foo .

You can also use the prefixes 2 (double-cell) and f (floating point) with variable and
constant.

You can also define your own defining words. E.g.:

Chapter 3: Forth Tutorial 32

: variable ("name" --)
create 0 , ;

You can also define defining words that create words that do something other than just
producing their address:

: constant (n "name" --)
create ,

does> (-- n)
(addr) @ ;

5 constant foo
foo .

The definition of constant above ends at the does>; i.e., does> replaces ;, but it also
does something else: It changes the last defined word such that it pushes the address of the
body of the word and then performs the code after the does> whenever it is called.

In the example above, constant uses , to store 5 into the body of foo. When foo

executes, it pushes the address of the body onto the stack, then (in the code after the
does>) fetches the 5 from there.

The stack comment near the does> reflects the stack effect of the defined word, not the
stack effect of the code after the does> (the difference is that the code expects the address
of the body that the stack comment does not show).

You can use these definition words to do factoring in cases that involve (other) definition
words. E.g., a field offset is always added to an address. Instead of defining

2 cells constant offset-field1

and using this like

(addr) offset-field1 +

you can define a definition word

: simple-field (n "name" --)
create ,

does> (n1 -- n1+n)
(addr) @ + ;

Definition and use of field offsets now look like this:

2 cells simple-field field1
create mystruct 4 cells allot
mystruct .s field1 .s drop

If you want to do something with the word without performing the code after the does>,
you can access the body of a created word with >body (xt -- addr):

: value (n "name" --)
create ,

does> (-- n1)
@ ;

: to (n "name" --)
’ >body ! ;

5 value foo
foo .

Chapter 3: Forth Tutorial 33

7 to foo
foo .

Assignment:
Define defer ("name" --), which creates a word that stores an XT (at the
start the XT of abort), and upon execution executes the XT. Define is (

xt "name" --) that stores xt into name, a word defined with defer. Indirect
recursion is one application of defer.

Reference: Section 5.9.8 [User-defined Defining Words], page 77.

3.31 Arrays and Records

Forth has no standard words for defining data structures such as arrays and records
(structs in C terminology), but you can build them yourself based on address arithmetic.
You can also define words for defining arrays and records (see Section 3.30 [Defining Words],
page 31).

One of the first projects a Forth newcomer sets out upon when learning about defining
words is an array defining word (possibly for n-dimensional arrays). Go ahead and do it,
I did it, too; you will learn something from it. However, don’t be disappointed when you
later learn that you have little use for these words (inappropriate use would be even worse).
I have not yet found a set of useful array words yet; the needs are just too diverse, and
named, global arrays (the result of naive use of defining words) are often not flexible enough
(e.g., consider how to pass them as parameters). Another such project is a set of words to
help dealing with strings.

On the other hand, there is a useful set of record words, and it has been defined in
‘compat/struct.fs’; these words are predefined in Gforth. They are explained in depth
elsewhere in this manual (see see Section 5.21 [Structures], page 129). The simple-field

example above is simplified variant of fields in this package.

3.32 POSTPONE

You can compile the compilation semantics (instead of compiling the interpretation se-
mantics) of a word with POSTPONE:

: MY-+ (Compilation: -- ; Run-time of compiled code: n1 n2 -- n)
POSTPONE + ; immediate

: foo (n1 n2 -- n)
MY-+ ;

1 2 foo .
see foo

During the definition of foo the text interpreter performs the compilation semantics of
MY-+, which performs the compilation semantics of +, i.e., it compiles + into foo.

This example also displays separate stack comments for the compilation semantics and
for the stack effect of the compiled code. For words with default compilation semantics
these stack effects are usually not displayed; the stack effect of the compilation semantics
is always (--) for these words, the stack effect for the compiled code is the stack effect of
the interpretation semantics.

Chapter 3: Forth Tutorial 34

Note that the state of the interpreter does not come into play when performing the
compilation semantics in this way. You can also perform it interpretively, e.g.:

: foo2 (n1 n2 -- n)
[MY-+] ;

1 2 foo .
see foo

However, there are some broken Forth systems where this does not always work, and
therefore this practice was been declared non-standard in 1999.

Here is another example for using POSTPONE:

: MY-- (Compilation: -- ; Run-time of compiled code: n1 n2 -- n)
POSTPONE negate POSTPONE + ; immediate compile-only

: bar (n1 n2 -- n)
MY-- ;

2 1 bar .
see bar

You can define ENDIF in this way:

: ENDIF (Compilation: orig --)
POSTPONE then ; immediate

Assignment:
Write MY-2DUP that has compilation semantics equivalent to 2dup, but compiles
over over.

3.33 Literal

You cannot POSTPONE numbers:

: [FOO] POSTPONE 500 ; immediate

Instead, you can use LITERAL (compilation: n --; run-time: -- n):

: [FOO] (compilation: --; run-time: -- n)
500 POSTPONE literal ; immediate

: flip [FOO] ;
flip .
see flip

LITERAL consumes a number at compile-time (when it’s compilation semantics are exe-
cuted) and pushes it at run-time (when the code it compiled is executed). A frequent use
of LITERAL is to compile a number computed at compile time into the current word:

: bar (-- n)
[2 2 +] literal ;

see bar

Assignment:
Write]L which allows writing the example above as : bar (-- n) [2 2 +]L

;

Chapter 3: Forth Tutorial 35

3.34 Advanced macros

Reconsider map-array from Section 3.28 [Execution Tokens], page 29. It frequently
performs execute, a relatively expensive operation in some Forth implementations. You
can use compile, and POSTPONE to eliminate these executes and produce a word that
contains the word to be performed directly:

: compile-map-array (compilation: xt -- ; run-time: ... addr u -- ...)
\ at run-time, execute xt (... x -- ...) for each element of the
\ array beginning at addr and containing u elements
{ xt }
POSTPONE cells POSTPONE over POSTPONE + POSTPONE swap POSTPONE ?do

POSTPONE i POSTPONE @ xt compile,
1 cells POSTPONE literal POSTPONE +loop ;

: sum-array (addr u -- n)
0 rot rot [’ + compile-map-array] ;

see sum-array
a 5 sum-array .

You can use the full power of Forth for generating the code; here’s an example where
the code is generated in a loop:

: compile-vmul-step (compilation: n --; run-time: n1 addr1 -- n2 addr2)
\ n2=n1+(addr1)*n, addr2=addr1+cell
POSTPONE tuck POSTPONE @
POSTPONE literal POSTPONE * POSTPONE +
POSTPONE swap POSTPONE cell+ ;

: compile-vmul (compilation: addr1 u -- ; run-time: addr2 -- n)
\ n=v1*v2 (inner product), where the v_i are represented as addr_i u
0 postpone literal postpone swap
[’ compile-vmul-step compile-map-array]
postpone drop ;

see compile-vmul

: a-vmul (addr -- n)
\ n=a*v, where v is a vector that’s as long as a and starts at addr
[a 5 compile-vmul] ;

see a-vmul
a a-vmul .

This example uses compile-map-array to show off, but you could also use map-array

instead (try it now!).

You can use this technique for efficient multiplication of large matrices. In matrix multi-
plication, you multiply every line of one matrix with every column of the other matrix. You
can generate the code for one line once, and use it for every column. The only downside of
this technique is that it is cumbersome to recover the memory consumed by the generated
code when you are done (and in more complicated cases it is not possible portably).

Chapter 3: Forth Tutorial 36

3.35 Compilation Tokens

This section is Gforth-specific. You can skip it.

’ word compile, compiles the interpretation semantics. For words with default compi-
lation semantics this is the same as performing the compilation semantics. To represent
the compilation semantics of other words (e.g., words like if that have no interpretation
semantics), Gforth has the concept of a compilation token (CT, consisting of two cells), and
words comp’ and [comp’]. You can perform the compilation semantics represented by a
CT with execute:

: foo2 (n1 n2 -- n)
[comp’ + execute] ;

see foo

You can compile the compilation semantics represented by a CT with postpone,:

: foo3 (--)
[comp’ + postpone,] ;

see foo3

[comp’ word postpone,] is equivalent to POSTPONE word. comp’ is particularly useful
for words that have no interpretation semantics:

’ if
comp’ if .s 2drop

Reference: Section 5.11 [Tokens for Words], page 88.

3.36 Wordlists and Search Order

The dictionary is not just a memory area that allows you to allocate memory with allot,
it also contains the Forth words, arranged in several wordlists. When searching for a word
in a wordlist, conceptually you start searching at the youngest and proceed towards older
words (in reality most systems nowadays use hash-tables); i.e., if you define a word with
the same name as an older word, the new word shadows the older word.

Which wordlists are searched in which order is determined by the search order. You can
display the search order with order. It displays first the search order, starting with the
wordlist searched first, then it displays the wordlist that will contain newly defined words.

You can create a new, empty wordlist with wordlist (-- wid):

wordlist constant mywords

Set-current (wid --) sets the wordlist that will contain newly defined words (the
current wordlist):

mywords set-current
order

Gforth does not display a name for the wordlist in mywords because this wordlist was
created anonymously with wordlist.

You can get the current wordlist with get-current (-- wid). If you want to put
something into a specific wordlist without overall effect on the current wordlist, this typically
looks like this:

Chapter 3: Forth Tutorial 37

get-current mywords set-current (wid)
create someword
(wid) set-current

You can write the search order with set-order (wid1 .. widn n --) and read it with
get-order (-- wid1 .. widn n). The first searched wordlist is topmost.

get-order mywords swap 1+ set-order
order

Yes, the order of wordlists in the output of order is reversed from stack comments and
the output of .s and thus unintuitive.

Assignment:
Define >order (wid --) with adds wid as first searched wordlist to the search
order. Define previous (--), which removes the first searched wordlist from
the search order. Experiment with boundary conditions (you will see some
crashes or situations that are hard or impossible to leave).

The search order is a powerful foundation for providing features similar to Modula-
2 modules and C++ namespaces. However, trying to modularize programs in this way
has disadvantages for debugging and reuse/factoring that overcome the advantages in my
experience (I don’t do huge projects, though). These disadvantages are not so clear in
other languages/programming environments, because these languages are not so strong in
debugging and reuse.

Reference: Section 5.15 [Word Lists], page 102.

Chapter 4: An Introduction to ANS Forth 38

4 An Introduction to ANS Forth

The difference of this chapter from the Tutorial (see Chapter 3 [Tutorial], page 10) is that
it is slower-paced in its examples, but uses them to dive deep into explaining Forth internals
(not covered by the Tutorial). Apart from that, this chapter covers far less material. It is
suitable for reading without using a computer.

The primary purpose of this manual is to document Gforth. However, since Forth
is not a widely-known language and there is a lack of up-to-date teaching material, it
seems worthwhile to provide some introductory material. For other sources of Forth-related
information, see Appendix C [Forth-related information], page 207.

The examples in this section should work on any ANS Forth; the output shown was
produced using Gforth. Each example attempts to reproduce the exact output that Gforth
produces. If you try out the examples (and you should), what you should type is shown
like this and Gforth’s response is shown like this. The single exception is that, where
the example shows 〈RET〉 it means that you should press the “carriage return” key. Unfortu-
nately, some output formats for this manual cannot show the difference between this and
this which will make trying out the examples harder (but not impossible).

Forth is an unusual language. It provides an interactive development environment which
includes both an interpreter and compiler. Forth programming style encourages you to break
a problem down into many small fragments (factoring), and then to develop and test each
fragment interactively. Forth advocates assert that breaking the edit-compile-test cycle
used by conventional programming languages can lead to great productivity improvements.

4.1 Introducing the Text Interpreter

When you invoke the Forth image, you will see a startup banner printed and nothing else
(if you have Gforth installed on your system, try invoking it now, by typing gforth〈RET〉).
Forth is now running its command line interpreter, which is called the Text Interpreter (also
known as the Outer Interpreter). (You will learn a lot about the text interpreter as you
read through this chapter, for more detail see Section 5.13 [The Text Interpreter], page 94).

Although it’s not obvious, Forth is actually waiting for your input. Type a number and
press the 〈RET〉 key:

45〈RET〉 ok

Rather than give you a prompt to invite you to input something, the text interpreter
prints a status message after it has processed a line of input. The status message in this case
(“ ok” followed by carriage-return) indicates that the text interpreter was able to process
all of your input successfully. Now type something illegal:

qwer341〈RET〉

:1: Undefined word
qwer341
^^^^^^^
$400D2BA8 Bounce
$400DBDA8 no.extensions

The exact text, other than the “Undefined word” may differ slightly on your system, but
the effect is the same; when the text interpreter detects an error, it discards any remaining

Chapter 4: An Introduction to ANS Forth 39

text on a line, resets certain internal state and prints an error message. For a detailed
description of error messages see Chapter 6 [Error messages], page 165.

The text interpreter waits for you to press carriage-return, and then processes your
input line. Starting at the beginning of the line, it breaks the line into groups of characters
separated by spaces. For each group of characters in turn, it makes two attempts to do
something:

• It tries to treat it as a command. It does this by searching a name dictionary. If
the group of characters matches an entry in the name dictionary, the name dictionary
provides the text interpreter with information that allows the text interpreter perform
some actions. In Forth jargon, we say that the group of characters names a word, that
the dictionary search returns an execution token (xt) corresponding to the definition
of the word, and that the text interpreter executes the xt. Often, the terms word and
definition are used interchangeably.

• If the text interpreter fails to find a match in the name dictionary, it tries to treat the
group of characters as a number in the current number base (when you start up Forth,
the current number base is base 10). If the group of characters legitimately represents
a number, the text interpreter pushes the number onto a stack (we’ll learn more about
that in the next section).

If the text interpreter is unable to do either of these things with any group of characters,
it discards the group of characters and the rest of the line, then prints an error message. If
the text interpreter reaches the end of the line without error, it prints the status message “
ok” followed by carriage-return.

This is the simplest command we can give to the text interpreter:

〈RET〉 ok

The text interpreter did everything we asked it to do (nothing) without an error, so it
said that everything is “ ok”. Try a slightly longer command:

12 dup fred dup〈RET〉

:1: Undefined word
12 dup fred dup

^^^^
$400D2BA8 Bounce
$400DBDA8 no.extensions

When you press the carriage-return key, the text interpreter starts to work its way along
the line:

• When it gets to the space after the 2, it takes the group of characters 12 and looks
them up in the name dictionary1. There is no match for this group of characters in the
name dictionary, so it tries to treat them as a number. It is able to do this successfully,
so it puts the number, 12, “on the stack” (whatever that means).

• The text interpreter resumes scanning the line and gets the next group of characters,
dup. It looks it up in the name dictionary and (you’ll have to take my word for this)
finds it, and executes the word dup (whatever that means).

1 We can’t tell if it found them or not, but assume for now that it did not

Chapter 4: An Introduction to ANS Forth 40

• Once again, the text interpreter resumes scanning the line and gets the group of char-
acters fred. It looks them up in the name dictionary, but can’t find them. It tries to
treat them as a number, but they don’t represent any legal number.

At this point, the text interpreter gives up and prints an error message. The error
message shows exactly how far the text interpreter got in processing the line. In particular,
it shows that the text interpreter made no attempt to do anything with the final character
group, dup, even though we have good reason to believe that the text interpreter would
have no problem looking that word up and executing it a second time.

4.2 Stacks, postfix notation and parameter passing

In procedural programming languages (like C and Pascal), the building-block of pro-
grams is the function or procedure. These functions or procedures are called with explicit
parameters. For example, in C we might write:

total = total + new_volume(length,height,depth);

where new volume is a function-call to another piece of code, and total, length, height and
depth are all variables. length, height and depth are parameters to the function-call.

In Forth, the equivalent of the function or procedure is the definition and parameters are
implicitly passed between definitions using a shared stack that is visible to the programmer.
Although Forth does support variables, the existence of the stack means that they are
used far less often than in most other programming languages. When the text interpreter
encounters a number, it will place (push) it on the stack. There are several stacks (the
actual number is implementation-dependent ...) and the particular stack used for any
operation is implied unambiguously by the operation being performed. The stack used
for all integer operations is called the data stack and, since this is the stack used most
commonly, references to “the data stack” are often abbreviated to “the stack”.

The stacks have a last-in, first-out (LIFO) organisation. If you type:

1 2 3〈RET〉 ok

Then this instructs the text interpreter to placed three numbers on the (data) stack. An
analogy for the behaviour of the stack is to take a pack of playing cards and deal out the
ace (1), 2 and 3 into a pile on the table. The 3 was the last card onto the pile (“last-in”)
and if you take a card off the pile then, unless you’re prepared to fiddle a bit, the card that
you take off will be the 3 (“first-out”). The number that will be first-out of the stack is
called the top of stack, which is often abbreviated to TOS.

To understand how parameters are passed in Forth, consider the behaviour of the defini-
tion + (pronounced “plus”). You will not be surprised to learn that this definition performs
addition. More precisely, it adds two number together and produces a result. Where does
it get the two numbers from? It takes the top two numbers off the stack. Where does it
place the result? On the stack. You can act-out the behaviour of + with your playing cards
like this:

• Pick up two cards from the stack on the table

• Stare at them intently and ask yourself “what is the sum of these two numbers”

• Decide that the answer is 5

• Shuffle the two cards back into the pack and find a 5

Chapter 4: An Introduction to ANS Forth 41

• Put a 5 on the remaining ace that’s on the table.

If you don’t have a pack of cards handy but you do have Forth running, you can use the
definition .s to show the current state of the stack, without affecting the stack. Type:

clearstack 1 2 3〈RET〉 ok
.s〈RET〉 <3> 1 2 3 ok

The text interpreter looks up the word clearstack and executes it; it tidies up the
stack and removes any entries that may have been left on it by earlier examples. The
text interpreter pushes each of the three numbers in turn onto the stack. Finally, the text
interpreter looks up the word .s and executes it. The effect of executing .s is to print the
“<3>” (the total number of items on the stack) followed by a list of all the items on the
stack; the item on the far right-hand side is the TOS.

You can now type:

+ .s〈RET〉 <2> 1 5 ok

which is correct; there are now 2 items on the stack and the result of the addition is 5.

If you’re playing with cards, try doing a second addition: pick up the two cards, work
out that their sum is 6, shuffle them into the pack, look for a 6 and place that on the table.
You now have just one item on the stack. What happens if you try to do a third addition?
Pick up the first card, pick up the second card – ah! There is no second card. This is called
a stack underflow and consitutes an error. If you try to do the same thing with Forth it
often reports an error (probably a Stack Underflow or an Invalid Memory Address error).

The opposite situation to a stack underflow is a stack overflow, which simply accepts
that there is a finite amount of storage space reserved for the stack. To stretch the playing
card analogy, if you had enough packs of cards and you piled the cards up on the table,
you would eventually be unable to add another card; you’d hit the ceiling. Gforth allows
you to set the maximum size of the stacks. In general, the only time that you will get a
stack overflow is because a definition has a bug in it and is generating data on the stack
uncontrollably.

There’s one final use for the playing card analogy. If you model your stack using a pack
of playing cards, the maximum number of items on your stack will be 52 (I assume you
didn’t use the Joker). The maximum value of any item on the stack is 13 (the King). In
fact, the only possible numbers are positive integer numbers 1 through 13; you can’t have
(for example) 0 or 27 or 3.52 or -2. If you change the way you think about some of the
cards, you can accommodate different numbers. For example, you could think of the Jack
as representing 0, the Queen as representing -1 and the King as representing -2. Your range
remains unchanged (you can still only represent a total of 13 numbers) but the numbers
that you can represent are -2 through 10.

In that analogy, the limit was the amount of information that a single stack entry could
hold, and Forth has a similar limit. In Forth, the size of a stack entry is called a cell. The
actual size of a cell is implementation dependent and affects the maximum value that a
stack entry can hold. A Standard Forth provides a cell size of at least 16-bits, and most
desktop systems use a cell size of 32-bits.

Forth does not do any type checking for you, so you are free to manipulate and com-
bine stack items in any way you wish. A convenient way of treating stack items is as 2’s
complement signed integers, and that is what Standard words like + do. Therefore you can
type:

Chapter 4: An Introduction to ANS Forth 42

-5 12 + .s〈RET〉 <1> 7 ok

If you use numbers and definitions like + in order to turn Forth into a great big pocket
calculator, you will realise that it’s rather different from a normal calculator. Rather than
typing 2 + 3 = you had to type 2 3 + (ignore the fact that you had to use .s to see the
result). The terminology used to describe this difference is to say that your calculator uses
Infix Notation (parameters and operators are mixed) whilst Forth uses Postfix Notation
(parameters and operators are separate), also called Reverse Polish Notation.

Whilst postfix notation might look confusing to begin with, it has several important
advantages:

• it is unambiguous

• it is more concise

• it fits naturally with a stack-based system

To examine these claims in more detail, consider these sums:

6 + 5 * 4 =
4 * 5 + 6 =

If you’re just learning maths or your maths is very rusty, you will probably come up
with the answer 44 for the first and 26 for the second. If you are a bit of a whizz at maths
you will remember the convention that multiplication takes precendence over addition, and
you’d come up with the answer 26 both times. To explain the answer 26 to someone who
got the answer 44, you’d probably rewrite the first sum like this:

6 + (5 * 4) =

If what you really wanted was to perform the addition before the multiplication, you
would have to use parentheses to force it.

If you did the first two sums on a pocket calculator you would probably get the right
answers, unless you were very cautious and entered them using these keystroke sequences:

6 + 5 = * 4 = 4 * 5 = + 6 =

Postfix notation is unambiguous because the order that the operators are applied is
always explicit; that also means that parentheses are never required. The operators are
active (the act of quoting the operator makes the operation occur) which removes the need
for “=”.

The sum 6 + 5 * 4 can be written (in postfix notation) in two equivalent ways:

6 5 4 * + or:
5 4 * 6 +

An important thing that you should notice about this notation is that the order of the
numbers does not change; if you want to subtract 2 from 10 you type 10 2 -.

The reason that Forth uses postfix notation is very simple to explain: it makes the
implementation extremely simple, and it follows naturally from using the stack as a mecha-
nism for passing parameters. Another way of thinking about this is to realise that all Forth
definitions are active; they execute as they are encountered by the text interpreter. The
result of this is that the syntax of Forth is trivially simple.

Chapter 4: An Introduction to ANS Forth 43

4.3 Your first Forth definition

Until now, the examples we’ve seen have been trivial; we’ve just been using Forth as a
bigger-than-pocket calculator. Also, each calculation we’ve shown has been a “one-off” –
to repeat it we’d need to type it in again2 In this section we’ll see how to add new words
to Forth’s vocabulary.

The easiest way to create a new word is to use a colon definition. We’ll define a few and
try them out before worrying too much about how they work. Try typing in these examples;
be careful to copy the spaces accurately:

: add-two 2 + . ;
: greet ." Hello and welcome" ;
: demo 5 add-two ;

Now try them out:

greet〈RET〉 Hello and welcome ok
greet greet〈RET〉 Hello and welcomeHello and welcome ok
4 add-two〈RET〉 6 ok
demo〈RET〉 7 ok
9 greet demo add-two〈RET〉 Hello and welcome7 11 ok

The first new thing that we’ve introduced here is the pair of words : and ;. These are
used to start and terminate a new definition, respectively. The first word after the : is the
name for the new definition.

As you can see from the examples, a definition is built up of words that have already
been defined; Forth makes no distinction between definitions that existed when you started
the system up, and those that you define yourself.

The examples also introduce the words . (dot), ." (dot-quote) and dup (dewp). Dot
takes the value from the top of the stack and displays it. It’s like .s except that it only
displays the top item of the stack and it is destructive; after it has executed, the number is
no longer on the stack. There is always one space printed after the number, and no spaces
before it. Dot-quote defines a string (a sequence of characters) that will be printed when
the word is executed. The string can contain any printable characters except ". A " has a
special function; it is not a Forth word but it acts as a delimiter (the way that delimiters
work is described in the next section). Finally, dup duplicates the value at the top of the
stack. Try typing 5 dup .s to see what it does.

We already know that the text interpreter searches through the dictionary to locate
names. If you’ve followed the examples earlier, you will already have a definition called
add-two. Lets try modifying it by typing in a new definition:

: add-two dup . ." + 2 =" 2 + . ;〈RET〉 redefined add-two ok

Forth recognised that we were defining a word that already exists, and printed a message
to warn us of that fact. Let’s try out the new definition:

9 add-two〈RET〉 9 + 2 =11 ok

All that we’ve actually done here, though, is to create a new definition, with a particular
name. The fact that there was already a definition with the same name did not make

2 That’s not quite true. If you press the up-arrow key on your keyboard you should be able to scroll back
to any earlier command, edit it and re-enter it.

Chapter 4: An Introduction to ANS Forth 44

any difference to the way that the new definition was created (except that Forth printed
a warning message). The old definition of add-two still exists (try demo again to see that
this is true). Any new definition will use the new definition of add-two, but old definitions
continue to use the version that already existed at the time that they were compiled.

Before you go on to the next section, try defining and redefining some words of your
own.

4.4 How does that work?

Now we’re going to take another look at the definition of add-two from the previous
section. From our knowledge of the way that the text interpreter works, we would have
expected this result when we tried to define add-two:

: add-two 2 + . ;〈RET〉

^^^^^^^
Error: Undefined word

The reason that this didn’t happen is bound up in the way that : works. The word :

does two special things. The first special thing that it does prevents the text interpreter
from ever seeing the characters add-two. The text interpreter uses a variable called >IN

(pronounced “to-in”) to keep track of where it is in the input line. When it encounters the
word : it behaves in exactly the same way as it does for any other word; it looks it up in
the name dictionary, finds its xt and executes it. When : executes, it looks at the input
buffer, finds the word add-two and advances the value of >IN to point past it. It then does
some other stuff associated with creating the new definition (including creating an entry
for add-two in the name dictionary). When the execution of : completes, control returns
to the text interpreter, which is oblivious to the fact that it has been tricked into ignoring
part of the input line.

Words like : – words that advance the value of >IN and so prevent the text interpreter
from acting on the whole of the input line – are called parsing words.

The second special thing that : does is change the value of a variable called state,
which affects the way that the text interpreter behaves. When Gforth starts up, state has
the value 0, and the text interpreter is said to be interpreting. During a colon definition
(started with :), state is set to -1 and the text interpreter is said to be compiling.

In this example, the text interpreter is compiling when it processes the string “2 + . ;”.
It still breaks the string down into character sequences in the same way. However, instead
of pushing the number 2 onto the stack, it lays down (compiles) some magic into the
definition of add-two that will make the number 2 get pushed onto the stack when add-two

is executed. Similarly, the behaviours of + and . are also compiled into the definition.

One category of words don’t get compiled. These so-called immediate words get executed
(performed now) regardless of whether the text interpreter is interpreting or compiling. The
word ; is an immediate word. Rather than being compiled into the definition, it executes.
Its effect is to terminate the current definition, which includes changing the value of state
back to 0.

When you execute add-two, it has a run-time effect that is exactly the same as if you
had typed 2 + . 〈RET〉 outside of a definition.

In Forth, every word or number can be described in terms of two properties:

Chapter 4: An Introduction to ANS Forth 45

• Its interpretation semantics describe how it will behave when the text interpreter en-
counters it in interpret state. The interpretation semantics of a word are represented
by an execution token.

• Its compilation semantics describe how it will behave when the text interpreter en-
counters it in compile state. The compilation semantics of a word are represented in
an implementation-dependent way; Gforth uses a compilation token.

Numbers are always treated in a fixed way:

• When the number is interpreted, its behaviour is to push the number onto the stack.

• When the number is compiled, a piece of code is appended to the current definition
that pushes the number when it runs. (In other words, the compilation semantics of a
number are to postpone its interpretation semantics until the run-time of the definition
that it is being compiled into.)

Words don’t behave in such a regular way, but most have default semantics which means
that they behave like this:

• The interpretation semantics of the word are to do something useful.

• The compilation semantics of the word are to append its interpretation semantics to
the current definition (so that its run-time behaviour is to do something useful).

The actual behaviour of any particular word can be controlled by using the words
immediate and compile-only when the word is defined. These words set flags in the
name dictionary entry of the most recently defined word, and these flags are retrieved by
the text interpreter when it finds the word in the name dictionary.

A word that is marked as immediate has compilation semantics that are identical to its
interpretation semantics. In other words, it behaves like this:

• The interpretation semantics of the word are to do something useful.

• The compilation semantics of the word are to do something useful (and actually the
same thing); i.e., it is executed during compilation.

Marking a word as compile-only prohibits the text interpreter from performing the in-
terpretation semantics of the word directly; an attempt to do so will generate an error. It
is never necessary to use compile-only (and it is not even part of ANS Forth, though it
is provided by many implementations) but it is good etiquette to apply it to a word that
will not behave correctly (and might have unexpected side-effects) in interpret state. For
example, it is only legal to use the conditional word IF within a definition. If you forget
this and try to use it elsewhere, the fact that (in Gforth) it is marked as compile-only

allows the text interpreter to generate a helpful error message rather than subjecting you
to the consequences of your folly.

This example shows the difference between an immediate and a non-immediate word:

: show-state state @ . ;
: show-state-now show-state ; immediate
: word1 show-state ;
: word2 show-state-now ;

The word immediate after the definition of show-state-now makes that word an im-
mediate word. These definitions introduce a new word: @ (pronounced “fetch”). This word

Chapter 4: An Introduction to ANS Forth 46

fetches the value of a variable, and leaves it on the stack. Therefore, the behaviour of
show-state is to print a number that represents the current value of state.

When you execute word1, it prints the number 0, indicating that the system is interpret-
ing. When the text interpreter compiled the definition of word1, it encountered show-state

whose compilation semantics are to append its interpretation semantics to the current def-
inition. When you execute word1, it performs the interpretation semantics of show-state.
At the time that word1 (and therefore show-state) are executed, the system is interpreting.

When you pressed 〈RET〉 after entering the definition of word2, you should have seen the
number -1 printed, followed by “ ok”. When the text interpreter compiled the definition of
word2, it encountered show-state-now, an immediate word, whose compilation semantics
are therefore to perform its interpretation semantics. It is executed straight away (even
before the text interpreter has moved on to process another group of characters; the ; in
this example). The effect of executing it are to display the value of state at the time
that the definition of word2 is being defined. Printing -1 demonstrates that the system is
compiling at this time. If you execute word2 it does nothing at all.

Before leaving the subject of immediate words, consider the behaviour of ." in the
definition of greet, in the previous section. This word is both a parsing word and an
immediate word. Notice that there is a space between ." and the start of the text Hello

and welcome, but that there is no space between the last letter of welcome and the "

character. The reason for this is that ." is a Forth word; it must have a space after it so
that the text interpreter can identify it. The " is not a Forth word; it is a delimiter. The
examples earlier show that, when the string is displayed, there is neither a space before the
H nor after the e. Since ." is an immediate word, it executes at the time that greet is
defined. When it executes, its behaviour is to search forward in the input line looking for
the delimiter. When it finds the delimiter, it updates >IN to point past the delimiter. It
also compiles some magic code into the definition of greet; the xt of a run-time routine
that prints a text string. It compiles the string Hello and welcome into memory so that it
is available to be printed later. When the text interpreter gains control, the next word it
finds in the input stream is ; and so it terminates the definition of greet.

4.5 Forth is written in Forth

When you start up a Forth compiler, a large number of definitions already exist. In
Forth, you develop a new application using bottom-up programming techniques to create
new definitions that are defined in terms of existing definitions. As you create each definition
you can test and debug it interactively.

If you have tried out the examples in this section, you will probably have typed them in
by hand; when you leave Gforth, your definitions will be lost. You can avoid this by using a
text editor to enter Forth source code into a file, and then loading code from the file using
include (see Section 5.17.1 [Forth source files], page 107). A Forth source file is processed
by the text interpreter, just as though you had typed it in by hand3.

Gforth also supports the traditional Forth alternative to using text files for program
entry (see Section 5.18 [Blocks], page 110).

3 Actually, there are some subtle differences – see Section 5.13 [The Text Interpreter], page 94.

Chapter 4: An Introduction to ANS Forth 47

In common with many, if not most, Forth compilers, most of Gforth is actually written
in Forth. All of the ‘.fs’ files in the installation directory4 are Forth source files, which you
can study to see examples of Forth programming.

Gforth maintains a history file that records every line that you type to the text inter-
preter. This file is preserved between sessions, and is used to provide a command-line recall
facility. If you enter long definitions by hand, you can use a text editor to paste them out
of the history file into a Forth source file for reuse at a later time (for more information see
Section 2.3 [Command-line editing], page 6).

4.6 Review - elements of a Forth system

To summarise this chapter:

• Forth programs use factoring to break a problem down into small fragments called
words or definitions.

• Forth program development is an interactive process.

• The main command loop that accepts input, and controls both interpretation and
compilation, is called the text interpreter (also known as the outer interpreter).

• Forth has a very simple syntax, consisting of words and numbers separated by spaces
or carriage-return characters. Any additional syntax is imposed by parsing words.

• Forth uses a stack to pass parameters between words. As a result, it uses postfix
notation.

• To use a word that has previously been defined, the text interpreter searches for the
word in the name dictionary.

• Words have interpretation semantics and compilation semantics.

• The text interpreter uses the value of state to select between the use of the interpre-
tation semantics and the compilation semantics of a word that it encounters.

• The relationship between the interpretation semantics and compilation semantics for
a word depend upon the way in which the word was defined (for example, whether it
is an immediate word).

• Forth definitions can be implemented in Forth (called high-level definitions) or in some
other way (usually a lower-level language and as a result often called low-level defini-
tions, code definitions or primitives).

• Many Forth systems are implemented mainly in Forth.

4.7 Where To Go Next

Amazing as it may seem, if you have read (and understood) this far, you know almost all
the fundamentals about the inner workings of a Forth system. You certainly know enough
to be able to read and understand the rest of this manual and the ANS Forth document, to
learn more about the facilities that Forth in general and Gforth in particular provide. Even
scarier, you know almost enough to implement your own Forth system. However, that’s not
a good idea just yet... better to try writing some programs in Gforth.

4 For example, ‘/usr/local/share/gforth...’

Chapter 4: An Introduction to ANS Forth 48

Forth has such a rich vocabulary that it can be hard to know where to start in learning
it. This section suggests a few sets of words that are enough to write small but useful
programs. Use the word index in this document to learn more about each word, then try it
out and try to write small definitions using it. Start by experimenting with these words:

• Arithmetic: + - * / /MOD */ ABS INVERT

• Comparison: MIN MAX =

• Logic: AND OR XOR NOT

• Stack manipulation: DUP DROP SWAP OVER

• Loops and decisions: IF ELSE ENDIF ?DO I LOOP

• Input/Output: . ." EMIT CR KEY

• Defining words: : ; CREATE

• Memory allocation words: ALLOT ,

• Tools: SEE WORDS .S MARKER

When you have mastered those, go on to:

• More defining words: VARIABLE CONSTANT VALUE TO CREATE DOES>

• Memory access: @ !

When you have mastered these, there’s nothing for it but to read through the whole of
this manual and find out what you’ve missed.

4.8 Exercises

TODO: provide a set of programming excercises linked into the stuff done already and
into other sections of the manual. Provide solutions to all the exercises in a .fs file in the
distribution.

Chapter 5: Forth Words 49

5 Forth Words

5.1 Notation

The Forth words are described in this section in the glossary notation that has become
a de-facto standard for Forth texts:

word Stack effect wordset pronunciation

Description

word The name of the word.

Stack effect
The stack effect is written in the notation before -- after , where before and
after describe the top of stack entries before and after the execution of the
word. The rest of the stack is not touched by the word. The top of stack is
rightmost, i.e., a stack sequence is written as it is typed in. Note that Gforth
uses a separate floating point stack, but a unified stack notation. Also, return
stack effects are not shown in stack effect, but in Description. The name of a
stack item describes the type and/or the function of the item. See below for a
discussion of the types.

All words have two stack effects: A compile-time stack effect and a run-time
stack effect. The compile-time stack-effect of most words is – . If the compile-
time stack-effect of a word deviates from this standard behaviour, or the word
does other unusual things at compile time, both stack effects are shown; other-
wise only the run-time stack effect is shown.

pronunciation
How the word is pronounced.

wordset The ANS Forth standard is divided into several word sets. A standard system
need not support all of them. Therefore, in theory, the fewer word sets your
program uses the more portable it will be. However, we suspect that most ANS
Forth systems on personal machines will feature all word sets. Words that are
not defined in ANS Forth have gforth or gforth-internal as word set. gforth
describes words that will work in future releases of Gforth; gforth-internal
words are more volatile. Environmental query strings are also displayed like
words; you can recognize them by the environment in the word set field.

Description
A description of the behaviour of the word.

The type of a stack item is specified by the character(s) the name starts with:

f Boolean flags, i.e. false or true.

c Char

w Cell, can contain an integer or an address

n signed integer

Chapter 5: Forth Words 50

u unsigned integer

d double sized signed integer

ud double sized unsigned integer

r Float (on the FP stack)

a- Cell-aligned address

c- Char-aligned address (note that a Char may have two bytes in Windows NT)

f- Float-aligned address

df- Address aligned for IEEE double precision float

sf- Address aligned for IEEE single precision float

xt Execution token, same size as Cell

wid Word list ID, same size as Cell

ior, wior I/O result code, cell-sized. In Gforth, you can throw iors.

f83name Pointer to a name structure

" string in the input stream (not on the stack). The terminating character is a
blank by default. If it is not a blank, it is shown in <> quotes.

5.2 Case insensitivity

Gforth is case-insensitive; you can enter definitions and invoke Standard words using
upper, lower or mixed case (however, see Section 8.1.1 [Implementation-defined options],
page 168).

ANS Forth only requires implementations to recognise Standard words when they are
typed entirely in upper case. Therefore, a Standard program must use upper case for all
Standard words. You can use whatever case you like for words that you define, but in a
Standard program you have to use the words in the same case that you defined them.

Gforth supports case sensitivity through tables (case-sensitive wordlists, see Section 5.15
[Word Lists], page 102).

Two people have asked how to convert Gforth to be case-sensitive; while we think this
is a bad idea, you can change all wordlists into tables like this:

’ table-find forth-wordlist wordlist-map !

Note that you now have to type the predefined words in the same case that we defined
them, which are varying. You may want to convert them to your favourite case before doing
this operation (I won’t explain how, because if you are even contemplating doing this, you’d
better have enough knowledge of Forth systems to know this already).

Chapter 5: Forth Words 51

5.3 Comments

Forth supports two styles of comment; the traditional in-line comment, (and its modern
cousin, the comment to end of line; \.

(compilation ’ccc<close-paren>’ – ; run-time – core,file “paren”

Comment, usually till the next): parse and discard all subsequent characters in the
parse area until ")" is encountered. During interactive input, an end-of-line also acts as
a comment terminator. For file input, it does not; if the end-of-file is encountered whilst
parsing for the ")" delimiter, Gforth will generate a warning.

\ compilation ’ccc<newline>’ – ; run-time – core-ext,block-ext “backslash”

Comment till the end of the line if BLK contains 0 (i.e., while not loading a block), parse
and discard the remainder of the parse area. Otherwise, parse and discard all subsequent
characters in the parse area corresponding to the current line.

\G compilation ’ccc<newline>’ – ; run-time – gforth “backslash-gee”

Equivalent to \ but used as a tag to annotate definition comments into documentation.

5.4 Boolean Flags

A Boolean flag is cell-sized. A cell with all bits clear represents the flag false and a flag
with all bits set represents the flag true. Words that check a flag (for example, IF) will
treat a cell that has any bit set as true.

true – f core-ext “true”

Constant – f is a cell with all bits set.

false – f core-ext “false”

Constant – f is a cell with all bits clear.

on a-addr – gforth “on”

Set the (value of the) variable at a-addr to true.

off a-addr – gforth “off”

Set the (value of the) variable at a-addr to false.

5.5 Arithmetic

Forth arithmetic is not checked, i.e., you will not hear about integer overflow on addition
or multiplication, you may hear about division by zero if you are lucky. The operator is
written after the operands, but the operands are still in the original order. I.e., the infix 2-1

corresponds to 2 1 -. Forth offers a variety of division operators. If you perform division
with potentially negative operands, you do not want to use / or /mod with its undefined
behaviour, but rather fm/mod or sm/mod (probably the former, see Section 5.5.5 [Mixed
precision], page 54).

Chapter 5: Forth Words 52

5.5.1 Single precision

By default, numbers in Forth are single-precision integers that are one cell in size. They
can be signed or unsigned, depending upon how you treat them. For the rules used by
the text interpreter for recognising single-precision integers see Section 5.13.2 [Number
Conversion], page 97.

These words are all defined for signed operands, but some of them also work for unsigned
numbers: +, 1+, -, 1-, *.

+ n1 n2 – n core “plus”

1+ n1 – n2 core “one-plus”

- n1 n2 – n core “minus”

1- n1 – n2 core “one-minus”

* n1 n2 – n core “star”

/ n1 n2 – n core “slash”

mod n1 n2 – n core “mod”

/mod n1 n2 – n3 n4 core “slash-mod”

negate n1 – n2 core “negate”

abs n – u core “abs”

min n1 n2 – n core “min”

max n1 n2 – n core “max”

FLOORED – f environment “FLOORED”

True if / etc. perform floored division

5.5.2 Double precision

For the rules used by the text interpreter for recognising double-precision integers, see
Section 5.13.2 [Number Conversion], page 97.

A double precision number is represented by a cell pair, with the most significant cell at
the TOS. It is trivial to convert an unsigned single to a double: simply push a 0 onto the
TOS. Since numbers are represented by Gforth using 2’s complement arithmetic, converting
a signed single to a (signed) double requires sign-extension across the most significant cell.
This can be achieved using s>d. The moral of the story is that you cannot convert a number
without knowing whether it represents an unsigned or a signed number.

These words are all defined for signed operands, but some of them also work for unsigned
numbers: d+, d-.

s>d n – d core “s-to-d”

d>s d – n double “d-to-s”

d+ d1 d2 – d double “d-plus”

d- d1 d2 – d double “d-minus”

dnegate d1 – d2 double “d-negate”

dabs d – ud double “d-abs”

dmin d1 d2 – d double “d-min”

dmax d1 d2 – d double “d-max”

Chapter 5: Forth Words 53

5.5.3 Bitwise operations

and w1 w2 – w core “and”

or w1 w2 – w core “or”

xor w1 w2 – w core “x-or”

invert w1 – w2 core “invert”

lshift u1 n – u2 core “l-shift”

rshift u1 n – u2 core “r-shift”

Logical shift right by n bits.

2* n1 – n2 core “two-star”

Shift left by 1; also works on unsigned numbers

d2* d1 – d2 double “d-two-star”

Shift left by 1; also works on unsigned numbers

2/ n1 – n2 core “two-slash”

Arithmetic shift right by 1. For signed numbers this is a floored division by 2 (note that
/ not necessarily floors).

d2/ d1 – d2 double “d-two-slash”

Arithmetic shift right by 1. For signed numbers this is a floored division by 2.

5.5.4 Numeric comparison

Note that the words that compare for equality (= <> 0= 0<> d= d<> d0= d0<>) work for
for both signed and unsigned numbers.

< n1 n2 – f core “less-than”

<= n1 n2 – f gforth “less-or-equal”

<> n1 n2 – f core-ext “not-equals”

= n1 n2 – f core “equals”

> n1 n2 – f core “greater-than”

>= n1 n2 – f gforth “greater-or-equal”

0< n – f core “zero-less-than”

0<= n – f gforth “zero-less-or-equal”

0<> n – f core-ext “zero-not-equals”

0= n – f core “zero-equals”

0> n – f core-ext “zero-greater-than”

0>= n – f gforth “zero-greater-or-equal”

u< u1 u2 – f core “u-less-than”

u<= u1 u2 – f gforth “u-less-or-equal”

u> u1 u2 – f core-ext “u-greater-than”

u>= u1 u2 – f gforth “u-greater-or-equal”

Chapter 5: Forth Words 54

within u1 u2 u3 – f core-ext “within”

u2=<u1<u3 or: u3=<u2 and u1 is not in [u3,u2). This works for unsigned and signed
numbers (but not a mixture). Another way to think about this word is to consider the
numbers as a circle (wrapping around from max-u to 0 for unsigned, and from max-n to
min-n for signed numbers); now consider the range from u2 towards increasing numbers up
to and excluding u3 (giving an empty range if u2=u3); if u1 is in this range, within returns
true.

d< d1 d2 – f double “d-less-than”

d<= d1 d2 – f gforth “d-less-or-equal”

d<> d1 d2 – f gforth “d-not-equals”

d= d1 d2 – f double “d-equals”

d> d1 d2 – f gforth “d-greater-than”

d>= d1 d2 – f gforth “d-greater-or-equal”

d0< d – f double “d-zero-less-than”

d0<= d – f gforth “d-zero-less-or-equal”

d0<> d – f gforth “d-zero-not-equals”

d0= d – f double “d-zero-equals”

d0> d – f gforth “d-zero-greater-than”

d0>= d – f gforth “d-zero-greater-or-equal”

du< ud1 ud2 – f double-ext “d-u-less-than”

du<= ud1 ud2 – f gforth “d-u-less-or-equal”

du> ud1 ud2 – f gforth “d-u-greater-than”

du>= ud1 ud2 – f gforth “d-u-greater-or-equal”

5.5.5 Mixed precision

m+ d1 n – d2 double “m-plus”

*/ n1 n2 n3 – n4 core “star-slash”

n4=(n1*n2)/n3, with the intermediate result being double.

*/mod n1 n2 n3 – n4 n5 core “star-slash-mod”

n1*n2=n3*n5+n4, with the intermediate result (n1*n2) being double.

m* n1 n2 – d core “m-star”

um* u1 u2 – ud core “u-m-star”

m*/ d1 n2 u3 – dquot double “m-star-slash”

dquot=(d1*n2)/u3, with the intermediate result being triple-precision. In ANS Forth
u3 can only be a positive signed number.

um/mod ud u1 – u2 u3 core “u-m-slash-mod”

ud=u3*u1+u2, u1>u2>=0

fm/mod d1 n1 – n2 n3 core “f-m-slash-mod”

Floored division: d1 = n3*n1+n2, n1>n2>=0 or 0>=n2>n1.

sm/rem d1 n1 – n2 n3 core “s-m-slash-rem”

Symmetric division: d1 = n3*n1+n2, sign(n2)=sign(d1) or 0.

Chapter 5: Forth Words 55

5.5.6 Floating Point

For the rules used by the text interpreter for recognising floating-point numbers see
Section 5.13.2 [Number Conversion], page 97.

Gforth has a separate floating point stack, but the documentation uses the unified no-
tation.1

Floating point numbers have a number of unpleasant surprises for the unwary (e.g.,
floating point addition is not associative) and even a few for the wary. You should not use
them unless you know what you are doing or you don’t care that the results you get are
totally bogus. If you want to learn about the problems of floating point numbers (and how to
avoid them), you might start with David Goldberg, What Every Computer Scientist Should
Know About Floating-Point Arithmetic (http://www.validgh.com/goldberg/paper.ps),
ACM Computing Surveys 23(1):5−48, March 1991.

d>f d – r float “d-to-f”

f>d r – d float “f-to-d”

f+ r1 r2 – r3 float “f-plus”

f- r1 r2 – r3 float “f-minus”

f* r1 r2 – r3 float “f-star”

f/ r1 r2 – r3 float “f-slash”

fnegate r1 – r2 float “f-negate”

fabs r1 – r2 float-ext “f-abs”

fmax r1 r2 – r3 float “f-max”

fmin r1 r2 – r3 float “f-min”

floor r1 – r2 float “floor”

Round towards the next smaller integral value, i.e., round toward negative infinity.

fround r1 – r2 gforth “f-round”

Round to the nearest integral value.

f** r1 r2 – r3 float-ext “f-star-star”

r3 is r1 raised to the r2 th power.

fsqrt r1 – r2 float-ext “f-square-root”

fexp r1 – r2 float-ext “f-e-x-p”

fexpm1 r1 – r2 float-ext “f-e-x-p-m-one”

r2=e**r1−1

fln r1 – r2 float-ext “f-l-n”

flnp1 r1 – r2 float-ext “f-l-n-p-one”

r2=ln(r1+1)

flog r1 – r2 float-ext “f-log”

The decimal logarithm.

1 It’s easy to generate the separate notation from that by just separating the floating-point numbers out:
e.g. (n r1 u r2 -- r3) becomes (n u --) (F: r1 r2 -- r3).

Chapter 5: Forth Words 56

falog r1 – r2 float-ext “f-a-log”

r2=10**r1

f2* r1 – r2 gforth “f2*”

Multiply r1 by 2.0e0

f2/ r1 – r2 gforth “f2/”

Multiply r1 by 0.5e0

1/f r1 – r2 gforth “1/f”

Divide 1.0e0 by r1.

precision – u float-ext “precision”

u is the number of significant digits currently used by F. FE. and FS.

set-precision u – float-ext “set-precision”

Set the number of significant digits currently used by F. FE. and FS. to u.

Angles in floating point operations are given in radians (a full circle has 2 pi radians).

fsin r1 – r2 float-ext “f-sine”

fcos r1 – r2 float-ext “f-cos”

fsincos r1 – r2 r3 float-ext “f-sine-cos”

r2=sin(r1), r3=cos(r1)

ftan r1 – r2 float-ext “f-tan”

fasin r1 – r2 float-ext “f-a-sine”

facos r1 – r2 float-ext “f-a-cos”

fatan r1 – r2 float-ext “f-a-tan”

fatan2 r1 r2 – r3 float-ext “f-a-tan-two”

r1/r2=tan(r3). ANS Forth does not require, but probably intends this to be the inverse
of fsincos. In gforth it is.

fsinh r1 – r2 float-ext “f-cinch”

fcosh r1 – r2 float-ext “f-cosh”

ftanh r1 – r2 float-ext “f-tan-h”

fasinh r1 – r2 float-ext “f-a-cinch”

facosh r1 – r2 float-ext “f-a-cosh”

fatanh r1 – r2 float-ext “f-a-tan-h”

pi – r gforth “pi”

Fconstant – r is the value pi; the ratio of a circle’s area to its diameter.

One particular problem with floating-point arithmetic is that comparison for equality
often fails when you would expect it to succeed. For this reason approximate equality is
often preferred (but you still have to know what you are doing). Also note that IEEE NaNs
may compare differently from what you might expect. The comparison words are:

f~rel r1 r2 r3 – flag gforth “f~rel”

Approximate equality with relative error: |r1-r2|<r3*|r1+r2|.

f~abs r1 r2 r3 – flag gforth “f~abs”

Approximate equality with absolute error: |r1-r2|<r3.

Chapter 5: Forth Words 57

f~ r1 r2 r3 – flag float-ext “f-proximate”

ANS Forth medley for comparing r1 and r2 for equality: r3>0: f~abs; r3=0: bitwise
comparison; r3<0: fnegate f~rel.

f= r1 r2 – f gforth “f-equals”

f<> r1 r2 – f gforth “f-not-equals”

f< r1 r2 – f float “f-less-than”

f<= r1 r2 – f gforth “f-less-or-equal”

f> r1 r2 – f gforth “f-greater-than”

f>= r1 r2 – f gforth “f-greater-or-equal”

f0< r – f float “f-zero-less-than”

f0<= r – f gforth “f-zero-less-or-equal”

f0<> r – f gforth “f-zero-not-equals”

f0= r – f float “f-zero-equals”

f0> r – f gforth “f-zero-greater-than”

f0>= r – f gforth “f-zero-greater-or-equal”

5.6 Stack Manipulation

Gforth maintains a number of separate stacks:

• A data stack (also known as the parameter stack) – for characters, cells, addresses, and
double cells.

• A floating point stack – for holding floating point (FP) numbers.

• A return stack – for holding the return addresses of colon definitions and other (non-FP)
data.

• A locals stack – for holding local variables.

5.6.1 Data stack

drop w – core “drop”

nip w1 w2 – w2 core-ext “nip”

dup w – w w core “dupe”

over w1 w2 – w1 w2 w1 core “over”

tuck w1 w2 – w2 w1 w2 core-ext “tuck”

swap w1 w2 – w2 w1 core “swap”

pick u – w core-ext “pick”

Actually the stack effect is x0 ... xu u -- x0 ... xu x0 .

rot w1 w2 w3 – w2 w3 w1 core “rote”

-rot w1 w2 w3 – w3 w1 w2 gforth “not-rote”

?dup w – w core “question-dupe”

Actually the stack effect is: (w -- 0 | w w). It performs a dup if w is nonzero.

roll x0 x1 .. xn n – x1 .. xn x0 core-ext “roll”

2drop w1 w2 – core “two-drop”

Chapter 5: Forth Words 58

2nip w1 w2 w3 w4 – w3 w4 gforth “two-nip”

2dup w1 w2 – w1 w2 w1 w2 core “two-dupe”

2over w1 w2 w3 w4 – w1 w2 w3 w4 w1 w2 core “two-over”

2tuck w1 w2 w3 w4 – w3 w4 w1 w2 w3 w4 gforth “two-tuck”

2swap w1 w2 w3 w4 – w3 w4 w1 w2 core “two-swap”

2rot w1 w2 w3 w4 w5 w6 – w3 w4 w5 w6 w1 w2 double-ext “two-rote”

5.6.2 Floating point stack

Whilst every sane Forth has a separate floating-point stack, it is not strictly required;
an ANS Forth system could theoretically keep floating-point numbers on the data stack.
As an additional difficulty, you don’t know how many cells a floating-point number takes.
It is reportedly possible to write words in a way that they work also for a unified stack
model, but we do not recommend trying it. Instead, just say that your program has an
environmental dependency on a separate floating-point stack.

floating-stack – n environment “floating-stack”

n is non-zero, showing that Gforth maintains a separate floating-point stack of depth n.

fdrop r – float “f-drop”

fnip r1 r2 – r2 gforth “f-nip”

fdup r – r r float “f-dupe”

fover r1 r2 – r1 r2 r1 float “f-over”

ftuck r1 r2 – r2 r1 r2 gforth “f-tuck”

fswap r1 r2 – r2 r1 float “f-swap”

fpick u – r gforth “fpick”

Actually the stack effect is r0 ... ru u -- r0 ... ru r0 .

frot r1 r2 r3 – r2 r3 r1 float “f-rote”

5.6.3 Return stack

A Forth system is allowed to keep local variables on the return stack. This is reasonable,
as local variables usually eliminate the need to use the return stack explicitly. So, if you
want to produce a standard compliant program and you are using local variables in a word,
forget about return stack manipulations in that word (refer to the standard document for
the exact rules).

>r w – R:w core “to-r”

r> R:w – w core “r-from”

r@ – w ; R: w – w core “r-fetch”

rdrop R:w – gforth “rdrop”

2>r d – R:d core-ext “two-to-r”

2r> R:d – d core-ext “two-r-from”

2r@ R:d – R:d d core-ext “two-r-fetch”

2rdrop R:d – gforth “two-r-drop”

Chapter 5: Forth Words 59

5.6.4 Locals stack

Gforth uses an extra locals stack. It is described, along with the reasons for its existence,
in Section 5.20.1.4 [Locals implementation], page 127.

5.6.5 Stack pointer manipulation

sp0 – a-addr gforth “sp0”

User variable – initial value of the data stack pointer.

sp@ – a-addr gforth “sp-fetch”

sp! a-addr – gforth “sp-store”

fp0 – a-addr gforth “fp0”

User variable – initial value of the floating-point stack pointer.

fp@ – f-addr gforth “fp-fetch”

fp! f-addr – gforth “fp-store”

rp0 – a-addr gforth “rp0”

User variable – initial value of the return stack pointer.

rp@ – a-addr gforth “rp-fetch”

rp! a-addr – gforth “rp-store”

lp0 – a-addr gforth “lp0”

User variable – initial value of the locals stack pointer.

lp@ – addr gforth “lp-fetch”

lp! c-addr – gforth “lp-store”

5.7 Memory

In addition to the standard Forth memory allocation words, there is also a garbage
collector (http://www.complang.tuwien.ac.at/forth/garbage-collection.zip).

5.7.1 ANS Forth and Gforth memory models

ANS Forth considers a Forth system as consisting of several address spaces, of which
only data space is managed and accessible with the memory words. Memory not necessarily
in data space includes the stacks, the code (called code space) and the headers (called name
space). In Gforth everything is in data space, but the code for the primitives is usually
read-only.

Data space is divided into a number of areas: The (data space portion of the) dictionary2,
the heap, and a number of system-allocated buffers.

In ANS Forth data space is also divided into contiguous regions. You can only use
address arithmetic within a contiguous region, not between them. Usually each allocation
gives you one contiguous region, but the dictionary allocation words have additional rules
(see Section 5.7.2 [Dictionary allocation], page 60).

2 Sometimes, the term dictionary is used to refer to the search data structure embodied in word lists and
headers, because it is used for looking up names, just as you would in a conventional dictionary.

Chapter 5: Forth Words 60

Gforth provides one big address space, and address arithmetic can be performed between
any addresses. However, in the dictionary headers or code are interleaved with data, so
almost the only contiguous data space regions there are those described by ANS Forth as
contiguous; but you can be sure that the dictionary is allocated towards increasing addresses
even between contiguous regions. The memory order of allocations in the heap is platform-
dependent (and possibly different from one run to the next).

5.7.2 Dictionary allocation

Dictionary allocation is a stack-oriented allocation scheme, i.e., if you want to deallocate
X, you also deallocate everything allocated after X.

The allocations using the words below are contiguous and grow the region towards in-
creasing addresses. Other words that allocate dictionary memory of any kind (i.e., defining
words including :noname) end the contiguous region and start a new one.

In ANS Forth only created words are guaranteed to produce an address that is the
start of the following contiguous region. In particular, the cell allocated by variable is not
guaranteed to be contiguous with following alloted memory.

You can deallocate memory by using allot with a negative argument (with some re-
strictions, see allot). For larger deallocations use marker.

here – addr core “here”

Return the address of the next free location in data space.

unused – u core-ext “unused”

Return the amount of free space remaining (in address units) in the region addressed by
here.

allot n – core “allot”

Reserve n address units of data space without initialization. n is a signed number,
passing a negative n releases memory. In ANS Forth you can only deallocate memory from
the current contiguous region in this way. In Gforth you can deallocate anything in this
way but named words. The system does not check this restriction.

c, c – core “c-comma”

Reserve data space for one char and store c in the space.

f, f – gforth “f,”

Reserve data space for one floating-point number and store f in the space.

, w – core “comma”

Reserve data space for one cell and store w in the space.

2, w1 w2 – gforth “2,”

Reserve data space for two cells and store the double w1 w2 there, w2 first (lower
address).

Memory accesses have to be aligned (see Section 5.7.5 [Address arithmetic], page 62).
So of course you should allocate memory in an aligned way, too. I.e., before allocating
allocating a cell, here must be cell-aligned, etc. The words below align here if it is not
already. Basically it is only already aligned for a type, if the last allocation was a multiple
of the size of this type and if here was aligned for this type before.

After freshly createing a word, here is aligned in ANS Forth (maxaligned in Gforth).

Chapter 5: Forth Words 61

align – core “align”

If the data-space pointer is not aligned, reserve enough space to align it.

falign – float “f-align”

If the data-space pointer is not float-aligned, reserve enough space to align it.

sfalign – float-ext “s-f-align”

If the data-space pointer is not single-float-aligned, reserve enough space to align it.

dfalign – float-ext “d-f-align”

If the data-space pointer is not double-float-aligned, reserve enough space to align it.

maxalign – gforth “maxalign”

Align data-space pointer for all alignment requirements.

cfalign – gforth “cfalign”

Align data-space pointer for code field requirements (i.e., such that the corresponding
body is maxaligned).

5.7.3 Heap allocation

Heap allocation supports deallocation of allocated memory in any order. Dictionary
allocation is not affected by it (i.e., it does not end a contiguous region). In Gforth, these
words are implemented using the standard C library calls malloc(), free() and resize().

The memory region produced by one invocation of allocate or resize is internally
contiguous. There is no contiguity between such a region and any other region (including
others allocated from the heap).

allocate u – a-addr wior memory “allocate”

Allocate u address units of contiguous data space. The initial contents of the data space
is undefined. If the allocation is successful, a-addr is the start address of the allocated
region and wior is 0. If the allocation fails, a-addr is undefined and wior is a non-zero I/O
result code.

free a-addr – wior memory “free”

Return the region of data space starting at a-addr to the system. The region must
originally have been obtained using allocate or resize. If the operational is successful,
wior is 0. If the operation fails, wior is a non-zero I/O result code.

resize a-addr1 u – a-addr2 wior memory “resize”

Change the size of the allocated area at a-addr1 to u address units, possibly moving the
contents to a different area. a-addr2 is the address of the resulting area. If the operation
is successful, wior is 0. If the operation fails, wior is a non-zero I/O result code. If a-addr1
is 0, Gforth’s (but not the Standard) resize allocates u address units.

5.7.4 Memory Access

@ a-addr – w core “fetch”

w is the cell stored at a addr.

! w a-addr – core “store”

Store w into the cell at a-addr.

Chapter 5: Forth Words 62

+! n a-addr – core “plus-store”

Add n to the cell at a-addr.

c@ c-addr – c core “c-fetch”

c is the char stored at c addr.

c! c c-addr – core “c-store”

Store c into the char at c-addr.

2@ a-addr – w1 w2 core “two-fetch”

w2 is the content of the cell stored at a-addr, w1 is the content of the next cell.

2! w1 w2 a-addr – core “two-store”

Store w2 into the cell at c-addr and w1 into the next cell.

f@ f-addr – r float “f-fetch”

r is the float at address f-addr.

f! r f-addr – float “f-store”

Store r into the float at address f-addr.

sf@ sf-addr – r float-ext “s-f-fetch”

Fetch the single-precision IEEE floating-point value r from the address sf-addr.

sf! r sf-addr – float-ext “s-f-store”

Store r as single-precision IEEE floating-point value to the address sf-addr.

df@ df-addr – r float-ext “d-f-fetch”

Fetch the double-precision IEEE floating-point value r from the address df-addr.

df! r df-addr – float-ext “d-f-store”

Store r as double-precision IEEE floating-point value to the address df-addr.

5.7.5 Address arithmetic

Address arithmetic is the foundation on which you can build data structures like arrays,
records (see Section 5.21 [Structures], page 129) and objects (see Section 5.22 [Object-
oriented Forth], page 133).

ANS Forth does not specify the sizes of the data types. Instead, it offers a number of
words for computing sizes and doing address arithmetic. Address arithmetic is performed
in terms of address units (aus); on most systems the address unit is one byte. Note that
a character may have more than one au, so chars is no noop (on platforms where it is a
noop, it compiles to nothing).

The basic address arithmetic words are + and -. E.g., if you have the address of a cell,
perform 1 cells +, and you will have the address of the next cell.

In ANS Forth you can perform address arithmetic only within a contiguous region, i.e.,
if you have an address into one region, you can only add and subtract such that the result
is still within the region; you can only subtract or compare addresses from within the same
contiguous region. Reasons: several contiguous regions can be arranged in memory in any
way; on segmented systems addresses may have unusual representations, such that address
arithmetic only works within a region. Gforth provides a few more guarantees (linear
address space, dictionary grows upwards), but in general I have found it easy to stay within

Chapter 5: Forth Words 63

contiguous regions (exception: computing and comparing to the address just beyond the
end of an array).

ANS Forth also defines words for aligning addresses for specific types. Many computers
require that accesses to specific data types must only occur at specific addresses; e.g., that
cells may only be accessed at addresses divisible by 4. Even if a machine allows unaligned
accesses, it can usually perform aligned accesses faster.

For the performance-conscious: alignment operations are usually only necessary during
the definition of a data structure, not during the (more frequent) accesses to it.

ANS Forth defines no words for character-aligning addresses. This is not an oversight,
but reflects the fact that addresses that are not char-aligned have no use in the standard
and therefore will not be created.

ANS Forth guarantees that addresses returned by CREATEd words are cell-aligned; in
addition, Gforth guarantees that these addresses are aligned for all purposes.

Note that the ANS Forth word char has nothing to do with address arithmetic.

chars n1 – n2 core “chars”

n2 is the number of address units of n1 chars.""

char+ c-addr1 – c-addr2 core “char-plus”

1 chars +.

cells n1 – n2 core “cells”

n2 is the number of address units of n1 cells.

cell+ a-addr1 – a-addr2 core “cell-plus”

1 cells +

cell – u gforth “cell”

Constant – 1 cells

aligned c-addr – a-addr core “aligned”

a-addr is the first aligned address greater than or equal to c-addr.

floats n1 – n2 float “floats”

n2 is the number of address units of n1 floats.

float+ f-addr1 – f-addr2 float “float-plus”

1 floats +.

float – u gforth “float”

Constant – the number of address units corresponding to a floating-point number.

faligned c-addr – f-addr float “f-aligned”

f-addr is the first float-aligned address greater than or equal to c-addr.

sfloats n1 – n2 float-ext “s-floats”

n2 is the number of address units of n1 single-precision IEEE floating-point numbers.

sfloat+ sf-addr1 – sf-addr2 float-ext “s-float-plus”

1 sfloats +.

sfaligned c-addr – sf-addr float-ext “s-f-aligned”

sf-addr is the first single-float-aligned address greater than or equal to c-addr.

Chapter 5: Forth Words 64

dfloats n1 – n2 float-ext “d-floats”

n2 is the number of address units of n1 double-precision IEEE floating-point numbers.

dfloat+ df-addr1 – df-addr2 float-ext “d-float-plus”

1 dfloats +.

dfaligned c-addr – df-addr float-ext “d-f-aligned”

df-addr is the first double-float-aligned address greater than or equal to c-addr.

maxaligned addr1 – addr2 gforth “maxaligned”

addr2 is the first address after addr1 that satisfies all alignment restrictions. max-
aligned"

cfaligned addr1 – addr2 gforth “cfaligned”

addr2 is the first address after addr1 that is aligned for a code field (i.e., such that the
corresponding body is maxaligned).

ADDRESS-UNIT-BITS – n environment “ADDRESS-UNIT-BITS”

Size of one address unit, in bits.

5.7.6 Memory Blocks

Memory blocks often represent character strings; For ways of storing character strings
in memory see Section 5.19.3 [String Formats], page 118. For other string-processing words
see Section 5.19.4 [Displaying characters and strings], page 118.

A few of these words work on address unit blocks. In that case, you usually have to insert
CHARS before the word when working on character strings. Most words work on character
blocks, and expect a char-aligned address.

When copying characters between overlapping memory regions, use chars move or choose
carefully between cmove and cmove>.

move c-from c-to ucount – core “move”

Copy the contents of ucount aus at c-from to c-to. move works correctly even if the two
areas overlap.

erase addr u – core-ext “erase”

Clear all bits in u aus starting at addr.

cmove c-from c-to u – string “c-move”

Copy the contents of ucount characters from data space at c-from to c-to. The copy
proceeds char-by-char from low address to high address; i.e., for overlapping areas it is safe
if c-to=<c-from.

cmove> c-from c-to u – string “c-move-up”

Copy the contents of ucount characters from data space at c-from to c-to. The copy
proceeds char-by-char from high address to low address; i.e., for overlapping areas it is safe
if c-to>=c-from.

fill c-addr u c – core “fill”

Store c in u chars starting at c-addr.

blank c-addr u – string “blank”

Store the space character into u chars starting at c-addr.

Chapter 5: Forth Words 65

compare c-addr1 u1 c-addr2 u2 – n string “compare”

Compare two strings lexicographically. If they are equal, n is 0; if the first string is
smaller, n is -1; if the first string is larger, n is 1. Currently this is based on the machine’s
character comparison. In the future, this may change to consider the current locale and its
collation order.

str= c-addr1 u1 c-addr2 u2 – f gforth “str=”

str< c-addr1 u1 c-addr2 u2 – f gforth “str<”

string-prefix? c-addr1 u1 c-addr2 u2 – f gforth “string-prefix?”

Is c-addr2 u2 a prefix of c-addr1 u1?

search c-addr1 u1 c-addr2 u2 – c-addr3 u3 flag string “search”

Search the string specified by c-addr1, u1 for the string specified by c-addr2, u2. If flag
is true: match was found at c-addr3 with u3 characters remaining. If flag is false: no match
was found; c-addr3, u3 are equal to c-addr1, u1.

-trailing c addr u1 – c addr u2 string “dash-trailing”

Adjust the string specified by c-addr, u1 to remove all trailing spaces. u2 is the length
of the modified string.

/string c-addr1 u1 n – c-addr2 u2 string “slash-string”

Adjust the string specified by c-addr1, u1 to remove n characters from the start of the
string.

bounds addr u – addr+u addr gforth “bounds”

Given a memory block represented by starting address addr and length u in aus, produce
the end address addr+u and the start address in the right order for u+do or ?do.

5.8 Control Structures

Control structures in Forth cannot be used interpretively, only in a colon definition3.
We do not like this limitation, but have not seen a satisfying way around it yet, although
many schemes have been proposed.

5.8.1 Selection

flag
IF

code
ENDIF

If flag is non-zero (as far as IF etc. are concerned, a cell with any bit set represents
truth) code is executed.

flag
IF

code1
ELSE

code2

3 To be precise, they have no interpretation semantics (see Section 5.10 [Interpretation and Compilation
Semantics], page 86).

Chapter 5: Forth Words 66

ENDIF

If flag is true, code1 is executed, otherwise code2 is executed.

You can use THEN instead of ENDIF. Indeed, THEN is standard, and ENDIF is not, although
it is quite popular. We recommend using ENDIF, because it is less confusing for people who
also know other languages (and is not prone to reinforcing negative prejudices against Forth
in these people). Adding ENDIF to a system that only supplies THEN is simple:

: ENDIF POSTPONE then ; immediate

[According to Webster’s New Encyclopedic Dictionary, then (adv.) has the following
meanings:

... 2b: following next after in order ... 3d: as a necessary consequence (if you
were there, then you saw them).

Forth’s THEN has the meaning 2b, whereas THEN in Pascal and many other programming
languages has the meaning 3d.]

Gforth also provides the words ?DUP-IF and ?DUP-0=-IF, so you can avoid using ?dup.
Using these alternatives is also more efficient than using ?dup. Definitions in ANS Forth
for ENDIF, ?DUP-IF and ?DUP-0=-IF are provided in ‘compat/control.fs’.

n
CASE

n1 OF code1 ENDOF
n2 OF code2 ENDOF
...
(n) default-code (n)

ENDCASE

Executes the first codei, where the ni is equal to n. If no ni matches, the optional
default-code is executed. The optional default case can be added by simply writing the
code after the last ENDOF. It may use n, which is on top of the stack, but must not consume
it.

Programming style note: To keep the code understandable, you should ensure that on
all paths through a selection construct the stack is changed in the same way (wrt. number
and types of stack items consumed and pushed).

5.8.2 Simple Loops

BEGIN
code1
flag

WHILE
code2

REPEAT

code1 is executed and flag is computed. If it is true, code2 is executed and the loop is
restarted; If flag is false, execution continues after the REPEAT.

BEGIN
code
flag

UNTIL

Chapter 5: Forth Words 67

code is executed. The loop is restarted if flag is false.

Programming style note: To keep the code understandable, a complete iteration of the
loop should not change the number and types of the items on the stacks.

BEGIN
code

AGAIN

This is an endless loop.

5.8.3 Counted Loops

The basic counted loop is:

limit start
?DO

body
LOOP

This performs one iteration for every integer, starting from start and up to, but excluding
limit. The counter, or index, can be accessed with i. For example, the loop:

10 0 ?DO
i .

LOOP

prints 0 1 2 3 4 5 6 7 8 9

The index of the innermost loop can be accessed with i, the index of the next loop with
j, and the index of the third loop with k.

i R:n – R:n n core “i”

j R:n R:d1 – n R:n R:d1 core “j”

k R:n R:d1 R:d2 – n R:n R:d1 R:d2 gforth “k”

The loop control data are kept on the return stack, so there are some restrictions on
mixing return stack accesses and counted loop words. In particuler, if you put values on
the return stack outside the loop, you cannot read them inside the loop4. If you put values
on the return stack within a loop, you have to remove them before the end of the loop and
before accessing the index of the loop.

There are several variations on the counted loop:

• LEAVE leaves the innermost counted loop immediately; execution continues after the
associated LOOP or NEXT. For example:

10 0 ?DO i DUP . 3 = IF LEAVE THEN LOOP

prints 0 1 2 3

• UNLOOP prepares for an abnormal loop exit, e.g., via EXIT. UNLOOP removes the loop
control parameters from the return stack so EXIT can get to its return address. For
example:

: demo 10 0 ?DO i DUP . 3 = IF UNLOOP EXIT THEN LOOP ." Done" ;

prints 0 1 2 3

4 well, not in a way that is portable.

Chapter 5: Forth Words 68

• If start is greater than limit, a ?DO loop is entered (and LOOP iterates until they be-
come equal by wrap-around arithmetic). This behaviour is usually not what you want.
Therefore, Gforth offers +DO and U+DO (as replacements for ?DO), which do not enter the
loop if start is greater than limit ; +DO is for signed loop parameters, U+DO for unsigned
loop parameters.

• ?DO can be replaced by DO. DO always enters the loop, independent of the loop pa-
rameters. Do not use DO, even if you know that the loop is entered in any case. Such
knowledge tends to become invalid during maintenance of a program, and then the DO

will make trouble.

• LOOP can be replaced with n +LOOP; this updates the index by n instead of by 1. The
loop is terminated when the border between limit-1 and limit is crossed. E.g.:

4 0 +DO i . 2 +LOOP

prints 0 2

4 1 +DO i . 2 +LOOP

prints 1 3

• The behaviour of n +LOOP is peculiar when n is negative:

-1 0 ?DO i . -1 +LOOP

prints 0 -1

0 0 ?DO i . -1 +LOOP

prints nothing.

Therefore we recommend avoiding n +LOOP with negative n. One alternative is u -

LOOP, which reduces the index by u each iteration. The loop is terminated when the
border between limit+1 and limit is crossed. Gforth also provides -DO and U-DO for
down-counting loops. E.g.:

-2 0 -DO i . 1 -LOOP

prints 0 -1

-1 0 -DO i . 1 -LOOP

prints 0

0 0 -DO i . 1 -LOOP

prints nothing.

Unfortunately, +DO, U+DO, -DO, U-DO and -LOOP are not defined in ANS Forth. How-
ever, an implementation for these words that uses only standard words is provided in
‘compat/loops.fs’.

Another counted loop is:

n
FOR

body
NEXT

This is the preferred loop of native code compiler writers who are too lazy to optimize
?DO loops properly. This loop structure is not defined in ANS Forth. In Gforth, this loop
iterates n+1 times; i produces values starting with n and ending with 0. Other Forth
systems may behave differently, even if they support FOR loops. To avoid problems, don’t
use FOR loops.

Chapter 5: Forth Words 69

5.8.4 Arbitrary control structures

ANS Forth permits and supports using control structures in a non-nested way. Infor-
mation about incomplete control structures is stored on the control-flow stack. This stack
may be implemented on the Forth data stack, and this is what we have done in Gforth.

An orig entry represents an unresolved forward branch, a dest entry represents a back-
ward branch target. A few words are the basis for building any control structure possible
(except control structures that need storage, like calls, coroutines, and backtracking).

IF compilation – orig ; run-time f – core “IF”

AHEAD compilation – orig ; run-time – tools-ext “AHEAD”

THEN compilation orig – ; run-time – core “THEN”

BEGIN compilation – dest ; run-time – core “BEGIN”

UNTIL compilation dest – ; run-time f – core “UNTIL”

AGAIN compilation dest – ; run-time – core-ext “AGAIN”

CS-PICK ... u – ... destu tools-ext “c-s-pick”

CS-ROLL destu/origu .. dest0/orig0 u – .. dest0/orig0 destu/origu tools-ext “c-
s-roll”

The Standard words CS-PICK and CS-ROLL allow you to manipulate the control-flow
stack in a portable way. Without them, you would need to know how many stack items are
occupied by a control-flow entry (many systems use one cell. In Gforth they currently take
three, but this may change in the future).

Some standard control structure words are built from these words:

ELSE compilation orig1 – orig2 ; run-time f – core “ELSE”

WHILE compilation dest – orig dest ; run-time f – core “WHILE”

REPEAT compilation orig dest – ; run-time – core “REPEAT”

Gforth adds some more control-structure words:

ENDIF compilation orig – ; run-time – gforth “ENDIF”

?DUP-IF compilation – orig ; run-time n – n| gforth “question-dupe-if”

This is the preferred alternative to the idiom "?DUP IF", since it can be better handled
by tools like stack checkers. Besides, it’s faster.

?DUP-0=-IF compilation – orig ; run-time n – n| gforth “question-dupe-
zero-equals-if”

Counted loop words constitute a separate group of words:

?DO compilation – do-sys ; run-time w1 w2 – | loop-sys core-ext “question-do”

+DO compilation – do-sys ; run-time n1 n2 – | loop-sys gforth “plus-do”

U+DO compilation – do-sys ; run-time u1 u2 – | loop-sys gforth “u-plus-do”

-DO compilation – do-sys ; run-time n1 n2 – | loop-sys gforth “minus-do”

U-DO compilation – do-sys ; run-time u1 u2 – | loop-sys gforth “u-minus-do”

DO compilation – do-sys ; run-time w1 w2 – loop-sys core “DO”

FOR compilation – do-sys ; run-time u – loop-sys gforth “FOR”

LOOP compilation do-sys – ; run-time loop-sys1 – | loop-sys2 core “LOOP”

+LOOP compilation do-sys – ; run-time loop-sys1 n – | loop-sys2 core “plus-loop”

Chapter 5: Forth Words 70

-LOOP compilation do-sys – ; run-time loop-sys1 u – | loop-sys2 gforth “minus-
loop”

NEXT compilation do-sys – ; run-time loop-sys1 – | loop-sys2 gforth “NEXT”

LEAVE compilation – ; run-time loop-sys – core “LEAVE”

?LEAVE compilation – ; run-time f | f loop-sys – gforth “question-leave”

unloop R:w1 R:w2 – core “unloop”

DONE compilation orig – ; run-time – gforth “DONE”

The standard does not allow using CS-PICK and CS-ROLL on do-sys. Gforth allows it,
but it’s your job to ensure that for every ?DO etc. there is exactly one UNLOOP on any path
through the definition (LOOP etc. compile an UNLOOP on the fall-through path). Also, you
have to ensure that all LEAVEs are resolved (by using one of the loop-ending words or DONE).

Another group of control structure words are:

case compilation – case-sys ; run-time – core-ext “case”

endcase compilation case-sys – ; run-time x – core-ext “end-case”

of compilation – of-sys ; run-time x1 x2 – |x1 core-ext “of”

endof compilation case-sys1 of-sys – case-sys2 ; run-time – core-ext “end-of”

case-sys and of-sys cannot be processed using CS-PICK and CS-ROLL.

5.8.4.1 Programming Style

In order to ensure readability we recommend that you do not create arbitrary control
structures directly, but define new control structure words for the control structure you
want and use these words in your program. For example, instead of writing:

BEGIN
...

IF [1 CS-ROLL]
...

AGAIN THEN

we recommend defining control structure words, e.g.,

: WHILE (DEST -- ORIG DEST)
POSTPONE IF
1 CS-ROLL ; immediate

: REPEAT (orig dest --)
POSTPONE AGAIN
POSTPONE THEN ; immediate

and then using these to create the control structure:

BEGIN
...

WHILE
...

REPEAT

That’s much easier to read, isn’t it? Of course, REPEAT and WHILE are predefined, so in
this example it would not be necessary to define them.

Chapter 5: Forth Words 71

5.8.5 Calls and returns

A definition can be called simply be writing the name of the definition to be called.
Normally a definition is invisible during its own definition. If you want to write a di-
rectly recursive definition, you can use recursive to make the current definition visible, or
recurse to call the current definition directly.

recursive compilation – ; run-time – gforth “recursive”

Make the current definition visible, enabling it to call itself recursively.

recurse compilation – ; run-time ?? – ?? core “recurse”

Call the current definition.

Programming style note: I prefer using recursive to recurse, because calling
the definition by name is more descriptive (if the name is well-chosen) than
the somewhat cryptic recurse. E.g., in a quicksort implementation, it is much
better to read (and think) “now sort the partitions” than to read “now do a
recursive call”.

For mutual recursion, use Deferred words, like this:

Defer foo

: bar (... -- ...)
... foo ... ;

:noname (... -- ...)
... bar ... ;

IS foo

Deferred words are discussed in more detail in Section 5.9.9 [Deferred words], page 83.

The current definition returns control to the calling definition when the end of the
definition is reached or EXIT is encountered.

EXIT compilation – ; run-time nest-sys – core “EXIT”

Return to the calling definition; usually used as a way of forcing an early return from a
definition. Before EXITing you must clean up the return stack and UNLOOP any outstanding
?DO...LOOPs.

;s R:w – gforth “semis”

The primitive compiled by EXIT.

5.8.6 Exception Handling

If a word detects an error condition that it cannot handle, it can throw an exception.
In the simplest case, this will terminate your program, and report an appropriate error.

throw y1 .. ym nerror – y1 .. ym / z1 .. zn error exception “throw”

If nerror is 0, drop it and continue. Otherwise, transfer control to the next dynamically
enclosing exception handler, reset the stacks accordingly, and push nerror.

Throw consumes a cell-sized error number on the stack. There are some predefined error
numbers in ANS Forth (see ‘errors.fs’). In Gforth (and most other systems) you can
use the iors produced by various words as error numbers (e.g., a typical use of allocate
is allocate throw). Gforth also provides the word exception to define your own error

Chapter 5: Forth Words 72

numbers (with decent error reporting); an ANS Forth version of this word (but without
the error messages) is available in compat/except.fs. And finally, you can use your own
error numbers (anything outside the range -4095..0), but won’t get nice error messages, only
numbers. For example, try:

-10 throw \ ANS defined
-267 throw \ system defined
s" my error" exception throw \ user defined
7 throw \ arbitrary number

exception addr u – n gforth “exception”

n is a previously unused throw value in the range (-4095...-256). Consecutive calls to
exception return consecutive decreasing numbers. Gforth uses the string addr u as an
error message.

A common idiom to THROW a specific error if a flag is true is this:

(flag) 0<> errno and throw

Your program can provide exception handlers to catch exceptions. An exception handler
can be used to correct the problem, or to clean up some data structures and just throw
the exception to the next exception handler. Note that throw jumps to the dynamically
innermost exception handler. The system’s exception handler is outermost, and just prints
an error and restarts command-line interpretation (or, in batch mode (i.e., while processing
the shell command line), leaves Gforth).

The ANS Forth way to catch exceptions is catch:

catch ... xt – ... n exception “catch”

The most common use of exception handlers is to clean up the state when an error
happens. E.g.,

base >r hex \ actually the hex should be inside foo, or we h
[’] foo catch (nerror|0)
r> base !
(nerror|0) throw \ pass it on

A use of catch for handling the error myerror might look like this:

[’] foo catch
CASE
myerror OF ... (do something about it) ENDOF
dup throw \ default: pass other errors on, do nothing on non-errors

ENDCASE

Having to wrap the code into a separate word is often cumbersome, therefore Gforth
provides an alternative syntax:

TRY
code1

RECOVER \ optional
code2 \ optional

ENDTRY

This performs Code1. If code1 completes normally, execution continues after the endtry.
If Code1 throws, the stacks are reset to the state during try, the throw value is pushed on
the data stack, and execution constinues at code2, and finally falls through the endtry into
the following code.

Chapter 5: Forth Words 73

try compilation – orig ; run-time – gforth “try”

recover compilation orig1 – orig2 ; run-time – gforth “recover”

endtry compilation orig – ; run-time – gforth “endtry”

The cleanup example from above in this syntax:

base >r TRY
hex foo \ now the hex is placed correctly
0 \ value for throw

RECOVER ENDTRY
r> base ! throw

And here’s the error handling example:

TRY
foo

RECOVER
CASE

myerror OF ... (do something about it) ENDOF
throw \ pass other errors on

ENDCASE
ENDTRY

Programming style note: As usual, you should ensure that the stack depth is statically
known at the end: either after the throw for passing on errors, or after the ENDTRY (or, if
you use catch, after the end of the selection construct for handling the error).

There are two alternatives to throw: Abort" is conditional and you can provide an error
message. Abort just produces an “Aborted” error.

The problem with these words is that exception handlers cannot differentiate between
different abort"s; they just look like -2 throw to them (the error message cannot be ac-
cessed by standard programs). Similar abort looks like -1 throw to exception handlers.

ABORT" compilation ’ccc"’ – ; run-time f – core,exception-ext “abort-quote”

If any bit of f is non-zero, perform the function of -2 throw, displaying the string ccc if
there is no exception frame on the exception stack.

abort ?? – ?? core,exception-ext “abort”

-1 throw.

5.9 Defining Words

Defining words are used to extend Forth by creating new entries in the dictionary.

5.9.1 CREATE

Defining words are used to create new entries in the dictionary. The simplest defining
word is CREATE. CREATE is used like this:

CREATE new-word1

CREATE is a parsing word, i.e., it takes an argument from the input stream (new-word1 in
our example). It generates a dictionary entry for new-word1. When new-word1 is executed,
all that it does is leave an address on the stack. The address represents the value of the
data space pointer (HERE) at the time that new-word1 was defined. Therefore, CREATE is a
way of associating a name with the address of a region of memory.

Chapter 5: Forth Words 74

Create "name" – core “Create”

Note that in ANS Forth guarantees only for create that its body is in dictionary data
space (i.e., where here, allot etc. work, see Section 5.7.2 [Dictionary allocation], page 60).
Also, in ANS Forth only created words can be modified with does> (see Section 5.9.8
[User-defined Defining Words], page 77). And in ANS Forth >body can only be applied to
created words.

By extending this example to reserve some memory in data space, we end up with
something like a variable. Here are two different ways to do it:

CREATE new-word2 1 cells allot \ reserve 1 cell - initial value undefined
CREATE new-word3 4 , \ reserve 1 cell and initialise it (to 4)

The variable can be examined and modified using @ (“fetch”) and ! (“store”) like this:

new-word2 @ . \ get address, fetch from it and display
1234 new-word2 ! \ new value, get address, store to it

A similar mechanism can be used to create arrays. For example, an 80-character text
input buffer:

CREATE text-buf 80 chars allot

text-buf 0 chars c@ \ the 1st character (offset 0)
text-buf 3 chars c@ \ the 4th character (offset 3)

You can build arbitrarily complex data structures by allocating appropriate areas of
memory. For further discussions of this, and to learn about some Gforth tools that make it
easier, See Section 5.21 [Structures], page 129.

5.9.2 Variables

The previous section showed how a sequence of commands could be used to generate a
variable. As a final refinement, the whole code sequence can be wrapped up in a defining
word (pre-empting the subject of the next section), making it easier to create new variables:

: myvariableX ("name" -- a-addr) CREATE 1 cells allot ;
: myvariable0 ("name" -- a-addr) CREATE 0 , ;

myvariableX foo \ variable foo starts off with an unknown value
myvariable0 joe \ whilst joe is initialised to 0

45 3 * foo ! \ set foo to 135
1234 joe ! \ set joe to 1234
3 joe +! \ increment joe by 3.. to 1237

Not surprisingly, there is no need to define myvariable, since Forth already has a def-
inition Variable. ANS Forth does not guarantee that a Variable is initialised when it is
created (i.e., it may behave like myvariableX). In contrast, Gforth’s Variable initialises
the variable to 0 (i.e., it behaves exactly like myvariable0). Forth also provides 2Variable
and fvariable for double and floating-point variables, respectively – they are initialised to
0. and 0e in Gforth. If you use a Variable to store a boolean, you can use on and off to
toggle its state.

Variable "name" – core “Variable”

Chapter 5: Forth Words 75

2Variable "name" – double “two-variable”

fvariable "name" – float “f-variable”

The defining word User behaves in the same way as Variable. The difference is that it
reserves space in user (data) space rather than normal data space. In a Forth system that
has a multi-tasker, each task has its own set of user variables.

User "name" – gforth “User”

5.9.3 Constants

Constant allows you to declare a fixed value and refer to it by name. For example:

12 Constant INCHES-PER-FOOT
3E+08 fconstant SPEED-O-LIGHT

A Variable can be both read and written, so its run-time behaviour is to supply an
address through which its current value can be manipulated. In contrast, the value of a
Constant cannot be changed once it has been declared5 so it’s not necessary to supply the
address – it is more efficient to return the value of the constant directly. That’s exactly
what happens; the run-time effect of a constant is to put its value on the top of the stack
(You can find one way of implementing Constant in Section 5.9.8 [User-defined Defining
Words], page 77).

Forth also provides 2Constant and fconstant for defining double and floating-point
constants, respectively.

Constant w "name" – core “Constant”

Define a constant name with value w.

name execution: – w

2Constant w1 w2 "name" – double “two-constant”

fconstant r "name" – float “f-constant”

Constants in Forth behave differently from their equivalents in other programming lan-
guages. In other languages, a constant (such as an EQU in assembler or a #define in C)
only exists at compile-time; in the executable program the constant has been translated
into an absolute number and, unless you are using a symbolic debugger, it’s impossible to
know what abstract thing that number represents. In Forth a constant has an entry in the
header space and remains there after the code that uses it has been defined. In fact, it must
remain in the dictionary since it has run-time duties to perform. For example:

12 Constant INCHES-PER-FOOT
: FEET-TO-INCHES (n1 -- n2) INCHES-PER-FOOT * ;

When FEET-TO-INCHES is executed, it will in turn execute the xt associated with the
constant INCHES-PER-FOOT. If you use see to decompile the definition of FEET-TO-INCHES,
you can see that it makes a call to INCHES-PER-FOOT. Some Forth compilers attempt to
optimise constants by in-lining them where they are used. You can force Gforth to in-line
a constant like this:

: FEET-TO-INCHES (n1 -- n2) [INCHES-PER-FOOT] LITERAL * ;

5 Well, often it can be – but not in a Standard, portable way. It’s safer to use a Value (read on).

Chapter 5: Forth Words 76

If you use see to decompile this version of FEET-TO-INCHES, you can see that INCHES-
PER-FOOT is no longer present. To understand how this works, read Section 5.13.3 [Inter-
pret/Compile states], page 99, and Section 5.12.1 [Literals], page 91.

In-lining constants in this way might improve execution time fractionally, and can ensure
that a constant is now only referenced at compile-time. However, the definition of the
constant still remains in the dictionary. Some Forth compilers provide a mechanism for
controlling a second dictionary for holding transient words such that this second dictionary
can be deleted later in order to recover memory space. However, there is no standard way
of doing this.

5.9.4 Values

A Value behaves like a Constant, but it can be changed. TO is a parsing word that
changes a Values. In Gforth (not in ANS Forth) you can access (and change) a value also
with >body.

Here are some examples:

12 Value APPLES \ Define APPLES with an initial value of 12
34 TO APPLES \ Change the value of APPLES. TO is a parsing word
1 ’ APPLES >body +! \ Increment APPLES. Non-standard usage.
APPLES \ puts 35 on the top of the stack.

Value w "name" – core-ext “Value”

TO w "name" – core-ext “TO”

5.9.5 Colon Definitions

: name (... -- ...)
word1 word2 word3 ;

Creates a word called name that, upon execution, executes word1 word2 word3. name is a
(colon) definition.

The explanation above is somewhat superficial. For simple examples of colon definitions
see Section 4.3 [Your first definition], page 43. For an in-depth discussion of some of the
issues involved, See Section 5.10 [Interpretation and Compilation Semantics], page 86.

: "name" – colon-sys core “colon”

; compilation colon-sys – ; run-time nest-sys core “semicolon”

5.9.6 Anonymous Definitions

Sometimes you want to define an anonymous word; a word without a name. You can do
this with:

:noname – xt colon-sys core-ext “colon-no-name”

This leaves the execution token for the word on the stack after the closing ;. Here’s
an example in which a deferred word is initialised with an xt from an anonymous colon
definition:

Defer deferred
:noname (... -- ...)
... ;

Chapter 5: Forth Words 77

IS deferred

Gforth provides an alternative way of doing this, using two separate words:

noname – gforth “noname”

The next defined word will be anonymous. The defining word will leave the input stream
alone. The xt of the defined word will be given by latestxt.

latestxt – xt gforth “latestxt”

xt is the execution token of the last word defined.

The previous example can be rewritten using noname and latestxt:

Defer deferred
noname : (... -- ...)
... ;

latestxt IS deferred

noname works with any defining word, not just :.

latestxt also works when the last word was not defined as noname. It does not work
for combined words, though. It also has the useful property that is is valid as soon as the
header for a definition has been built. Thus:

latestxt . : foo [latestxt .] ; ’ foo .

prints 3 numbers; the last two are the same.

5.9.7 Supplying the name of a defined word

By default, a defining word takes the name for the defined word from the input stream.
Sometimes you want to supply the name from a string. You can do this with:

nextname c-addr u – gforth “nextname”

The next defined word will have the name c-addr u; the defining word will leave the
input stream alone.

For example:

s" foo" nextname create

is equivalent to:

create foo

nextname works with any defining word.

5.9.8 User-defined Defining Words

You can create a new defining word by wrapping defining-time code around an existing
defining word and putting the sequence in a colon definition.

For example, suppose that you have a word stats that gathers statistics about colon
definitions given the xt of the definition, and you want every colon definition in your appli-
cation to make a call to stats. You can define and use a new version of : like this:

: stats (xt --) DUP ." (Gathering statistics for " . .")"
... ; \ other code

: my: : latestxt postpone literal [’] stats compile, ;

Chapter 5: Forth Words 78

my: foo + - ;

When foo is defined using my: these steps occur:

• my: is executed.

• The : within the definition (the one between my: and latestxt) is executed, and does
just what it always does; it parses the input stream for a name, builds a dictionary
header for the name foo and switches state from interpret to compile.

• The word latestxt is executed. It puts the xt for the word that is being defined – foo

– onto the stack.

• The code that was produced by postpone literal is executed; this causes the value
on the stack to be compiled as a literal in the code area of foo.

• The code [’] stats compiles a literal into the definition of my:. When compile, is
executed, that literal – the execution token for stats – is layed down in the code area
of foo , following the literal6.

• At this point, the execution of my: is complete, and control returns to the text inter-
preter. The text interpreter is in compile state, so subsequent text + - is compiled into
the definition of foo and the ; terminates the definition as always.

You can use see to decompile a word that was defined using my: and see how it is
different from a normal : definition. For example:

: bar + - ; \ like foo but using : rather than my:
see bar
: bar
+ - ;

see foo
: foo
107645672 stats + - ;

\ use ’ stats . to show that 107645672 is the xt for stats

You can use techniques like this to make new defining words in terms of any existing
defining word.

If you want the words defined with your defining words to behave differently from words
defined with standard defining words, you can write your defining word like this:

: def-word ("name" --)
CREATE code1

DOES> (... -- ...)
code2 ;

def-word name

This fragment defines a defining word def-word and then executes it. When def-word

executes, it CREATEs a new word, name, and executes the code code1. The code code2 is not
executed at this time. The word name is sometimes called a child of def-word.

6 Strictly speaking, the mechanism that compile, uses to convert an xt into something in the code area
is implementation-dependent. A threaded implementation might spit out the execution token directly
whilst another implementation might spit out a native code sequence.

Chapter 5: Forth Words 79

When you execute name, the address of the body of name is put on the data stack and
code2 is executed (the address of the body of name is the address HERE returns immediately
after the CREATE, i.e., the address a created word returns by default).

You can use def-word to define a set of child words that behave similarly; they all have
a common run-time behaviour determined by code2. Typically, the code1 sequence builds a
data area in the body of the child word. The structure of the data is common to all children
of def-word, but the data values are specific – and private – to each child word. When a
child word is executed, the address of its private data area is passed as a parameter on TOS
to be used and manipulated7 by code2.

The two fragments of code that make up the defining words act (are executed) at two
completely separate times:

• At define time, the defining word executes code1 to generate a child word

• At child execution time, when a child word is invoked, code2 is executed, using param-
eters (data) that are private and specific to the child word.

Another way of understanding the behaviour of def-word and name is to say that, if you
make the following definitions:

: def-word1 ("name" --)
CREATE code1 ;

: action1 (... -- ...)
code2 ;

def-word1 name1

Then using name1 action1 is equivalent to using name.

The classic example is that you can define CONSTANT in this way:

: CONSTANT (w "name" --)
CREATE ,

DOES> (-- w)
@ ;

When you create a constant with 5 CONSTANT five, a set of define-time actions take
place; first a new word five is created, then the value 5 is laid down in the body of five
with ,. When five is executed, the address of the body is put on the stack, and @ retrieves
the value 5. The word five has no code of its own; it simply contains a data field and a
pointer to the code that follows DOES> in its defining word. That makes words created in
this way very compact.

The final example in this section is intended to remind you that space reserved in CREATEd
words is data space and therefore can be both read and written by a Standard program8:

: foo ("name" --)
CREATE -1 ,

DOES> (--)
@ . ;

7 It is legitimate both to read and write to this data area.
8 Exercise: use this example as a starting point for your own implementation of Value and TO – if you get

stuck, investigate the behaviour of ’ and [’].

Chapter 5: Forth Words 80

foo first-word
foo second-word

123 ’ first-word >BODY !

If first-word had been a CREATEd word, we could simply have executed it to get the
address of its data field. However, since it was defined to have DOES> actions, its execution
semantics are to perform those DOES> actions. To get the address of its data field it’s
necessary to use ’ to get its xt, then >BODY to translate the xt into the address of the data
field. When you execute first-word, it will display 123. When you execute second-word

it will display -1.

In the examples above the stack comment after the DOES> specifies the stack effect of
the defined words, not the stack effect of the following code (the following code expects the
address of the body on the top of stack, which is not reflected in the stack comment). This
is the convention that I use and recommend (it clashes a bit with using locals declarations
for stack effect specification, though).

5.9.8.1 Applications of CREATE..DOES>

You may wonder how to use this feature. Here are some usage patterns:

When you see a sequence of code occurring several times, and you can identify a meaning,
you will factor it out as a colon definition. When you see similar colon definitions, you can
factor them using CREATE..DOES>. E.g., an assembler usually defines several words that
look very similar:

: ori, (reg-target reg-source n --)
0 asm-reg-reg-imm ;

: andi, (reg-target reg-source n --)
1 asm-reg-reg-imm ;

This could be factored with:

: reg-reg-imm (op-code --)
CREATE ,

DOES> (reg-target reg-source n --)
@ asm-reg-reg-imm ;

0 reg-reg-imm ori,
1 reg-reg-imm andi,

Another view of CREATE..DOES> is to consider it as a crude way to supply a part of the
parameters for a word (known as currying in the functional language community). E.g., +
needs two parameters. Creating versions of + with one parameter fixed can be done like
this:

: curry+ (n1 "name" --)
CREATE ,

DOES> (n2 -- n1+n2)
@ + ;

3 curry+ 3+
-2 curry+ 2-

Chapter 5: Forth Words 81

5.9.8.2 The gory details of CREATE..DOES>

DOES> compilation colon-sys1 – colon-sys2 ; run-time nest-sys – core “does”

This means that you need not use CREATE and DOES> in the same definition; you can
put the DOES>-part in a separate definition. This allows us to, e.g., select among different
DOES>-parts:

: does1
DOES> (... -- ...)

... ;

: does2
DOES> (... -- ...)

... ;

: def-word (... -- ...)
create ...
IF

does1
ELSE

does2
ENDIF ;

In this example, the selection of whether to use does1 or does2 is made at definition-
time; at the time that the child word is CREATEd.

In a standard program you can apply a DOES>-part only if the last word was defined with
CREATE. In Gforth, the DOES>-part will override the behaviour of the last word defined in
any case. In a standard program, you can use DOES> only in a colon definition. In Gforth,
you can also use it in interpretation state, in a kind of one-shot mode; for example:

CREATE name (... -- ...)
initialization

DOES>
code ;

is equivalent to the standard:

:noname
DOES>

code ;
CREATE name EXECUTE (... -- ...)

initialization

>body xt – a addr core “>body”

Get the address of the body of the word represented by xt (the address of the word’s
data field).

5.9.8.3 Advanced does> usage example

The MIPS disassembler (‘arch/mips/disasm.fs’) contains many words for disassem-
bling instructions, that follow a very repetetive scheme:

:noname disasm-operands s" inst-name" type ;
entry-num cells table + !

Chapter 5: Forth Words 82

Of course, this inspires the idea to factor out the commonalities to allow a definition like

disasm-operands entry-num table define-inst inst-name

The parameters disasm-operands and table are usually correlated. Moreover, before I
wrote the disassembler, there already existed code that defines instructions like this:

entry-num inst-format inst-name

This code comes from the assembler and resides in ‘arch/mips/insts.fs’.

So I had to define the inst-format words that performed the scheme above when executed.
At first I chose to use run-time code-generation:

: inst-format (entry-num "name" -- ; compiled code: addr w --)
:noname Postpone disasm-operands
name Postpone sliteral Postpone type Postpone ;
swap cells table + ! ;

Note that this supplies the other two parameters of the scheme above.

An alternative would have been to write this using create/does>:

: inst-format (entry-num "name" --)
here name string, (entry-num c-addr) \ parse and save "name"
noname create , (entry-num)
latestxt swap cells table + !

does> (addr w --)
\ disassemble instruction w at addr
@ >r
disasm-operands
r> count type ;

Somehow the first solution is simpler, mainly because it’s simpler to shift a string from
definition-time to use-time with sliteral than with string, and friends.

I wrote a lot of words following this scheme and soon thought about factoring out the
commonalities among them. Note that this uses a two-level defining word, i.e., a word that
defines ordinary defining words.

This time a solution involving postpone and friends seemed more difficult (try it as an
exercise), so I decided to use a create/does> word; since I was already at it, I also used
create/does> for the lower level (try using postpone etc. as an exercise), resulting in the
following definition:

: define-format (disasm-xt table-xt --)
\ define an instruction format that uses disasm-xt for
\ disassembling and enters the defined instructions into table
\ table-xt
create 2,

does> (u "inst" --)
\ defines an anonymous word for disassembling instruction inst,
\ and enters it as u-th entry into table-xt
2@ swap here name string, (u table-xt disasm-xt c-addr) \ remember string
noname create 2, \ define anonymous word
execute latestxt swap ! \ enter xt of defined word into table-xt

does> (addr w --)
\ disassemble instruction w at addr

Chapter 5: Forth Words 83

2@ >r (addr w disasm-xt R: c-addr)
execute (R: c-addr) \ disassemble operands
r> count type ; \ print name

Note that the tables here (in contrast to above) do the cells + by themselves (that’s
why you have to pass an xt). This word is used in the following way:

’ disasm-operands ’ table define-format inst-format

As shown above, the defined instruction format is then used like this:

entry-num inst-format inst-name

In terms of currying, this kind of two-level defining word provides the parameters in
three stages: first disasm-operands and table, then entry-num and inst-name, finally addr

w, i.e., the instruction to be disassembled.

Of course this did not quite fit all the instruction format names used in ‘insts.fs’, so
I had to define a few wrappers that conditioned the parameters into the right form.

If you have trouble following this section, don’t worry. First, this is involved and takes
time (and probably some playing around) to understand; second, this is the first two-
level create/does> word I have written in seventeen years of Forth; and if I did not have
‘insts.fs’ to start with, I may well have elected to use just a one-level defining word (with
some repeating of parameters when using the defining word). So it is not necessary to
understand this, but it may improve your understanding of Forth.

5.9.8.4 Const-does>

A frequent use of create...does> is for transferring some values from definition-time to
run-time. Gforth supports this use with

doc-const-does>

A typical use of this word is:

: curry+ (n1 "name" --)
1 0 CONST-DOES> (n2 -- n1+n2)

+ ;

3 curry+ 3+

Here the 1 0 means that 1 cell and 0 floats are transferred from definition to run-time.

The advantages of using const-does> are:

You don’t have to deal with storing and retrieving the values, i.e., your program be-
comes more writable and readable.

When using does>, you have to introduce a @ that cannot be optimized away (because
you could change the data using >body...!); const-does> avoids this problem.

An ANS Forth implementation of const-does> is available in ‘compat/const-does.fs’.

5.9.9 Deferred words

The defining word Defer allows you to define a word by name without defining its
behaviour; the definition of its behaviour is deferred. Here are two situation where this can
be useful:

Chapter 5: Forth Words 84

• Where you want to allow the behaviour of a word to be altered later, and for all
precompiled references to the word to change when its behaviour is changed.

• For mutual recursion; See Section 5.8.5 [Calls and returns], page 71.

In the following example, foo always invokes the version of greet that prints “Good
morning” whilst bar always invokes the version that prints “Hello”. There is no way of
getting foo to use the later version without re-ordering the source code and recompiling it.

: greet ." Good morning" ;
: foo ... greet ... ;
: greet ." Hello" ;
: bar ... greet ... ;

This problem can be solved by defining greet as a Deferred word. The behaviour of a
Deferred word can be defined and redefined at any time by using IS to associate the xt of
a previously-defined word with it. The previous example becomes:

Defer greet (--)
: foo ... greet ... ;
: bar ... greet ... ;
: greet1 (--) ." Good morning" ;
: greet2 (--) ." Hello" ;
’ greet2 <IS> greet \ make greet behave like greet2

Programming style note: You should write a stack comment for every deferred word,
and put only XTs into deferred words that conform to this stack effect. Otherwise it’s too
difficult to use the deferred word.

A deferred word can be used to improve the statistics-gathering example from Sec-
tion 5.9.8 [User-defined Defining Words], page 77; rather than edit the application’s source
code to change every : to a my:, do this:

: real: : ; \ retain access to the original
defer : \ redefine as a deferred word
’ my: <IS> : \ use special version of :
\
\ load application here
\
’ real: <IS> : \ go back to the original

One thing to note is that <IS> consumes its name when it is executed. If you want to
specify the name at compile time, use [IS]:

: set-greet (xt --)
[IS] greet ;

’ greet1 set-greet

A deferred word can only inherit execution semantics from the xt (because that is all
that an xt can represent – for more discussion of this see Section 5.11 [Tokens for Words],
page 88); by default it will have default interpretation and compilation semantics deriving
from this execution semantics. However, you can change the interpretation and compilation
semantics of the deferred word in the usual ways:

: bar ; compile-only
Defer fred immediate

Chapter 5: Forth Words 85

Defer jim

’ bar <IS> jim \ jim has default semantics
’ bar <IS> fred \ fred is immediate

Defer "name" – gforth “Defer”

<IS> "name" xt – gforth “<IS>”

Changes the deferred word name to execute xt.

[IS] compilation "name" – ; run-time xt – gforth “bracket-is”

At run-time, changes the deferred word name to execute xt.

IS xt "name" – gforth “IS”

A combined word made up from <IS> and [IS].

What’s interpretation "name" – xt; compilation "name" – ; run-time – xt gforth “What’s”

Xt is the XT that is currently assigned to name.

defers compilation "name" – ; run-time ... – ... gforth “defers”

Compiles the present contents of the deferred word name into the current definition.
I.e., this produces static binding as if name was not deferred.

Definitions in ANS Forth for defer, <is> and [is] are provided in ‘compat/defer.fs’.

5.9.10 Aliases

The defining word Alias allows you to define a word by name that has the same be-
haviour as some other word. Here are two situation where this can be useful:

• When you want access to a word’s definition from a different word list (for an example
of this, see the definition of the Root word list in the Gforth source).

• When you want to create a synonym; a definition that can be known by either of two
names (for example, THEN and ENDIF are aliases).

Like deferred words, an alias has default compilation and interpretation semantics at the
beginning (not the modifications of the other word), but you can change them in the usual
ways (immediate, compile-only). For example:

: foo ... ; immediate

’ foo Alias bar \ bar is not an immediate word
’ foo Alias fooby immediate \ fooby is an immediate word

Words that are aliases have the same xt, different headers in the dictionary, and con-
sequently different name tokens (see Section 5.11 [Tokens for Words], page 88) and pos-
sibly different immediate flags. An alias can only have default or immediate compilation
semantics; you can define aliases for combined words with interpret/compile: – see Sec-
tion 5.10.1 [Combined words], page 86.

Alias xt "name" – gforth “Alias”

Chapter 5: Forth Words 86

5.10 Interpretation and Compilation Semantics

The interpretation semantics of a (named) word are what the text interpreter does when
it encounters the word in interpret state. It also appears in some other contexts, e.g., the
execution token returned by ’ word identifies the interpretation semantics of word (in other
words, ’ word execute is equivalent to interpret-state text interpretation of word).

The compilation semantics of a (named) word are what the text interpreter does when
it encounters the word in compile state. It also appears in other contexts, e.g, POSTPONE
word compiles9 the compilation semantics of word.

The standard also talks about execution semantics. They are used only for defining the
interpretation and compilation semantics of many words. By default, the interpretation
semantics of a word are to execute its execution semantics, and the compilation semantics
of a word are to compile, its execution semantics.10

Unnamed words (see Section 5.9.6 [Anonymous Definitions], page 76) cannot be en-
countered by the text interpreter, ticked, or postponed, so they have no interpretation or
compilation semantics. Their behaviour is represented by their XT (see Section 5.11 [Tokens
for Words], page 88), and we call it execution semantics, too.

You can change the semantics of the most-recently defined word:

immediate – core “immediate”

Make the compilation semantics of a word be to execute the execution semantics.

compile-only – gforth “compile-only”

Remove the interpretation semantics of a word.

restrict – gforth “restrict”

A synonym for compile-only

By convention, words with non-default compilation semantics (e.g., immediate words)
often have names surrounded with brackets (e.g., [’], see Section 5.11.1 [Execution token],
page 88).

Note that ticking (’) a compile-only word gives an error (“Interpreting a compile-only
word”).

5.10.1 Combined Words

Gforth allows you to define combined words – words that have an arbitrary combination
of interpretation and compilation semantics.

interpret/compile: interp-xt comp-xt "name" – gforth “interpret/compile:”

This feature was introduced for implementing TO and S". I recommend that you do not
define such words, as cute as they may be: they make it hard to get at both parts of the
word in some contexts. E.g., assume you want to get an execution token for the compilation
part. Instead, define two words, one that embodies the interpretation part, and one that

9 In standard terminology, “appends to the current definition”.
10 In standard terminology: The default interpretation semantics are its execution semantics; the default

compilation semantics are to append its execution semantics to the execution semantics of the current
definition.

Chapter 5: Forth Words 87

embodies the compilation part. Once you have done that, you can define a combined word
with interpret/compile: for the convenience of your users.

You might try to use this feature to provide an optimizing implementation of the default
compilation semantics of a word. For example, by defining:

:noname
foo bar ;

:noname
POSTPONE foo POSTPONE bar ;

interpret/compile: opti-foobar

as an optimizing version of:

: foobar
foo bar ;

Unfortunately, this does not work correctly with [compile], because [compile] assumes
that the compilation semantics of all interpret/compile: words are non-default. I.e.,
[compile] opti-foobar would compile compilation semantics, whereas [compile] foobar

would compile interpretation semantics.

Some people try to use state-smart words to emulate the feature provided by
interpret/compile: (words are state-smart if they check STATE during execution). E.g.,
they would try to code foobar like this:

: foobar
STATE @
IF (compilation state)

POSTPONE foo POSTPONE bar
ELSE

foo bar
ENDIF ; immediate

Although this works if foobar is only processed by the text interpreter, it does not work
in other contexts (like ’ or POSTPONE). E.g., ’ foobar will produce an execution token
for a state-smart word, not for the interpretation semantics of the original foobar; when
you execute this execution token (directly with EXECUTE or indirectly through COMPILE,) in
compile state, the result will not be what you expected (i.e., it will not perform foo bar).
State-smart words are a bad idea. Simply don’t write them11!

It is also possible to write defining words that define words with arbitrary combinations
of interpretation and compilation semantics. In general, they look like this:

: def-word
create-interpret/compile
code1

interpretation>
code2

<interpretation
compilation>

code3
<compilation ;

11 For a more detailed discussion of this topic, see M. Anton Ertl, State-smartness—Why it is Evil and
How to Exorcise it (http://www.complang.tuwien.ac.at/papers/ertl98.ps.gz), EuroForth ’98.

Chapter 5: Forth Words 88

For a word defined with def-word, the interpretation semantics are to push the address
of the body of word and perform code2, and the compilation semantics are to push the
address of the body of word and perform code3. E.g., constant can also be defined like
this (except that the defined constants don’t behave correctly when [compile]d):

: constant (n "name" --)
create-interpret/compile
,

interpretation> (-- n)
@

<interpretation
compilation> (compilation. -- ; run-time. -- n)

@ postpone literal
<compilation ;

create-interpret/compile "name" – gforth “create-interpret/compile”

interpretation> compilation. – orig colon-sys gforth “interpretation>”

<interpretation compilation. orig colon-sys – gforth “<interpretation”

compilation> compilation. – orig colon-sys gforth “compilation>”

<compilation compilation. orig colon-sys – gforth “<compilation”

Words defined with interpret/compile: and create-interpret/compile have an ex-
tended header structure that differs from other words; however, unless you try to access
them with plain address arithmetic, you should not notice this. Words for accessing the
header structure usually know how to deal with this; e.g., ’ word >body also gives you the
body of a word created with create-interpret/compile.

5.11 Tokens for Words

This section describes the creation and use of tokens that represent words.

5.11.1 Execution token

An execution token (XT) represents some behaviour of a word. You can use execute

to invoke this behaviour.

You can use ’ to get an execution token that represents the interpretation semantics of
a named word:

5 ’ . (n xt)
execute () \ execute the xt (i.e., ".")

’ "name" – xt core “tick”

xt represents name’s interpretation semantics. Perform -14 throw if the word has no
interpretation semantics.

’ parses at run-time; there is also a word [’] that parses when it is compiled, and
compiles the resulting XT:

: foo [’] . execute ;
5 foo
: bar ’ execute ; \ by contrast,
5 bar . \ ’ parses "." when bar executes

Chapter 5: Forth Words 89

[’] compilation. "name" – ; run-time. – xt core “bracket-tick”

xt represents name’s interpretation semantics. Perform -14 throw if the word has no
interpretation semantics.

If you want the execution token of word, write [’] word in compiled code and ’ word
in interpreted code. Gforth’s ’ and [’] behave somewhat unusually by complaining about
compile-only words (because these words have no interpretation semantics). You might
get what you want by using COMP’ word DROP or [COMP’] word DROP (for details see Sec-
tion 5.11.2 [Compilation token], page 89).

Another way to get an XT is :noname or latestxt (see Section 5.9.6 [Anonymous
Definitions], page 76). For anonymous words this gives an xt for the only behaviour the
word has (the execution semantics). For named words, latestxt produces an XT for the
same behaviour it would produce if the word was defined anonymously.

:noname ." hello" ;
execute

An XT occupies one cell and can be manipulated like any other cell.

In ANS Forth the XT is just an abstract data type (i.e., defined by the operations that
produce or consume it). For old hands: In Gforth, the XT is implemented as a code field
address (CFA).

execute xt – core “execute”

Perform the semantics represented by the execution token, xt.

perform a-addr – gforth “perform”

@ execute.

5.11.2 Compilation token

Gforth represents the compilation semantics of a named word by a compilation token
consisting of two cells: w xt. The top cell xt is an execution token. The compilation
semantics represented by the compilation token can be performed with execute, which
consumes the whole compilation token, with an additional stack effect determined by the
represented compilation semantics.

At present, the w part of a compilation token is an execution token, and the xt part
represents either execute or compile,12. However, don’t rely on that knowledge, unless
necessary; future versions of Gforth may introduce unusual compilation tokens (e.g., a
compilation token that represents the compilation semantics of a literal).

You can perform the compilation semantics represented by the compilation token with
execute. You can compile the compilation semantics with postpone,. I.e., COMP’ word
postpone, is equivalent to postpone word .

[COMP’] compilation "name" – ; run-time – w xt gforth “bracket-comp-tick”

Compilation token w xt represents name’s compilation semantics.

COMP’ "name" – w xt gforth “comp-tick”

Compilation token w xt represents name’s compilation semantics.

12 Depending upon the compilation semantics of the word. If the word has default compilation semantics,
the xt will represent compile,. Otherwise (e.g., for immediate words), the xt will represent execute.

Chapter 5: Forth Words 90

postpone, w xt – gforth “postpone-comma”

Compile the compilation semantics represented by the compilation token w xt.

5.11.3 Name token

Gforth represents named words by the name token, (nt). Name token is an abstract
data type that occurs as argument or result of the words below.

The closest thing to the nt in older Forth systems is the name field address (NFA), but
there are significant differences: in older Forth systems each word had a unique NFA, LFA,
CFA and PFA (in this order, or LFA, NFA, CFA, PFA) and there were words for getting
from one to the next. In contrast, in Gforth 0. . .n nts correspond to one xt; there is a link
field in the structure identified by the name token, but searching usually uses a hash table
external to these structures; the name in Gforth has a cell-wide count-and-flags field, and
the nt is not implemented as the address of that count field.

find-name c-addr u – nt | 0 gforth “find-name”

Find the name c-addr u in the current search order. Return its nt, if found, otherwise 0.

latest – nt gforth “latest”

nt is the name token of the last word defined; it is 0 if the last word has no name.

>name xt – nt|0 gforth “to-name”

tries to find the name token nt of the word represented by xt; returns 0 if it fails. This
word is not absolutely reliable, it may give false positives and produce wrong nts.

name>int nt – xt gforth “name>int”

xt represents the interpretation semantics of the word nt. If nt has no interpretation
semantics (i.e. is compile-only), xt is the execution token for ticking-compile-only-

error, which performs -2048 throw.

name?int nt – xt gforth “name?int”

Like name>int, but perform -2048 throw if nt has no interpretation semantics.

name>comp nt – w xt gforth “name>comp”

w xt is the compilation token for the word nt.

name>string nt – addr count gforth “head-to-string”

addr count is the name of the word represented by nt.

id. nt – gforth “id.”

Print the name of the word represented by nt.

.name nt – unknown “.name”

Gforth <=0.5.0 name for id..

.id nt – unknown “.id”

F83 name for id..

Chapter 5: Forth Words 91

5.12 Compiling words

In contrast to most other languages, Forth has no strict boundary between compilation
and run-time. E.g., you can run arbitrary code between defining words (or for comput-
ing data used by defining words like constant). Moreover, Immediate (see Section 5.10
[Interpretation and Compilation Semantics], page 86 and [...] (see below) allow running
arbitrary code while compiling a colon definition (exception: you must not allot dictionary
space).

5.12.1 Literals

The simplest and most frequent example is to compute a literal during compilation. E.g.,
the following definition prints an array of strings, one string per line:

: .strings (addr u --) \ gforth
2* cells bounds U+DO

cr i 2@ type
2 cells +LOOP ;

With a simple-minded compiler like Gforth’s, this computes 2 cells on every loop iter-
ation. You can compute this value once and for all at compile time and compile it into the
definition like this:

: .strings (addr u --) \ gforth
2* cells bounds U+DO

cr i 2@ type
[2 cells] literal +LOOP ;

[switches the text interpreter to interpret state (you will get an ok prompt if you
type this example interactively and insert a newline between [and]), so it performs the
interpretation semantics of 2 cells; this computes a number.] switches the text interpreter
back into compile state. It then performs Literal’s compilation semantics, which are to
compile this number into the current word. You can decompile the word with see .strings

to see the effect on the compiled code.

You can also optimize the 2* cells into [2 cells] literal * in this way.

[– core “left-bracket”

Enter interpretation state. Immediate word.

] – core “right-bracket”

Enter compilation state.

Literal compilation n – ; run-time – n core “Literal”

Compilation semantics: compile the run-time semantics.
Run-time Semantics: push n.
Interpretation semantics: undefined.

]L compilation: n – ; run-time: – n gforth “]L”

equivalent to] literal

There are also words for compiling other data types than single cells as literals:

2Literal compilation w1 w2 – ; run-time – w1 w2 double “two-literal”

Compile appropriate code such that, at run-time, cell pair w1, w2 are placed on the
stack. Interpretation semantics are undefined.

Chapter 5: Forth Words 92

FLiteral compilation r – ; run-time – r float “f-literal”

Compile appropriate code such that, at run-time, r is placed on the (floating-point)
stack. Interpretation semantics are undefined.

SLiteral Compilation c-addr1 u ; run-time – c-addr2 u string “SLiteral”

Compilation: compile the string specified by c-addr1, u into the current definition. Run-
time: return c-addr2 u describing the address and length of the string.

You might be tempted to pass data from outside a colon definition to the inside on
the data stack. This does not work, because : puhes a colon-sys, making stuff below
unaccessible. E.g., this does not work:

5 : foo literal ; \ error: "unstructured"

Instead, you have to pass the value in some other way, e.g., through a variable:

variable temp
5 temp !
: foo [temp @] literal ;

5.12.2 Macros

Literal and friends compile data values into the current definition. You can also write
words that compile other words into the current definition. E.g.,

: compile-+ (--) \ compiled code: (n1 n2 -- n)
POSTPONE + ;

: foo (n1 n2 -- n)
[compile-+] ;

1 2 foo .

This is equivalent to : foo + ; (see foo to check this). What happens in this example?
Postpone compiles the compilation semantics of + into compile-+; later the text interpreter
executes compile-+ and thus the compilation semantics of +, which compile (the execution
semantics of) + into foo.13

postpone "name" – core “postpone”

Compiles the compilation semantics of name.

[compile] compilation "name" – ; run-time ? – ? core-ext “bracket-compile”

Compiling words like compile-+ are usually immediate (or similar) so you do not have to
switch to interpret state to execute them; mopifying the last example accordingly produces:

: [compile-+] (compilation: --; interpretation: --)
\ compiled code: (n1 n2 -- n)
POSTPONE + ; immediate

: foo (n1 n2 -- n)
[compile-+] ;

1 2 foo .

Immediate compiling words are similar to macros in other languages (in particular, Lisp).
The important differences to macros in, e.g., C are:

13 A recent RFI answer requires that compiling words should only be executed in compile state, so this
example is not guaranteed to work on all standard systems, but on any decent system it will work.

Chapter 5: Forth Words 93

• You use the same language for defining and processing macros, not a separate prepro-
cessing language and processor.

• Consequently, the full power of Forth is available in macro definitions. E.g., you can
perform arbitrarily complex computations, or generate different code conditionally or
in a loop (e.g., see Section 3.34 [Advanced macros Tutorial], page 35). This power is
very useful when writing a parser generators or other code-generating software.

• Macros defined using postpone etc. deal with the language at a higher level than
strings; name binding happens at macro definition time, so you can avoid the pitfalls
of name collisions that can happen in C macros. Of course, Forth is a liberal language
and also allows to shoot yourself in the foot with text-interpreted macros like

: [compile-+] s" +" evaluate ; immediate

Apart from binding the name at macro use time, using evaluate also makes your
definition state-smart (see [state-smartness], page 87).

You may want the macro to compile a number into a word. The word to do it is literal,
but you have to postpone it, so its compilation semantics take effect when the macro is
executed, not when it is compiled:

: [compile-5] (--) \ compiled code: (-- n)
5 POSTPONE literal ; immediate

: foo [compile-5] ;
foo .

You may want to pass parameters to a macro, that the macro should compile into the
current definition. If the parameter is a number, then you can use postpone literal

(similar for other values).

If you want to pass a word that is to be compiled, the usual way is to pass an execution
token and compile, it:

: twice1 (xt --) \ compiled code: ... -- ...
dup compile, compile, ;

: 2+ (n1 -- n2)
[’ 1+ twice1] ;

compile, xt – core-ext “compile-comma”

Compile the word represented by the execution token xt into the current definition.

An alternative available in Gforth, that allows you to pass compile-only words as pa-
rameters is to use the compilation token (see Section 5.11.2 [Compilation token], page 89).
The same example in this technique:

: twice (... ct -- ...) \ compiled code: ... -- ...
2dup 2>r execute 2r> execute ;

: 2+ (n1 -- n2)
[comp’ 1+ twice] ;

In the example above 2>r and 2r> ensure that twice works even if the executed compi-
lation semantics has an effect on the data stack.

You can also define complete definitions with these words; this provides an alternative
to using does> (see Section 5.9.8 [User-defined Defining Words], page 77). E.g., instead of

Chapter 5: Forth Words 94

: curry+ (n1 "name" --)
CREATE ,

DOES> (n2 -- n1+n2)
@ + ;

you could define

: curry+ (n1 "name" --)
\ name execution: (n2 -- n1+n2)
>r : r> POSTPONE literal POSTPONE + POSTPONE ; ;

-3 curry+ 3-
see 3-

The sequence >r : r> is necessary, because : puts a colon-sys on the data stack that
makes everything below it unaccessible.

This way of writing defining words is sometimes more, sometimes less convenient than
using does> (see Section 5.9.8.3 [Advanced does> usage example], page 81). One advantage
of this method is that it can be optimized better, because the compiler knows that the value
compiled with literal is fixed, whereas the data associated with a created word can be
changed.

5.13 The Text Interpreter

The text interpreter14 is an endless loop that processes input from the current input
device. It is also called the outer interpreter, in contrast to the inner interpreter (see
Chapter 14 [Engine], page 193) which executes the compiled Forth code on interpretive
implementations.

The text interpreter operates in one of two states: interpret state and compile state.
The current state is defined by the aptly-named variable state.

This section starts by describing how the text interpreter behaves when it is in interpret
state, processing input from the user input device – the keyboard. This is the mode that a
Forth system is in after it starts up.

The text interpreter works from an area of memory called the input buffer 15, which
stores your keyboard input when you press the 〈RET〉 key. Starting at the beginning of
the input buffer, it skips leading spaces (called delimiters) then parses a string (a sequence
of non-space characters) until it reaches either a space character or the end of the buffer.
Having parsed a string, it makes two attempts to process it:

• It looks for the string in a dictionary of definitions. If the string is found, the string
names a definition (also known as a word) and the dictionary search returns information
that allows the text interpreter to perform the word’s interpretation semantics. In most
cases, this simply means that the word will be executed.

• If the string is not found in the dictionary, the text interpreter attempts to treat it as
a number, using the rules described in Section 5.13.2 [Number Conversion], page 97. If
the string represents a legal number in the current radix, the number is pushed onto a

14 This is an expanded version of the material in Section 4.1 [Introducing the Text Interpreter], page 38.
15 When the text interpreter is processing input from the keyboard, this area of memory is called the

terminal input buffer (TIB) and is addressed by the (obsolescent) words TIB and #TIB.

Chapter 5: Forth Words 95

parameter stack (the data stack for integers, the floating-point stack for floating-point
numbers).

If both attempts fail, or if the word is found in the dictionary but has no interpretation
semantics16 the text interpreter discards the remainder of the input buffer, issues an error
message and waits for more input. If one of the attempts succeeds, the text interpreter
repeats the parsing process until the whole of the input buffer has been processed, at which
point it prints the status message “ ok” and waits for more input.

The text interpreter keeps track of its position in the input buffer by updating a variable
called >IN (pronounced “to-in”). The value of >IN starts out as 0, indicating an offset of
0 from the start of the input buffer. The region from offset >IN @ to the end of the input
buffer is called the parse area17. This example shows how >IN changes as the text interpreter
parses the input buffer:

: remaining >IN @ SOURCE 2 PICK - -ROT + SWAP
CR ." ->" TYPE ." <-" ; IMMEDIATE

1 2 3 remaining + remaining .

: foo 1 2 3 remaining SWAP remaining ;

The result is:

->+ remaining .<-
->.<-5 ok

->SWAP remaining ;-<
->;<- ok

The value of >IN can also be modified by a word in the input buffer that is executed by
the text interpreter. This means that a word can “trick” the text interpreter into either
skipping a section of the input buffer18 or into parsing a section twice. For example:

: lat ." <<foo>>" ;
: flat ." <<bar>>" >IN DUP @ 3 - SWAP ! ;

When flat is executed, this output is produced19:

<<bar>><<foo>>

This technique can be used to work around some of the interoperability problems of
parsing words. Of course, it’s better to avoid parsing words where possible.

Two important notes about the behaviour of the text interpreter:

• It processes each input string to completion before parsing additional characters from
the input buffer.

• It treats the input buffer as a read-only region (and so must your code).

When the text interpreter is in compile state, its behaviour changes in these ways:

16 This happens if the word was defined as COMPILE-ONLY.
17 In other words, the text interpreter processes the contents of the input buffer by parsing strings from

the parse area until the parse area is empty.
18 This is how parsing words work.
19 Exercise for the reader: what would happen if the 3 were replaced with 4?

Chapter 5: Forth Words 96

• If a parsed string is found in the dictionary, the text interpreter will perform the word’s
compilation semantics. In most cases, this simply means that the execution semantics
of the word will be appended to the current definition.

• When a number is encountered, it is compiled into the current definition (as a literal)
rather than being pushed onto a parameter stack.

• If an error occurs, state is modified to put the text interpreter back into interpret
state.

• Each time a line is entered from the keyboard, Gforth prints “ compiled” rather than
“ ok”.

When the text interpreter is using an input device other than the keyboard, its behaviour
changes in these ways:

• When the parse area is empty, the text interpreter attempts to refill the input buffer
from the input source. When the input source is exhausted, the input source is set
back to the previous input source.

• It doesn’t print out “ ok” or “ compiled” messages each time the parse area is emptied.

• If an error occurs, the input source is set back to the user input device.

You can read about this in more detail in Section 5.13.1 [Input Sources], page 96.

>in unknown “>in”

input-var variable – a-addr is the address of a cell containing the char offset from the
start of the input buffer to the start of the parse area.

source – addr u core-ext,file “source”

Return address addr and length u of the current input buffer

tib unknown “tib”

#tib unknown “#tib”

input-var variable – a-addr is the address of a cell containing the number of characters
in the terminal input buffer. OBSOLESCENT: source superceeds the function of this word.

5.13.1 Input Sources

By default, the text interpreter processes input from the user input device (the keyboard)
when Forth starts up. The text interpreter can process input from any of these sources:

• The user input device – the keyboard.

• A file, using the words described in Section 5.17.1 [Forth source files], page 107.

• A block, using the words described in Section 5.18 [Blocks], page 110.

• A text string, using evaluate.

A program can identify the current input device from the values of source-id and blk.

source-id – 0 | -1 | fileid core-ext,file “source-i-d”

Return 0 (the input source is the user input device), -1 (the input source is a string
being processed by evaluate) or a fileid (the input source is the file specified by fileid).

blk unknown “blk”

input-var variable – This cell contains the current block number

Chapter 5: Forth Words 97

save-input – x1 .. xn n core-ext “save-input”

The n entries xn - x1 describe the current state of the input source specification, in some
platform-dependent way that can be used by restore-input.

restore-input x1 .. xn n – flag core-ext “restore-input”

Attempt to restore the input source specification to the state described by the n entries
xn - x1. flag is true if the restore fails. In Gforth with the new input code, it fails only
with a flag that can be used to throw again; it is also possible to save and restore between
different active input streams. Note that closing the input streams must happen in the
reverse order as they have been opened, but in between everything is allowed.

evaluate ... addr u – ... core,block “evaluate”

Save the current input source specification. Store -1 in source-id and 0 in blk. Set
>IN to 0 and make the string c-addr u the input source and input buffer. Interpret. When
the parse area is empty, restore the input source specification.

query – core-ext “query”

Make the user input device the input source. Receive input into the Terminal Input
Buffer. Set >IN to zero. OBSOLESCENT: superceeded by accept.

5.13.2 Number Conversion

This section describes the rules that the text interpreter uses when it tries to convert a
string into a number.

Let <digit> represent any character that is a legal digit in the current number base20.

Let <decimal digit> represent any character in the range 0-9.

Let {a b} represent the optional presence of any of the characters in the braces (a or b
or neither).

Let * represent any number of instances of the previous character (including none).

Let any other character represent itself.

Now, the conversion rules are:

• A string of the form <digit><digit>* is treated as a single-precision (cell-sized) positive
integer. Examples are 0 123 6784532 32343212343456 42

• A string of the form -<digit><digit>* is treated as a single-precision (cell-sized) negative
integer, and is represented using 2’s-complement arithmetic. Examples are -45 -5681
-0

• A string of the form <digit><digit>*.<digit>* is treated as a double-precision (double-
cell-sized) positive integer. Examples are 3465. 3.465 34.65 (all three of these represent
the same number).

• A string of the form -<digit><digit>*.<digit>* is treated as a double-precision (double-
cell-sized) negative integer, and is represented using 2’s-complement arithmetic. Ex-
amples are -3465. -3.465 -34.65 (all three of these represent the same number).

• A string of the form {+ -}<decimal digit>{.}<decimal digit>*{e E}{+ -}<decimal
digit><decimal digit>* is treated as a floating-point number. Examples are 1e 1e0 1.e
1.e0 +1e+0 (which all represent the same number) +12.E-4

20 For example, 0-9 when the number base is decimal or 0-9, A-F when the number base is hexadecimal.

Chapter 5: Forth Words 98

By default, the number base used for integer number conversion is given by the contents
of the variable base. Note that a lot of confusion can result from unexpected values of base.
If you change base anywhere, make sure to save the old value and restore it afterwards. In
general I recommend keeping base decimal, and using the prefixes described below for the
popular non-decimal bases.

dpl – a-addr gforth “dpl”

User variable – a-addr is the address of a cell that stores the position of the decimal
point in the most recent numeric conversion. Initialised to -1. After the conversion of a
number containing no decimal point, dpl is -1. After the conversion of 2. it holds 0. After
the conversion of 234123.9 it contains 1, and so forth.

base – a-addr core “base”

User variable – a-addr is the address of a cell that stores the number base used by
default for number conversion during input and output.

hex – core-ext “hex”

Set base to &16 (hexadecimal).

decimal – core “decimal”

Set base to &10 (decimal).

Gforth allows you to override the value of base by using a prefix21 before the first digit
of an (integer) number. Four prefixes are supported:

• & – decimal

• % – binary

• $ – hexadecimal

• ’ – base max-char+1

Here are some examples, with the equivalent decimal number shown after in braces:

-$41 (-65), %1001101 (205), %1001.0001 (145 - a double-precision number), ’AB (16706;
ascii A is 65, ascii B is 66, number is 65*256 + 66), ’ab (24930; ascii a is 97, ascii B is 98,
number is 97*256 + 98), &905 (905), $abc (2478), $ABC (2478).

Number conversion has a number of traps for the unwary:

• You cannot determine the current number base using the code sequence base @ . – the
number base is always 10 in the current number base. Instead, use something like base
@ dec.

• If the number base is set to a value greater than 14 (for example, hexadecimal), the
number 123E4 is ambiguous; the conversion rules allow it to be intepreted as either
a single-precision integer or a floating-point number (Gforth treats it as an integer).
The ambiguity can be resolved by explicitly stating the sign of the mantissa and/or
exponent: 123E+4 or +123E4 – if the number base is decimal, no ambiguity arises;
either representation will be treated as a floating-point number.

• There is a word bin but it does not set the number base! It is used to specify file types.

21 Some Forth implementations provide a similar scheme by implementing $ etc. as parsing words that
process the subsequent number in the input stream and push it onto the stack. For example, see Number
Conversion and Literals, by Wil Baden; Forth Dimensions 20(3) pages 26–27. In such implementations,
unlike in Gforth, a space is required between the prefix and the number.

Chapter 5: Forth Words 99

• ANS Forth requires the . of a double-precision number to be the final character in the
string. Gforth allows the . to be anywhere after the first digit.

• The number conversion process does not check for overflow.

• In an ANS Forth program base is required to be decimal when converting floating-
point numbers. In Gforth, number conversion to floating-point numbers always uses
base &10, irrespective of the value of base.

You can read numbers into your programs with the words described in Section 5.19.5
[Input], page 120.

5.13.3 Interpret/Compile states

A standard program is not permitted to change state explicitly. However, it can change
state implicitly, using the words [and]. When [is executed it switches state to in-
terpret state, and therefore the text interpreter starts interpreting. When] is executed it
switches state to compile state and therefore the text interpreter starts compiling. The
most common usage for these words is for switching into interpret state and back from
within a colon definition; this technique can be used to compile a literal (for an example,
see Section 5.12.1 [Literals], page 91) or for conditional compilation (for an example, see
Section 5.13.4 [Interpreter Directives], page 99).

5.13.4 Interpreter Directives

These words are usually used in interpret state; typically to control which parts of a
source file are processed by the text interpreter. There are only a few ANS Forth Standard
words, but Gforth supplements these with a rich set of immediate control structure words
to compensate for the fact that the non-immediate versions can only be used in compile
state (see Section 5.8 [Control Structures], page 65). Typical usages:

FALSE Constant HAVE-ASSEMBLER
.
.
HAVE-ASSEMBLER [IF]
: ASSEMBLER-FEATURE
...

;
[ENDIF]
.
.
: SEE
... \ general-purpose SEE code
[HAVE-ASSEMBLER [IF]]
... \ assembler-specific SEE code
[[ENDIF]]

;

[IF] flag – tools-ext “bracket-if”

If flag is TRUE do nothing (and therefore execute subsequent words as normal). If flag is
FALSE, parse and discard words from the parse area (refilling it if necessary using REFILL)

Chapter 5: Forth Words 100

including nested instances of [IF].. [ELSE].. [THEN] and [IF].. [THEN] until the balancing
[ELSE] or [THEN] has been parsed and discarded. Immediate word.

[ELSE] – tools-ext “bracket-else”

Parse and discard words from the parse area (refilling it if necessary using REFILL)
including nested instances of [IF].. [ELSE].. [THEN] and [IF].. [THEN] until the balancing
[THEN] has been parsed and discarded. [ELSE] only gets executed if the balancing [IF]

was TRUE; if it was FALSE, [IF] would have parsed and discarded the [ELSE], leaving the
subsequent words to be executed as normal. Immediate word.

[THEN] – tools-ext “bracket-then”

Do nothing; used as a marker for other words to parse and discard up to. Immediate
word.

[ENDIF] – gforth “bracket-end-if”

Do nothing; synonym for [THEN]

[IFDEF] "<spaces>name" – gforth “bracket-if-def”

If name is found in the current search-order, behave like [IF] with a TRUE flag, otherwise
behave like [IF] with a FALSE flag. Immediate word.

[IFUNDEF] "<spaces>name" – gforth “bracket-if-un-def”

If name is not found in the current search-order, behave like [IF] with a TRUE flag,
otherwise behave like [IF] with a FALSE flag. Immediate word.

[?DO] n-limit n-index – gforth “bracket-question-do”

[DO] n-limit n-index – gforth “bracket-do”

[FOR] n – gforth “bracket-for”

[LOOP] – gforth “bracket-loop”

[+LOOP] n – gforth “bracket-question-plus-loop”

[NEXT] n – gforth “bracket-next”

[BEGIN] – gforth “bracket-begin”

[UNTIL] flag – gforth “bracket-until”

[AGAIN] – gforth “bracket-again”

[WHILE] flag – gforth “bracket-while”

[REPEAT] – gforth “bracket-repeat”

5.14 The Input Stream

The text interpreter reads from the input stream, which can come from several sources
(see Section 5.13.1 [Input Sources], page 96). Some words, in particular defining words, but
also words like ’, read parameters from the input stream instead of from the stack.

Such words are called parsing words, because they parse the input stream. Parsing
words are hard to use in other words, because it is hard to pass program-generated pa-
rameters through the input stream. They also usually have an unintuitive combination
of interpretation and compilation semantics when implemented naively, leading to various
approaches that try to produce a more intuitive behaviour (see Section 5.10.1 [Combined
words], page 86).

Chapter 5: Forth Words 101

It should be obvious by now that parsing words are a bad idea. If you want to implement
a parsing word for convenience, also provide a factor of the word that does not parse, but
takes the parameters on the stack. To implement the parsing word on top if it, you can use
the following words:

parse char "ccc<char>" – c-addr u core-ext “parse”

Parse ccc, delimited by char, in the parse area. c-addr u specifies the parsed string
within the parse area. If the parse area was empty, u is 0.

parse-word "name" – c-addr u gforth “parse-word”

Get the next word from the input buffer

name – c-addr u gforth-obsolete “name”

old name for parse-word

word char "<chars>ccc<char>– c-addr core “word”

Skip leading delimiters. Parse ccc, delimited by char, in the parse area. c-addr is the
address of a transient region containing the parsed string in counted-string format. If the
parse area was empty or contained no characters other than delimiters, the resulting string
has zero length. A program may replace characters within the counted string. OBSOLES-
CENT: the counted string has a trailing space that is not included in its length.

\"-parse "string"<"> – c-addr u unknown “\"-parse”

parses string, translating \-escapes to characters (as in C). The resulting string resides
at here char+. The supported \-escapes are: \a BEL (alert), \b BS, \e ESC (not in
C99), \f FF, \n newline, \r CR, \t HT, \v VT, \" ", \[0-7]+ octal numerical character
value, \x[0-9a-f]+ hex numerical character value; a \ before any other character represents
that character (only ’, \, ? in C99).

refill – flag core-ext,block-ext,file-ext “refill”

Attempt to fill the input buffer from the input source. When the input source is the
user input device, attempt to receive input into the terminal input device. If successful,
make the result the input buffer, set >IN to 0 and return true; otherwise return false. When
the input source is a block, add 1 to the value of BLK to make the next block the input
source and current input buffer, and set >IN to 0; return true if the new value of BLK is a
valid block number, false otherwise. When the input source is a text file, attempt to read
the next line from the file. If successful, make the result the current input buffer, set >IN

to 0 and return true; otherwise, return false. A successful result includes receipt of a line
containing 0 characters.

Conversely, if you have the bad luck (or lack of foresight) to have to deal with parsing
words without having such factors, how do you pass a string that is not in the input stream
to it?

execute-parsing ... addr u xt – ... unknown “execute-parsing”

Make addr u the current input source, execute xt (... -- ...), then restore the pre-
vious input source.

If you want to run a parsing word on a file, the following word should help:

execute-parsing-file i*x fileid xt – j*x unknown “execute-parsing-file”

Make fileid the current input source, execute xt (i*x -- j*x), then restore the previous
input source.

Chapter 5: Forth Words 102

5.15 Word Lists

A wordlist is a list of named words; you can add new words and look up words by name
(and you can remove words in a restricted way with markers). Every named (and revealed)
word is in one wordlist.

The text interpreter searches the wordlists present in the search order (a stack of
wordlists), from the top to the bottom. Within each wordlist, the search starts concep-
tually at the newest word; i.e., if two words in a wordlist have the same name, the newer
word is found.

New words are added to the compilation wordlist (aka current wordlist).

A word list is identified by a cell-sized word list identifier (wid) in much the same way
as a file is identified by a file handle. The numerical value of the wid has no (portable)
meaning, and might change from session to session.

The ANS Forth “Search order” word set is intended to provide a set of low-level tools
that allow various different schemes to be implemented. Gforth also provides vocabulary,
a traditional Forth word. ‘compat/vocabulary.fs’ provides an implementation in ANS
Forth.

forth-wordlist – wid search “forth-wordlist”

Constant – wid identifies the word list that includes all of the standard words provided
by Gforth. When Gforth is invoked, this word list is the compilation word list and is at the
top of the search order.

definitions – search “definitions”

Set the compilation word list to be the same as the word list that is currently at the top
of the search order.

get-current – wid search “get-current”

wid is the identifier of the current compilation word list.

set-current wid – search “set-current”

Set the compilation word list to the word list identified by wid.

get-order – widn .. wid1 n search “get-order”

Copy the search order to the data stack. The current search order has n entries, of which
wid1 represents the wordlist that is searched first (the word list at the top of the search
order) and widn represents the wordlist that is searched last.

set-order widn .. wid1 n – search “set-order”

If n=0, empty the search order. If n=-1, set the search order to the implementation-
defined minimum search order (for Gforth, this is the word list Root). Otherwise, replace
the existing search order with the n wid entries such that wid1 represents the word list that
will be searched first and widn represents the word list that will be searched last.

wordlist – wid search “wordlist”

Create a new, empty word list represented by wid.

table – wid gforth “table”

Create a case-sensitive wordlist.

>order wid – gforth “to-order”

Push wid on the search order.

Chapter 5: Forth Words 103

previous – search-ext “previous”

Drop the wordlist at the top of the search order.

also – search-ext “also”

Like DUP for the search order. Usually used before a vocabulary (e.g., also Forth); the
combined effect is to push the wordlist represented by the vocabulary on the search order.

Forth – search-ext “Forth”

Replace the wid at the top of the search order with the wid associated with the word
list forth-wordlist.

Only – search-ext “Only”

Set the search order to the implementation-defined minimum search order (for Gforth,
this is the word list Root).

order – search-ext “order”

Print the search order and the compilation word list. The word lists are printed in the
order in which they are searched (which is reversed with respect to the conventional way of
displaying stacks). The compilation word list is displayed last.

find c-addr – xt +-1 | c-addr 0 core,search “find”

Search all word lists in the current search order for the definition named by the counted
string at c-addr. If the definition is not found, return 0. If the definition is found return 1
(if the definition has non-default compilation semantics) or -1 (if the definition has default
compilation semantics). The xt returned in interpret state represents the interpretation
semantics. The xt returned in compile state represented either the compilation semantics
(for non-default compilation semantics) or the run-time semantics that the compilation
semantics would compile, (for default compilation semantics). The ANS Forth standard
does not specify clearly what the returned xt represents (and also talks about immediacy
instead of non-default compilation semantics), so this word is questionable in portable
programs. If non-portability is ok, find-name and friends are better (see Section 5.11.3
[Name token], page 90).

search-wordlist c-addr count wid – 0 | xt +-1 search “search-wordlist”

Search the word list identified by wid for the definition named by the string at c-addr
count. If the definition is not found, return 0. If the definition is found return 1 (if the
definition is immediate) or -1 (if the definition is not immediate) together with the xt. In
Gforth, the xt returned represents the interpretation semantics. ANS Forth does not specify
clearly what xt represents.

words – tools “words”

Display a list of all of the definitions in the word list at the top of the search order.

vlist – gforth “vlist”

Old (pre-Forth-83) name for WORDS.

Root – gforth “Root”

Add the root wordlist to the search order stack. This vocabulary makes up the minimum
search order and contains only a search-order words.

Vocabulary "name" – gforth “Vocabulary”

Create a definition "name" and associate a new word list with it. The run-time effect
of "name" is to replace the wid at the top of the search order with the wid associated with
the new word list.

Chapter 5: Forth Words 104

seal – gforth “seal”

Remove all word lists from the search order stack other than the word list that is currently
on the top of the search order stack.

vocs – gforth “vocs”

List vocabularies and wordlists defined in the system.

current – addr gforth “current”

Variable – holds the wid of the compilation word list.

context – addr gforth “context”

context @ is the wid of the word list at the top of the search order.

5.15.1 Vocabularies

Here is an example of creating and using a new wordlist using ANS Forth words:

wordlist constant my-new-words-wordlist
: my-new-words get-order nip my-new-words-wordlist swap set-order ;

\ add it to the search order
also my-new-words

\ alternatively, add it to the search order and make it
\ the compilation word list
also my-new-words definitions
\ type "order" to see the problem

The problem with this example is that order has no way to associate the name my-new-
words with the wid of the word list (in Gforth, order and vocs will display ??? for a wid
that has no associated name). There is no Standard way of associating a name with a wid.

In Gforth, this example can be re-coded using vocabulary, which associates a name
with a wid:

vocabulary my-new-words

\ add it to the search order
also my-new-words

\ alternatively, add it to the search order and make it
\ the compilation word list
my-new-words definitions
\ type "order" to see that the problem is solved

5.15.2 Why use word lists?

Here are some reasons why people use wordlists:

• To prevent a set of words from being used outside the context in which they are valid.
Two classic examples of this are an integrated editor (all of the edit commands are
defined in a separate word list; the search order is set to the editor word list when the
editor is invoked; the old search order is restored when the editor is terminated) and
an integrated assembler (the op-codes for the machine are defined in a separate word
list which is used when a CODE word is defined).

Chapter 5: Forth Words 105

• To organize the words of an application or library into a user-visible set (in forth-

wordlist or some other common wordlist) and a set of helper words used just for
the implementation (hidden in a separate wordlist). This keeps words’ output smaller,
separates implementation and interface, and reduces the chance of name conflicts within
the common wordlist.

• To prevent a name-space clash between multiple definitions with the same name. For
example, when building a cross-compiler you might have a word IF that generates
conditional code for your target system. By placing this definition in a different word
list you can control whether the host system’s IF or the target system’s IF get used
in any particular context by controlling the order of the word lists on the search order
stack.

The downsides of using wordlists are:

Debugging becomes more cumbersome.

Name conflicts worked around with wordlists are still there, and you have to arrange the
search order carefully to get the desired results; if you forget to do that, you get hard-
to-find errors (as in any case where you read the code differently from the compiler;
see can help seeing which of several possible words the name resolves to in such cases).
See displays just the name of the words, not what wordlist they belong to, so it might
be misleading. Using unique names is a better approach to avoid name conflicts.

You have to explicitly undo any changes to the search order. In many cases it would
be more convenient if this happened implicitly. Gforth currently does not provide such
a feature, but it may do so in the future.

5.15.3 Word list example

The following example is from the garbage collector (http://www.complang.tuwien.ac.at/forth/garbage-collection.zip)
and uses wordlists to separate public words from helper words:

get-current (wid)
vocabulary garbage-collector also garbage-collector definitions
... \ define helper words
(wid) set-current \ restore original (i.e., public) compilation wordlist
... \ define the public (i.e., API) words

\ they can refer to the helper words
previous \ restore original search order (helper words become invisible)

5.16 Environmental Queries

ANS Forth introduced the idea of “environmental queries” as a way for a program
running on a system to determine certain characteristics of the system. The Standard
specifies a number of strings that might be recognised by a system.

The Standard requires that the header space used for environmental queries be distinct
from the header space used for definitions.

Typically, environmental queries are supported by creating a set of definitions in a word
list that is only used during environmental queries; that is what Gforth does. There is no
Standard way of adding definitions to the set of recognised environmental queries, but any

Chapter 5: Forth Words 106

implementation that supports the loading of optional word sets must have some mecha-
nism for doing this (after loading the word set, the associated environmental query string
must return true). In Gforth, the word list used to honour environmental queries can be
manipulated just like any other word list.

environment? c-addr u – false / ... true core “environment-query”

c-addr, u specify a counted string. If the string is not recognised, return a false flag.
Otherwise return a true flag and some (string-specific) information about the queried string.

environment-wordlist – wid gforth “environment-wordlist”

wid identifies the word list that is searched by environmental queries.

gforth – c-addr u gforth-environment “gforth”

Counted string representing a version string for this version of Gforth (for versions>0.3.0).
The version strings of the various versions are guaranteed to be ordered lexicographically.

os-class – c-addr u gforth-environment “os-class”

Counted string representing a description of the host operating system.

Note that, whilst the documentation for (e.g.) gforth shows it returning two items on
the stack, querying it using environment? will return an additional item; the true flag that
shows that the string was recognised.

Here are some examples of using environmental queries:

s" address-unit-bits" environment? 0=
[IF]

cr .(environmental attribute address-units-bits unknown...) cr
[ELSE]

drop \ ensure balanced stack effect
[THEN]

\ this might occur in the prelude of a standard program that uses THROW
s" exception" environment? [IF]

0= [IF]
: throw abort" exception thrown" ;

[THEN]
[ELSE] \ we don’t know, so make sure

: throw abort" exception thrown" ;
[THEN]

s" gforth" environment? [IF] .(Gforth version) TYPE
[ELSE] .(Not Gforth..) [THEN]

\ a program using v*
s" gforth" environment? [IF]
s" 0.5.0" compare 0< [IF] \ v* is a primitive since 0.5.0
: v* (f_addr1 nstride1 f_addr2 nstride2 ucount -- r)

>r swap 2swap swap 0e r> 0 ?DO
dup f over + 2swap dup f f* f+ over + 2swap

LOOP
2drop 2drop ;

[THEN]

Chapter 5: Forth Words 107

[ELSE] \
: v* (f_addr1 nstride1 f_addr2 nstride2 ucount -- r)
...

[THEN]

Here is an example of adding a definition to the environment word list:

get-current environment-wordlist set-current
true constant block
true constant block-ext
set-current

You can see what definitions are in the environment word list like this:

environment-wordlist >order words previous

5.17 Files

Gforth provides facilities for accessing files that are stored in the host operating system’s
file-system. Files that are processed by Gforth can be divided into two categories:

• Files that are processed by the Text Interpreter (Forth source files).

• Files that are processed by some other program (general files).

5.17.1 Forth source files

The simplest way to interpret the contents of a file is to use one of these two formats:

include mysource.fs
s" mysource.fs" included

You usually want to include a file only if it is not included already (by, say, another
source file). In that case, you can use one of these three formats:

require mysource.fs
needs mysource.fs
s" mysource.fs" required

It is good practice to write your source files such that interpreting them does not change
the stack. Source files designed in this way can be used with required and friends without
complications. For example:

1024 require foo.fs drop

Here you want to pass the argument 1024 (e.g., a buffer size) to ‘foo.fs’. Interpreting
‘foo.fs’ has the stack effect (n – n), which allows its use with require. Of course with
such parameters to required files, you have to ensure that the first require fits for all uses
(i.e., require it early in the master load file).

include-file i*x wfileid – j*x unknown “include-file”

Interpret (process using the text interpreter) the contents of the file wfileid.

included i*x c-addr u – j*x file “included”

include-file the file whose name is given by the string c-addr u.

included? c-addr u – f gforth “included?”

True only if the file c-addr u is in the list of earlier included files. If the file has been
loaded, it may have been specified as, say, ‘foo.fs’ and found somewhere on the Forth

Chapter 5: Forth Words 108

search path. To return true from included?, you must specify the exact path to the file,
even if that is ‘./foo.fs’

include ... "file" – ... gforth “include”

include-file the file file.

required i*x addr u – j*x gforth “required”

include-file the file with the name given by addr u, if it is not included (or required)
already. Currently this works by comparing the name of the file (with path) against the
names of earlier included files.

require ... "file" – ... gforth “require”

include-file file only if it is not included already.

needs ... "name" – ... gforth “needs”

An alias for require; exists on other systems (e.g., Win32Forth).

sourcefilename – c-addr u gforth “sourcefilename”

The name of the source file which is currently the input source. The result is valid
only while the file is being loaded. If the current input source is no (stream) file, the
result is undefined. In Gforth, the result is valid during the whole seesion (but not across
savesystem etc.).

sourceline# – u gforth “sourceline-number”

The line number of the line that is currently being interpreted from a (stream) file. The
first line has the number 1. If the current input source is not a (stream) file, the result is
undefined.

A definition in ANS Forth for required is provided in ‘compat/required.fs’.

5.17.2 General files

Files are opened/created by name and type. The following file access methods (FAMs)
are recognised:

r/o – fam file “r-o”

r/w – fam file “r-w”

w/o – fam file “w-o”

bin fam1 – fam2 file “bin”

When a file is opened/created, it returns a file identifier, wfileid that is used for all other
file commands. All file commands also return a status value, wior, that is 0 for a successful
operation and an implementation-defined non-zero value in the case of an error.

open-file c-addr u wfam – wfileid wior file “open-file”

create-file c-addr u wfam – wfileid wior file “create-file”

close-file wfileid – wior file “close-file”

delete-file c-addr u – wior file “delete-file”

rename-file c-addr1 u1 c-addr2 u2 – wior file-ext “rename-file”

Rename file c addr1 u1 to new name c addr2 u2

read-file c-addr u1 wfileid – u2 wior file “read-file”

read-line c addr u1 wfileid – u2 flag wior unknown “read-line”

Chapter 5: Forth Words 109

write-file c-addr u1 wfileid – wior file “write-file”

write-line c-addr u fileid – ior file “write-line”

emit-file c wfileid – wior gforth “emit-file”

flush-file wfileid – wior file-ext “flush-file”

file-status c-addr u – wfam wior file-ext “file-status”

file-position wfileid – ud wior file “file-position”

reposition-file ud wfileid – wior file “reposition-file”

file-size wfileid – ud wior file “file-size”

resize-file ud wfileid – wior file “resize-file”

slurp-file c-addr1 u1 – c-addr2 u2 unknown “slurp-file”

c-addr1 u1 is the filename, c-addr2 u2 is the file’s contents

slurp-fid unknown “slurp-fid”

stdin – wfileid gforth “stdin”

stdout – wfileid gforth “stdout”

stderr – wfileid gforth “stderr”

5.17.3 Search Paths

If you specify an absolute filename (i.e., a filename starting with ‘/’ or ‘~’, or with ‘:’ in
the second position (as in ‘C:...’)) for included and friends, that file is included just as
you would expect.

If the filename starts with ‘./’, this refers to the directory that the present file was
included from. This allows files to include other files relative to their own position (irre-
spective of the current working directory or the absolute position). This feature is essential
for libraries consisting of several files, where a file may include other files from the library.
It corresponds to #include "..." in C. If the current input source is not a file, ‘.’ refers
to the directory of the innermost file being included, or, if there is no file being included,
to the current working directory.

For relative filenames (not starting with ‘./’), Gforth uses a search path similar to
Forth’s search order (see Section 5.15 [Word Lists], page 102). It tries to find the given
filename in the directories present in the path, and includes the first one it finds. There are
separate search paths for Forth source files and general files. If the search path contains
the directory ‘.’, this refers to the directory of the current file, or the working directory, as
if the file had been specified with ‘./’.

Use ‘~+’ to refer to the current working directory (as in the bash).

5.17.3.1 Source Search Paths

The search path is initialized when you start Gforth (see Section 2.1 [Invoking Gforth],
page 3). You can display it and change it using fpath in combination with the general path
handling words.

fpath – path-addr gforth “fpath”

Here is an example of using fpath and require:

fpath path= /usr/lib/forth/|./
require timer.fs

Chapter 5: Forth Words 110

5.17.3.2 General Search Paths

Your application may need to search files in several directories, like included does. To
facilitate this, Gforth allows you to define and use your own search paths, by providing
generic equivalents of the Forth search path words:

open-path-file addr1 u1 path-addr – wfileid addr2 u2 0 | ior gforth “open-
path-file”

Look in path path-addr for the file specified by addr1 u1. If found, the resulting path
and and (read-only) open file descriptor are returned. If the file is not found, ior is non-zero.

path-allot umax – unknown “path-allot”

Allot a path with umax characters capacity, initially empty.

clear-path path-addr – gforth “clear-path”

Set the path path-addr to empty.

also-path c-addr len path-addr – gforth “also-path”

add the directory c-addr len to path-addr.

.path path-addr – gforth “.path”

Display the contents of the search path path-addr.

path+ path-addr "dir" – gforth “path+”

Add the directory dir to the search path path-addr.

path= path-addr "dir1|dir2|dir3" gforth “path=”

Make a complete new search path; the path separator is |.

Here’s an example of creating an empty search path:

create mypath 500 path-allot \ maximum length 500 chars (is checked)

5.18 Blocks

When you run Gforth on a modern desk-top computer, it runs under the control of an
operating system which provides certain services. One of these services is file services, which
allows Forth source code and data to be stored in files and read into Gforth (see Section 5.17
[Files], page 107).

Traditionally, Forth has been an important programming language on systems where it
has interfaced directly to the underlying hardware with no intervening operating system.
Forth provides a mechanism, called blocks, for accessing mass storage on such systems.

A block is a 1024-byte data area, which can be used to hold data or Forth source code.
No structure is imposed on the contents of the block. A block is identified by its number;
blocks are numbered contiguously from 1 to an implementation-defined maximum.

A typical system that used blocks but no operating system might use a single floppy-disk
drive for mass storage, with the disks formatted to provide 256-byte sectors. Blocks would
be implemented by assigning the first four sectors of the disk to block 1, the second four
sectors to block 2 and so on, up to the limit of the capacity of the disk. The disk would not
contain any file system information, just the set of blocks.

On systems that do provide file services, blocks are typically implemented by storing a
sequence of blocks within a single blocks file. The size of the blocks file will be an exact

Chapter 5: Forth Words 111

multiple of 1024 bytes, corresponding to the number of blocks it contains. This is the
mechanism that Gforth uses.

Only one blocks file can be open at a time. If you use block words without having
specified a blocks file, Gforth defaults to the blocks file ‘blocks.fb’. Gforth uses the Forth
search path when attempting to locate a blocks file (see Section 5.17.3.1 [Source Search
Paths], page 109).

When you read and write blocks under program control, Gforth uses a number of block
buffers as intermediate storage. These buffers are not used when you use load to interpret
the contents of a block.

The behaviour of the block buffers is analagous to that of a cache. Each block buffer
has three states:

• Unassigned

• Assigned-clean

• Assigned-dirty

Initially, all block buffers are unassigned. In order to access a block, the block (specified
by its block number) must be assigned to a block buffer.

The assignment of a block to a block buffer is performed by block or buffer. Use block
when you wish to modify the existing contents of a block. Use buffer when you don’t care
about the existing contents of the block22.

Once a block has been assigned to a block buffer using block or buffer, that block
buffer becomes the current block buffer. Data may only be manipulated (read or written)
within the current block buffer.

When the contents of the current block buffer has been modified it is necessary, before
calling block or buffer again, to either abandon the changes (by doing nothing) or mark
the block as changed (assigned-dirty), using update. Using update does not change the
blocks file; it simply changes a block buffer’s state to assigned-dirty. The block will be
written implicitly when it’s buffer is needed for another block, or explicitly by flush or
save-buffers.

word Flush writes all assigned-dirty blocks back to the blocks file on disk. Leaving
Gforth with bye also performs a flush.

In Gforth, block and buffer use a direct-mapped algorithm to assign a block buffer
to a block. That means that any particular block can only be assigned to one specific
block buffer, called (for the particular operation) the victim buffer. If the victim buffer is
unassigned or assigned-clean it is allocated to the new block immediately. If it is assigned-
dirty its current contents are written back to the blocks file on disk before it is allocated to
the new block.

Although no structure is imposed on the contents of a block, it is traditional to display
the contents as 16 lines each of 64 characters. A block provides a single, continuous stream of
input (for example, it acts as a single parse area) – there are no end-of-line characters within

22 The ANS Forth definition of buffer is intended not to cause disk I/O; if the data associated with the
particular block is already stored in a block buffer due to an earlier block command, buffer will return
that block buffer and the existing contents of the block will be available. Otherwise, buffer will simply
assign a new, empty block buffer for the block.

Chapter 5: Forth Words 112

a block, and no end-of-file character at the end of a block. There are two consequences of
this:

• The last character of one line wraps straight into the first character of the following
line

• The word \ – comment to end of line – requires special treatment; in the context of
a block it causes all characters until the end of the current 64-character “line” to be
ignored.

In Gforth, when you use block with a non-existent block number, the current blocks file
will be extended to the appropriate size and the block buffer will be initialised with spaces.

Gforth includes a simple block editor (type use blocked.fb 0 list for details) but
doesn’t encourage the use of blocks; the mechanism is only provided for backward compat-
ibility – ANS Forth requires blocks to be available when files are.

Common techniques that are used when working with blocks include:

• A screen editor that allows you to edit blocks without leaving the Forth environment.

• Shadow screens; where every code block has an associated block containing comments
(for example: code in odd block numbers, comments in even block numbers). Typi-
cally, the block editor provides a convenient mechanism to toggle between code and
comments.

• Load blocks; a single block (typically block 1) contains a number of thru commands
which load the whole of the application.

See Frank Sergeant’s Pygmy Forth to see just how well blocks can be integrated into a
Forth programming environment.

open-blocks c-addr u – gforth “open-blocks”

Use the file, whose name is given by c-addr u, as the blocks file.

use "file" – gforth “use”

Use file as the blocks file.

block-offset – addr gforth “block-offset”

User variable containing the number of the first block (default since 0.5.0: 0). Block files
created with Gforth versions before 0.5.0 have the offset 1. If you use these files you can: 1
offset !; or add 1 to every block number used; or prepend 1024 characters to the file.

get-block-fid – wfileid gforth “get-block-fid”

Return the file-id of the current blocks file. If no blocks file has been opened, use
‘blocks.fb’ as the default blocks file.

block-position u – block “block-position”

Position the block file to the start of block u.

list u – block-ext “list”

Display block u. In Gforth, the block is displayed as 16 numbered lines, each of 64
characters.

scr – a-addr block-ext “s-c-r”

User variable – a-addr is the address of a cell containing the block number of the block
most recently processed by list.

Chapter 5: Forth Words 113

block u – a-addr block “block”

If a block buffer is assigned for block u, return its start address, a-addr. Otherwise,
assign a block buffer for block u (if the assigned block buffer has been updated, transfer the
contents to mass storage), read the block into the block buffer and return its start address,
a-addr.

buffer u – a-addr block “buffer”

If a block buffer is assigned for block u, return its start address, a-addr. Otherwise,
assign a block buffer for block u (if the assigned block buffer has been updated, transfer
the contents to mass storage) and return its start address, a-addr. The subtle difference
between buffer and block mean that you should only use buffer if you don’t care about
the previous contents of block u. In Gforth, this simply calls block.

empty-buffers – block-ext “empty-buffers”

Mark all block buffers as unassigned; if any had been marked as assigned-dirty (by
update), the changes to those blocks will be lost.

empty-buffer buffer – gforth “empty-buffer”

update – block “update”

Mark the state of the current block buffer as assigned-dirty.

updated? n – f gforth “updated?”

Return true if updated has been used to mark block n as assigned-dirty.

save-buffers – block “save-buffers”

Transfer the contents of each updated block buffer to mass storage, then mark all block
buffers as assigned-clean.

save-buffer buffer – gforth “save-buffer”

flush – block “flush”

Perform the functions of save-buffers then empty-buffers.

load i*x n – j*x block “load”

Save the current input source specification. Store n in BLK, set >IN to 0 and interpret.
When the parse area is exhausted, restore the input source specification.

thru i*x n1 n2 – j*x block-ext “thru”

load the blocks n1 through n2 in sequence.

+load i*x n – j*x gforth “+load”

Used within a block to load the block specified as the current block + n.

+thru i*x n1 n2 – j*x gforth “+thru”

Used within a block to load the range of blocks specified as the current block + n1 thru
the current block + n2.

--> – gforth “chain”

If this symbol is encountered whilst loading block n, discard the remainder of the block
and load block n+1. Used for chaining multiple blocks together as a single loadable unit.
Not recommended, because it destroys the independence of loading. Use thru (which is
standard) or +thru instead.

Chapter 5: Forth Words 114

block-included a-addr u – gforth “block-included”

Use within a block that is to be processed by load. Save the current blocks file specifica-
tion, open the blocks file specified by a-addr u and load block 1 from that file (which may
in turn chain or load other blocks). Finally, close the blocks file and restore the original
blocks file.

5.19 Other I/O

5.19.1 Simple numeric output

The simplest output functions are those that display numbers from the data or floating-
point stacks. Floating-point output is always displayed using base 10. Numbers displayed
from the data stack use the value stored in base.

. n – core “dot”

Display (the signed single number) n in free-format, followed by a space.

dec. n – gforth “dec.”

Display n as a signed decimal number, followed by a space.

hex. u – gforth “hex.”

Display u as an unsigned hex number, prefixed with a "$" and followed by a space.

u. u – core “u-dot”

Display (the unsigned single number) u in free-format, followed by a space.

.r n1 n2 – core-ext “dot-r”

Display n1 right-aligned in a field n2 characters wide. If more than n2 characters are
needed to display the number, all digits are displayed. If appropriate, n2 must include a
character for a leading “-”.

u.r u n – core-ext “u-dot-r”

Display u right-aligned in a field n characters wide. If more than n characters are needed
to display the number, all digits are displayed.

d. d – double “d-dot”

Display (the signed double number) d in free-format. followed by a space.

ud. ud – gforth “u-d-dot”

Display (the signed double number) ud in free-format, followed by a space.

d.r d n – double “d-dot-r”

Display d right-aligned in a field n characters wide. If more than n characters are needed
to display the number, all digits are displayed. If appropriate, n must include a character
for a leading “-”.

ud.r ud n – gforth “u-d-dot-r”

Display ud right-aligned in a field n characters wide. If more than n characters are
needed to display the number, all digits are displayed.

f. r – float-ext “f-dot”

Display (the floating-point number) r without exponent, followed by a space.

Chapter 5: Forth Words 115

fe. r – float-ext “f-e-dot”

Display r using engineering notation (with exponent dividable by 3), followed by a space.

fs. r – float-ext “f-s-dot”

Display r using scientific notation (with exponent), followed by a space.

f.rdp rf +nr +nd +np – gforth “f.rdp”

Print float rf formatted. The total width of the output is nr. For fixed-point notation,
the number of digits after the decimal point is +nd and the minimum number of significant
digits is np. Set-precision has no effect on f.rdp. Fixed-point notation is used if the
number of siginicant digits would be at least np and if the number of digits before the
decimal point would fit. If fixed-point notation is not used, exponential notation is used,
and if that does not fit, asterisks are printed. We recommend using nr>=7 to avoid the
risk of numbers not fitting at all. We recommend nr>=np+5 to avoid cases where f.rdp

switches to exponential notation because fixed-point notation would have too few significant
digits, yet exponential notation offers fewer significant digits. We recommend nr>=nd+2,
if you want to have fixed-point notation for some numbers. We recommend np>nr, if you
want to have exponential notation for all numbers.

Examples of printing the number 1234.5678E23 in the different floating-point output
formats are shown below:

f. 123456779999999000000000000.
fe. 123.456779999999E24
fs. 1.23456779999999E26

5.19.2 Formatted numeric output

Forth traditionally uses a technique called pictured numeric output for formatted print-
ing of integers. In this technique, digits are extracted from the number (using the current
output radix defined by base), converted to ASCII codes and appended to a string that is
built in a scratch-pad area of memory (see Section 8.1.1 [Implementation-defined options],
page 168). Arbitrary characters can be appended to the string during the extraction pro-
cess. The completed string is specified by an address and length and can be manipulated
(TYPEed, copied, modified) under program control.

All of the integer output words described in the previous section (see Section 5.19.1
[Simple numeric output], page 114) are implemented in Gforth using pictured numeric
output.

Three important things to remember about pictured numeric output:

• It always operates on double-precision numbers; to display a single-precision number,
convert it first (for ways of doing this see Section 5.5.2 [Double precision], page 52).

• It always treats the double-precision number as though it were unsigned. The examples
below show ways of printing signed numbers.

• The string is built up from right to left; least significant digit first.

<# – core “less-number-sign”

Initialise/clear the pictured numeric output string.

Chapter 5: Forth Words 116

<<# – gforth “less-less-number-sign”

Start a hold area that ends with #>>. Can be nested in each other and in <#. Note: if
you do not match up the <<#s with #>>s, you will eventually run out of hold area; you can
reset the hold area to empty with <#.

ud1 – ud2 core “number-sign”

Used within <# and #>. Add the next least-significant digit to the pictured numeric
output string. This is achieved by dividing ud1 by the number in base to leave quotient
ud2 and remainder n; n is converted to the appropriate display code (eg ASCII code) and
appended to the string. If the number has been fully converted, ud1 will be 0 and # will
append a “0” to the string.

#s ud – 0 0 core “number-sign-s”

Used within <# and #>. Convert all remaining digits using the same algorithm as for #.
#s will convert at least one digit. Therefore, if ud is 0, #s will append a “0” to the pictured
numeric output string.

hold char – core “hold”

Used within <# and #>. Append the character char to the pictured numeric output
string.

sign n – core “sign”

Used within <# and #>. If n (a single number) is negative, append the display code for a
minus sign to the pictured numeric output string. Since the string is built up “backwards”
this is usually used immediately prior to #>, as shown in the examples below.

#> xd – addr u core “number-sign-greater”

Complete the pictured numeric output string by discarding xd and returning addr u; the
address and length of the formatted string. A Standard program may modify characters
within the string.

#>> – gforth “number-sign-greater-greater”

Release the hold area started with <<#.

represent r c-addr u – n f1 f2 float “represent”

f>str-rdp rf +nr +nd +np – c-addr nr gforth “f>str-rdp”

Convert rf into a string at c-addr nr. The conversion rules and the meanings of nr +nd
np are the same as for f.rdp. The result in in the pictured numeric output buffer and will
be destroyed by anything destroying that buffer.

doc-f>buf-rdp

Here are some examples of using pictured numeric output:

: my-u. (u --)
\ Simplest use of pns.. behaves like Standard u.
0 \ convert to unsigned double
<<# \ start conversion
#s \ convert all digits
#> \ complete conversion
TYPE SPACE \ display, with trailing space
#>> ; \ release hold area

Chapter 5: Forth Words 117

: cents-only (u --)
0 \ convert to unsigned double
<<# \ start conversion
\ convert two least-significant digits
#> \ complete conversion, discard other digits
TYPE SPACE \ display, with trailing space
#>> ; \ release hold area

: dollars-and-cents (u --)
0 \ convert to unsigned double
<<# \ start conversion
\ convert two least-significant digits
[char] . hold \ insert decimal point
#s \ convert remaining digits
[char] $ hold \ append currency symbol
#> \ complete conversion
TYPE SPACE \ display, with trailing space
#>> ; \ release hold area

: my-. (n --)
\ handling negatives.. behaves like Standard .
s>d \ convert to signed double
swap over dabs \ leave sign byte followed by unsigned double
<<# \ start conversion
#s \ convert all digits
rot sign \ get at sign byte, append "-" if needed
#> \ complete conversion
TYPE SPACE \ display, with trailing space
#>> ; \ release hold area

: account. (n --)
\ accountants don’t like minus signs, they use parentheses
\ for negative numbers
s>d \ convert to signed double
swap over dabs \ leave sign byte followed by unsigned double
<<# \ start conversion
2 pick \ get copy of sign byte
0< IF [char]) hold THEN \ right-most character of output
#s \ convert all digits
rot \ get at sign byte
0< IF [char] (hold THEN
#> \ complete conversion
TYPE SPACE \ display, with trailing space
#>> ; \ release hold area

Here are some examples of using these words:

1 my-u. 1
hex -1 my-u. decimal FFFFFFFF
1 cents-only 01

Chapter 5: Forth Words 118

1234 cents-only 34
2 dollars-and-cents $0.02
1234 dollars-and-cents $12.34
123 my-. 123
-123 my. -123
123 account. 123
-456 account. (456)

5.19.3 String Formats

Forth commonly uses two different methods for representing character strings:

• As a counted string, represented by a c-addr. The char addressed by c-addr contains a
character-count, n, of the string and the string occupies the subsequent n char addresses
in memory.

• As cell pair on the stack; c-addr u, where u is the length of the string in characters,
and c-addr is the address of the first byte of the string.

ANS Forth encourages the use of the second format when representing strings.

count c-addr1 – c-addr2 u core “count”

c-addr2 is the first character and u the length of the counted string at c-addr1.

For words that move, copy and search for strings see Section 5.7.6 [Memory Blocks],
page 64. For words that display characters and strings see Section 5.19.4 [Displaying char-
acters and strings], page 118.

5.19.4 Displaying characters and strings

This section starts with a glossary of Forth words and ends with a set of examples.

bl – c-char core “b-l”

c-char is the character value for a space.

space – core “space”

Display one space.

spaces u – core “spaces”

Display n spaces.

emit c – core “emit”

Display the character associated with character value c.

toupper c1 – c2 gforth “toupper”

If c1 is a lower-case character (in the current locale), c2 is the equivalent upper-case
character. All other characters are unchanged.

." compilation ’ccc"’ – ; run-time – core “dot-quote”

Compilation: Parse a string ccc delimited by a " (double quote). At run-time, display
the string. Interpretation semantics for this word are undefined in ANS Forth. Gforth’s
interpretation semantics are to display the string. This is the simplest way to display a
string from within a definition; see examples below.

Chapter 5: Forth Words 119

.(compilation&interpretation "ccc<paren>" – core-ext “dot-paren”

Compilation and interpretation semantics: Parse a string ccc delimited by a) (right
parenthesis). Display the string. This is often used to display progress information during
compilation; see examples below.

.\" compilation ’ccc"’ – ; run-time – gforth “dot-backslash-quote”

type c-addr u – core “type”

If u>0, display u characters from a string starting with the character stored at c-addr.

typewhite addr n – gforth “typewhite”

Like type, but white space is printed instead of the characters.

cr – core “c-r”

Output a newline (of the favourite kind of the host OS). Note that due to the way the
Forth command line interpreter inserts newlines, the preferred way to use cr is at the start
of a piece of text; e.g., cr ." hello, world".

at-xy u1 u2 – facility “at-x-y”

Position the cursor so that subsequent text output will take place at column u1, row u2
of the display. (column 0, row 0 is the top left-hand corner of the display).

page – facility “page”

Clear the display and set the cursor to the top left-hand corner.

S" compilation ’ccc"’ – ; run-time – c-addr u core,file “s-quote”

Compilation: Parse a string ccc delimited by a " (double quote). At run-time, return
the length, u, and the start address, c-addr of the string. Interpretation: parse the string
as before, and return c-addr, u. Gforth allocates the string. The resulting memory leak
is usually not a problem; the exception is if you create strings containing S" and evaluate

them; then the leak is not bounded by the size of the interpreted files and you may want
to free the strings. ANS Forth only guarantees one buffer of 80 characters, so in standard
programs you should assume that the string lives only until the next s".

s\" compilation ’ccc"’ – ; run-time – c-addr u gforth “s-backslash-quote”

Like S", but translates C-like \-escape-sequences into single characters. See \"-parse

for details.

C" compilation "ccc<quote>" – ; run-time – c-addr core-ext “c-quote”

Compilation: parse a string ccc delimited by a " (double quote). At run-time, return
c-addr which specifies the counted string ccc. Interpretation semantics are undefined.

char ’<spaces>ccc’ – c core “char”

Skip leading spaces. Parse the string ccc and return c, the display code representing the
first character of ccc.

[Char] compilation ’<spaces>ccc’ – ; run-time – c core “bracket-char”

Compilation: skip leading spaces. Parse the string ccc. Run-time: return c, the display
code representing the first character of ccc. Interpretation semantics for this word are
undefined.

As an example, consider the following text, stored in a file ‘test.fs’:

Chapter 5: Forth Words 120

.(text-1)
: my-word
." text-2" cr
.(text-3)

;

." text-4"

: my-char
[char] ALPHABET emit
char emit

;

When you load this code into Gforth, the following output is generated:

include test.fs 〈RET〉 text-1text-3text-4 ok

• Messages text-1 and text-3 are displayed because .(is an immediate word; it behaves
in the same way whether it is used inside or outside a colon definition.

• Message text-4 is displayed because of Gforth’s added interpretation semantics for .".

• Message text-2 is not displayed, because the text interpreter performs the compilation
semantics for ." within the definition of my-word.

Here are some examples of executing my-word and my-char:

my-word 〈RET〉 text-2
ok

my-char fred 〈RET〉 Af ok
my-char jim 〈RET〉 Aj ok

• Message text-2 is displayed because of the run-time behaviour of .".

• [char] compiles the “A” from “ALPHABET” and puts its display code on the stack
at run-time. emit always displays the character when my-char is executed.

• char parses a string at run-time and the second emit displays the first character of the
string.

• If you type see my-char you can see that [char] discarded the text “LPHABET” and
only compiled the display code for “A” into the definition of my-char.

5.19.5 Input

For ways of storing character strings in memory see Section 5.19.3 [String Formats],
page 118.

key – char core “key”

Receive (but do not display) one character, char.

key? – flag facility “key-question”

Determine whether a character is available. If a character is available, flag is true; the
next call to key will yield the character. Once key? returns true, subsequent calls to key?

before calling key or ekey will also return true.

ekey – u facility-ext “e-key”

ekey? – flag unknown “ekey?”

Chapter 5: Forth Words 121

ekey>char u – u false | c true facility-ext “e-key-to-char”

>number ud1 c-addr1 u1 – ud2 c-addr2 u2 core “to-number”

Attempt to convert the character string c-addr1 u1 to an unsigned number in the cur-
rent number base. The double ud1 accumulates the result of the conversion to form ud2.
Conversion continues, left-to-right, until the whole string is converted or a character that
is not convertable in the current number base is encountered (including + or -). For each
convertable character, ud1 is first multiplied by the value in BASE and then incremented
by the value represented by the character. c-addr2 is the location of the first unconverted
character (past the end of the string if the whole string was converted). u2 is the number
of unconverted characters in the string. Overflow is not detected.

>float c-addr u – flag float “to-float”

Actual stack effect: (c addr u – r t | f). Attempt to convert the character string c-addr
u to internal floating-point representation. If the string represents a valid floating-point
number r is placed on the floating-point stack and flag is true. Otherwise, flag is false. A
string of blanks is a special case and represents the floating-point number 0.

accept c-addr +n1 – +n2 core “accept”

Get a string of up to n1 characters from the user input device and store it at c-addr. n2
is the length of the received string. The user indicates the end by pressing 〈RET〉. Gforth
supports all the editing functions available on the Forth command line (including history
and word completion) in accept.

edit-line c-addr n1 n2 – n3 gforth “edit-line”

edit the string with length n2 in the buffer c-addr n1, like accept.

pad – c-addr core-ext “pad”

c-addr is the address of a transient region that can be used as temporary data storage.
At least 84 characters of space is available.

convert ud1 c-addr1 – ud2 c-addr2 core-ext “convert”

OBSOLESCENT: superseded by >number.

expect c-addr +n – core-ext “expect”

Receive a string of at most +n characters, and store it in memory starting at c-addr.
The string is displayed. Input terminates when the <return> key is pressed or +n characters
have been received. The normal Gforth line editing capabilites are available. The length of
the string is stored in span; it does not include the <return> character. OBSOLESCENT:
superceeded by accept.

span – c-addr core-ext “span”

Variable – c-addr is the address of a cell that stores the length of the last string received
by expect. OBSOLESCENT.

5.19.6 Pipes

In addition to using Gforth in pipes created by other processes (see Section 2.6 [Gforth
in pipes], page 7), you can create your own pipe with open-pipe, and read from or write
to it.

open-pipe c-addr u wfam – wfileid wior gforth “open-pipe”

Chapter 5: Forth Words 122

close-pipe wfileid – wretval wior gforth “close-pipe”

If you write to a pipe, Gforth can throw a broken-pipe-error; if you don’t catch this
exception, Gforth will catch it and exit, usually silently (see Section 2.6 [Gforth in pipes],
page 7). Since you probably do not want this, you should wrap a catch or try block around
the code from open-pipe to close-pipe, so you can deal with the problem yourself, and
then return to regular processing.

broken-pipe-error – n gforth “broken-pipe-error”

the error number for a broken pipe

5.20 Locals

Local variables can make Forth programming more enjoyable and Forth programs easier
to read. Unfortunately, the locals of ANS Forth are laden with restrictions. Therefore,
we provide not only the ANS Forth locals wordset, but also our own, more powerful locals
wordset (we implemented the ANS Forth locals wordset through our locals wordset).

The ideas in this section have also been published in M. Anton Ertl, Automatic Scoping
of Local Variables (http://www.complang.tuwien.ac.at/papers/ertl94l.ps.gz), Euro-
Forth ’94.

5.20.1 Gforth locals

Locals can be defined with

{ local1 local2 ... -- comment }

or

{ local1 local2 ... }

E.g.,

: max { n1 n2 -- n3 }
n1 n2 > if
n1

else
n2

endif ;

The similarity of locals definitions with stack comments is intended. A locals definition
often replaces the stack comment of a word. The order of the locals corresponds to the
order in a stack comment and everything after the -- is really a comment.

This similarity has one disadvantage: It is too easy to confuse locals declarations with
stack comments, causing bugs and making them hard to find. However, this problem can be
avoided by appropriate coding conventions: Do not use both notations in the same program.
If you do, they should be distinguished using additional means, e.g. by position.

The name of the local may be preceded by a type specifier, e.g., F: for a floating point
value:

: CX* { F: Ar F: Ai F: Br F: Bi -- Cr Ci }
\ complex multiplication
Ar Br f* Ai Bi f* f-
Ar Bi f* Ai Br f* f+ ;

Chapter 5: Forth Words 123

Gforth currently supports cells (W:, W^), doubles (D:, D^), floats (F:, F^) and characters
(C:, C^) in two flavours: a value-flavoured local (defined with W:, D: etc.) produces its value
and can be changed with TO. A variable-flavoured local (defined with W^ etc.) produces its
address (which becomes invalid when the variable’s scope is left). E.g., the standard word
emit can be defined in terms of type like this:

: emit { C^ char* -- }
char* 1 type ;

A local without type specifier is a W: local. Both flavours of locals are initialized with
values from the data or FP stack.

Currently there is no way to define locals with user-defined data structures, but we are
working on it.

Gforth allows defining locals everywhere in a colon definition. This poses the following
questions:

5.20.1.1 Where are locals visible by name?

Basically, the answer is that locals are visible where you would expect it in block-
structured languages, and sometimes a little longer. If you want to restrict the scope
of a local, enclose its definition in SCOPE...ENDSCOPE.

scope compilation – scope ; run-time – gforth “scope”

endscope compilation scope – ; run-time – gforth “endscope”

These words behave like control structure words, so you can use them with CS-PICK and
CS-ROLL to restrict the scope in arbitrary ways.

If you want a more exact answer to the visibility question, here’s the basic principle: A
local is visible in all places that can only be reached through the definition of the local23.
In other words, it is not visible in places that can be reached without going through the
definition of the local. E.g., locals defined in IF...ENDIF are visible until the ENDIF, locals
defined in BEGIN...UNTIL are visible after the UNTIL (until, e.g., a subsequent ENDSCOPE).

The reasoning behind this solution is: We want to have the locals visible as long as it is
meaningful. The user can always make the visibility shorter by using explicit scoping. In
a place that can only be reached through the definition of a local, the meaning of a local
name is clear. In other places it is not: How is the local initialized at the control flow path
that does not contain the definition? Which local is meant, if the same name is defined
twice in two independent control flow paths?

This should be enough detail for nearly all users, so you can skip the rest of this section.
If you really must know all the gory details and options, read on.

In order to implement this rule, the compiler has to know which places are unreachable.
It knows this automatically after AHEAD, AGAIN, EXIT and LEAVE; in other cases (e.g., after
most THROWs), you can use the word UNREACHABLE to tell the compiler that the control flow
never reaches that place. If UNREACHABLE is not used where it could, the only consequence
is that the visibility of some locals is more limited than the rule above says. If UNREACHABLE
is used where it should not (i.e., if you lie to the compiler), buggy code will be produced.

23 In compiler construction terminology, all places dominated by the definition of the local.

Chapter 5: Forth Words 124

UNREACHABLE – gforth “UNREACHABLE”

Another problem with this rule is that at BEGIN, the compiler does not know which locals
will be visible on the incoming back-edge. All problems discussed in the following are due
to this ignorance of the compiler (we discuss the problems using BEGIN loops as examples;
the discussion also applies to ?DO and other loops). Perhaps the most insidious example is:

AHEAD
BEGIN
x

[1 CS-ROLL] THEN
{ x }
...

UNTIL

This should be legal according to the visibility rule. The use of x can only be reached
through the definition; but that appears textually below the use.

From this example it is clear that the visibility rules cannot be fully implemented without
major headaches. Our implementation treats common cases as advertised and the excep-
tions are treated in a safe way: The compiler makes a reasonable guess about the locals
visible after a BEGIN; if it is too pessimistic, the user will get a spurious error about the
local not being defined; if the compiler is too optimistic, it will notice this later and issue a
warning. In the case above the compiler would complain about x being undefined at its use.
You can see from the obscure examples in this section that it takes quite unusual control
structures to get the compiler into trouble, and even then it will often do fine.

If the BEGIN is reachable from above, the most optimistic guess is that all locals visible
before the BEGIN will also be visible after the BEGIN. This guess is valid for all loops that
are entered only through the BEGIN, in particular, for normal BEGIN...WHILE...REPEAT and
BEGIN...UNTIL loops and it is implemented in our compiler. When the branch to the BEGIN

is finally generated by AGAIN or UNTIL, the compiler checks the guess and warns the user if
it was too optimistic:

IF
{ x }

BEGIN
\ x ?

[1 cs-roll] THEN
...

UNTIL

Here, x lives only until the BEGIN, but the compiler optimistically assumes that it lives
until the THEN. It notices this difference when it compiles the UNTIL and issues a warning.
The user can avoid the warning, and make sure that x is not used in the wrong area by
using explicit scoping:

IF
SCOPE
{ x }
ENDSCOPE

BEGIN
[1 cs-roll] THEN
...

Chapter 5: Forth Words 125

UNTIL

Since the guess is optimistic, there will be no spurious error messages about undefined
locals.

If the BEGIN is not reachable from above (e.g., after AHEAD or EXIT), the compiler cannot
even make an optimistic guess, as the locals visible after the BEGIN may be defined later.
Therefore, the compiler assumes that no locals are visible after the BEGIN. However, the
user can use ASSUME-LIVE to make the compiler assume that the same locals are visible at
the BEGIN as at the point where the top control-flow stack item was created.

ASSUME-LIVE orig – orig gforth “ASSUME-LIVE”

E.g.,

{ x }
AHEAD
ASSUME-LIVE
BEGIN
x

[1 CS-ROLL] THEN
...

UNTIL

Other cases where the locals are defined before the BEGIN can be handled by insert-
ing an appropriate CS-ROLL before the ASSUME-LIVE (and changing the control-flow stack
manipulation behind the ASSUME-LIVE).

Cases where locals are defined after the BEGIN (but should be visible immediately after
the BEGIN) can only be handled by rearranging the loop. E.g., the “most insidious” example
above can be arranged into:

BEGIN
{ x }
... 0=

WHILE
x

REPEAT

5.20.1.2 How long do locals live?

The right answer for the lifetime question would be: A local lives at least as long as it can
be accessed. For a value-flavoured local this means: until the end of its visibility. However, a
variable-flavoured local could be accessed through its address far beyond its visibility scope.
Ultimately, this would mean that such locals would have to be garbage collected. Since this
entails un-Forth-like implementation complexities, I adopted the same cowardly solution as
some other languages (e.g., C): The local lives only as long as it is visible; afterwards its
address is invalid (and programs that access it afterwards are erroneous).

5.20.1.3 Locals programming style

The freedom to define locals anywhere has the potential to change programming styles
dramatically. In particular, the need to use the return stack for intermediate storage van-
ishes. Moreover, all stack manipulations (except PICKs and ROLLs with run-time determined

Chapter 5: Forth Words 126

arguments) can be eliminated: If the stack items are in the wrong order, just write a locals
definition for all of them; then write the items in the order you want.

This seems a little far-fetched and eliminating stack manipulations is unlikely to become
a conscious programming objective. Still, the number of stack manipulations will be re-
duced dramatically if local variables are used liberally (e.g., compare max (see Section 5.20.1
[Gforth locals], page 122) with a traditional implementation of max).

This shows one potential benefit of locals: making Forth programs more readable. Of
course, this benefit will only be realized if the programmers continue to honour the principle
of factoring instead of using the added latitude to make the words longer.

Using TO can and should be avoided. Without TO, every value-flavoured local has only
a single assignment and many advantages of functional languages apply to Forth. I.e.,
programs are easier to analyse, to optimize and to read: It is clear from the definition what
the local stands for, it does not turn into something different later.

E.g., a definition using TO might look like this:

: strcmp { addr1 u1 addr2 u2 -- n }
u1 u2 min 0
?do
addr1 c@ addr2 c@ -
?dup-if

unloop exit
then
addr1 char+ TO addr1
addr2 char+ TO addr2

loop
u1 u2 - ;

Here, TO is used to update addr1 and addr2 at every loop iteration. strcmp is a typical
example of the readability problems of using TO. When you start reading strcmp, you think
that addr1 refers to the start of the string. Only near the end of the loop you realize that
it is something else.

This can be avoided by defining two locals at the start of the loop that are initialized
with the right value for the current iteration.

: strcmp { addr1 u1 addr2 u2 -- n }
addr1 addr2
u1 u2 min 0
?do { s1 s2 }
s1 c@ s2 c@ -
?dup-if

unloop exit
then
s1 char+ s2 char+

loop
2drop
u1 u2 - ;

Here it is clear from the start that s1 has a different value in every loop iteration.

Chapter 5: Forth Words 127

5.20.1.4 Locals implementation

Gforth uses an extra locals stack. The most compelling reason for this is that the return
stack is not float-aligned; using an extra stack also eliminates the problems and restrictions
of using the return stack as locals stack. Like the other stacks, the locals stack grows toward
lower addresses. A few primitives allow an efficient implementation:

@local# #noffset – w gforth “fetch-local-number”

f@local# #noffset – r gforth “f-fetch-local-number”

laddr# #noffset – c-addr gforth “laddr-number”

lp+!# #noffset – gforth “lp-plus-store-number”

used with negative immediate values it allocates memory on the local stack, a positive
immediate argument drops memory from the local stack

lp! c-addr – gforth “lp-store”

>l w – gforth “to-l”

f>l r – gforth “f-to-l”

In addition to these primitives, some specializations of these primitives for commonly
occurring inline arguments are provided for efficiency reasons, e.g., @local0 as specialization
of @local# for the inline argument 0. The following compiling words compile the right
specialized version, or the general version, as appropriate:

compile-lp+! n – gforth “compile-l-p-plus-store”

Combinations of conditional branches and lp+!# like ?branch-lp+!# (the locals pointer
is only changed if the branch is taken) are provided for efficiency and correctness in loops.

A special area in the dictionary space is reserved for keeping the local variable names. {
switches the dictionary pointer to this area and } switches it back and generates the locals
initializing code. W: etc. are normal defining words. This special area is cleared at the start
of every colon definition.

A special feature of Gforth’s dictionary is used to implement the definition of locals
without type specifiers: every word list (aka vocabulary) has its own methods for searching
etc. (see Section 5.15 [Word Lists], page 102). For the present purpose we defined a word
list with a special search method: When it is searched for a word, it actually creates that
word using W:. { changes the search order to first search the word list containing }, W: etc.,
and then the word list for defining locals without type specifiers.

The lifetime rules support a stack discipline within a colon definition: The lifetime of a
local is either nested with other locals lifetimes or it does not overlap them.

At BEGIN, IF, and AHEAD no code for locals stack pointer manipulation is generated.
Between control structure words locals definitions can push locals onto the locals stack.
AGAIN is the simplest of the other three control flow words. It has to restore the locals stack
depth of the corresponding BEGIN before branching. The code looks like this:

lp+!# current-locals-size − dest-locals-size
branch <begin>

UNTIL is a little more complicated: If it branches back, it must adjust the stack just like
AGAIN. But if it falls through, the locals stack must not be changed. The compiler generates
the following code:

Chapter 5: Forth Words 128

?branch-lp+!# <begin> current-locals-size − dest-locals-size

The locals stack pointer is only adjusted if the branch is taken.

THEN can produce somewhat inefficient code:

lp+!# current-locals-size − orig-locals-size
<orig target>:
lp+!# orig-locals-size − new-locals-size

The second lp+!# adjusts the locals stack pointer from the level at the orig point to the
level after the THEN. The first lp+!# adjusts the locals stack pointer from the current level
to the level at the orig point, so the complete effect is an adjustment from the current level
to the right level after the THEN.

In a conventional Forth implementation a dest control-flow stack entry is just the target
address and an orig entry is just the address to be patched. Our locals implementation adds
a word list to every orig or dest item. It is the list of locals visible (or assumed visible) at
the point described by the entry. Our implementation also adds a tag to identify the kind
of entry, in particular to differentiate between live and dead (reachable and unreachable)
orig entries.

A few unusual operations have to be performed on locals word lists:

common-list list1 list2 – list3 gforth-internal “common-list”

sub-list? list1 list2 – f gforth-internal “sub-list?”

list-size list – u gforth-internal “list-size”

Several features of our locals word list implementation make these operations easy to
implement: The locals word lists are organised as linked lists; the tails of these lists are
shared, if the lists contain some of the same locals; and the address of a name is greater
than the address of the names behind it in the list.

Another important implementation detail is the variable dead-code. It is used by BEGIN

and THEN to determine if they can be reached directly or only through the branch that they
resolve. dead-code is set by UNREACHABLE, AHEAD, EXIT etc., and cleared at the start of a
colon definition, by BEGIN and usually by THEN.

Counted loops are similar to other loops in most respects, but LEAVE requires special
attention: It performs basically the same service as AHEAD, but it does not create a control-
flow stack entry. Therefore the information has to be stored elsewhere; traditionally, the
information was stored in the target fields of the branches created by the LEAVEs, by orga-
nizing these fields into a linked list. Unfortunately, this clever trick does not provide enough
space for storing our extended control flow information. Therefore, we introduce another
stack, the leave stack. It contains the control-flow stack entries for all unresolved LEAVEs.

Local names are kept until the end of the colon definition, even if they are no longer
visible in any control-flow path. In a few cases this may lead to increased space needs for
the locals name area, but usually less than reclaiming this space would cost in code size.

5.20.2 ANS Forth locals

The ANS Forth locals wordset does not define a syntax for locals, but words that make
it possible to define various syntaxes. One of the possible syntaxes is a subset of the syntax
we used in the Gforth locals wordset, i.e.:

Chapter 5: Forth Words 129

{ local1 local2 ... -- comment }

or

{ local1 local2 ... }

The order of the locals corresponds to the order in a stack comment. The restrictions
are:

• Locals can only be cell-sized values (no type specifiers are allowed).

• Locals can be defined only outside control structures.

• Locals can interfere with explicit usage of the return stack. For the exact (and long)
rules, see the standard. If you don’t use return stack accessing words in a definition
using locals, you will be all right. The purpose of this rule is to make locals implemen-
tation on the return stack easier.

• The whole definition must be in one line.

Locals defined in ANS Forth behave like VALUEs (see Section 5.9.4 [Values], page 76).
I.e., they are initialized from the stack. Using their name produces their value. Their value
can be changed using TO.

Since the syntax above is supported by Gforth directly, you need not do anything to
use it. If you want to port a program using this syntax to another ANS Forth system, use
‘compat/anslocal.fs’ to implement the syntax on the other system.

Note that a syntax shown in the standard, section A.13 looks similar, but is quite different
in having the order of locals reversed. Beware!

The ANS Forth locals wordset itself consists of one word:

(local) addr u – local “paren-local-paren”

The ANS Forth locals extension wordset defines a syntax using locals|, but it is so
awful that we strongly recommend not to use it. We have implemented this syntax to make
porting to Gforth easy, but do not document it here. The problem with this syntax is that
the locals are defined in an order reversed with respect to the standard stack comment
notation, making programs harder to read, and easier to misread and miswrite. The only
merit of this syntax is that it is easy to implement using the ANS Forth locals wordset.

5.21 Structures

This section presents the structure package that comes with Gforth. A version
of the package implemented in ANS Forth is available in ‘compat/struct.fs’.
This package was inspired by a posting on comp.lang.forth in 1989 (unfortunately
I don’t remember, by whom; possibly John Hayes). A version of this section
has been published in M. Anton Ertl, Yet Another Forth Structures Package
(http://www.complang.tuwien.ac.at/forth/objects/structs.html), Forth
Dimensions 19(3), pages 13–16. Marcel Hendrix provided helpful comments.

5.21.1 Why explicit structure support?

If we want to use a structure containing several fields, we could simply reserve memory
for it, and access the fields using address arithmetic (see Section 5.7.5 [Address arithmetic],
page 62). As an example, consider a structure with the following fields

Chapter 5: Forth Words 130

a is a float

b is a cell

c is a float

Given the (float-aligned) base address of the structure we get the address of the field

a without doing anything further.

b with float+

c with float+ cell+ faligned

It is easy to see that this can become quite tiring.

Moreover, it is not very readable, because seeing a cell+ tells us neither which kind
of structure is accessed nor what field is accessed; we have to somehow infer the kind of
structure, and then look up in the documentation, which field of that structure corresponds
to that offset.

Finally, this kind of address arithmetic also causes maintenance troubles: If you add or
delete a field somewhere in the middle of the structure, you have to find and change all
computations for the fields afterwards.

So, instead of using cell+ and friends directly, how about storing the offsets in constants:

0 constant a-offset
0 float+ constant b-offset
0 float+ cell+ faligned c-offset

Now we can get the address of field x with x-offset +. This is much better in all
respects. Of course, you still have to change all later offset definitions if you add a field.
You can fix this by declaring the offsets in the following way:

0 constant a-offset
a-offset float+ constant b-offset
b-offset cell+ faligned constant c-offset

Since we always use the offsets with +, we could use a defining word cfield that includes
the + in the action of the defined word:

: cfield (n "name" --)
create ,

does> (name execution: addr1 -- addr2)
@ + ;

0 cfield a
0 a float+ cfield b
0 b cell+ faligned cfield c

Instead of x-offset +, we now simply write x.

The structure field words now can be used quite nicely. However, their definition is still
a bit cumbersome: We have to repeat the name, the information about size and alignment
is distributed before and after the field definitions etc. The structure package presented
here addresses these problems.

Chapter 5: Forth Words 131

5.21.2 Structure Usage

You can define a structure for a (data-less) linked list with:

struct
cell% field list-next

end-struct list%

With the address of the list node on the stack, you can compute the address of the field
that contains the address of the next node with list-next. E.g., you can determine the
length of a list with:

: list-length (list -- n)
\ "list" is a pointer to the first element of a linked list
\ "n" is the length of the list

0 BEGIN (list1 n1)
over

WHILE (list1 n1)
1+ swap list-next @ swap

REPEAT
nip ;

You can reserve memory for a list node in the dictionary with list% %allot, which
leaves the address of the list node on the stack. For the equivalent allocation on the heap
you can use list% %alloc (or, for an allocate-like stack effect (i.e., with ior), use list%

%allocate). You can get the the size of a list node with list% %size and its alignment
with list% %alignment.

Note that in ANS Forth the body of a created word is aligned but not necessarily
faligned; therefore, if you do a:

create name foo% %allot drop

then the memory alloted for foo% is guaranteed to start at the body of name only if foo%
contains only character, cell and double fields. Therefore, if your structure contains floats,
better use

foo% %allot constant name

You can include a structure foo% as a field of another structure, like this:

struct
...

foo% field ...
...
end-struct ...

Instead of starting with an empty structure, you can extend an existing structure. E.g.,
a plain linked list without data, as defined above, is hardly useful; You can extend it to a
linked list of integers, like this:24

list%
cell% field intlist-int

end-struct intlist%

24 This feature is also known as extended records. It is the main innovation in the Oberon language; in
other words, adding this feature to Modula-2 led Wirth to create a new language, write a new compiler
etc. Adding this feature to Forth just required a few lines of code.

Chapter 5: Forth Words 132

intlist% is a structure with two fields: list-next and intlist-int.

You can specify an array type containing n elements of type foo% like this:

foo% n *

You can use this array type in any place where you can use a normal type, e.g., when
defining a field, or with %allot.

The first field is at the base address of a structure and the word for this field (e.g.,
list-next) actually does not change the address on the stack. You may be tempted to
leave it away in the interest of run-time and space efficiency. This is not necessary, because
the structure package optimizes this case: If you compile a first-field words, no code is
generated. So, in the interest of readability and maintainability you should include the
word for the field when accessing the field.

5.21.3 Structure Naming Convention

The field names that come to (my) mind are often quite generic, and, if used, would
cause frequent name clashes. E.g., many structures probably contain a counter field. The
structure names that come to (my) mind are often also the logical choice for the names of
words that create such a structure.

Therefore, I have adopted the following naming conventions:

• The names of fields are of the form struct-field , where struct is the basic name of the
structure, and field is the basic name of the field. You can think of field words as
converting the (address of the) structure into the (address of the) field.

• The names of structures are of the form struct%, where struct is the basic name of the
structure.

This naming convention does not work that well for fields of extended structures; e.g.,
the integer list structure has a field intlist-int, but has list-next, not intlist-next.

5.21.4 Structure Implementation

The central idea in the implementation is to pass the data about the structure being
built on the stack, not in some global variable. Everything else falls into place naturally
once this design decision is made.

The type description on the stack is of the form align size. Keeping the size on the
top-of-stack makes dealing with arrays very simple.

field is a defining word that uses Create and DOES>. The body of the field contains
the offset of the field, and the normal DOES> action is simply:

@ +

i.e., add the offset to the address, giving the stack effect addr1 – addr2 for a field.

This simple structure is slightly complicated by the optimization for fields with offset
0, which requires a different DOES>-part (because we cannot rely on there being something
on the stack if such a field is invoked during compilation). Therefore, we put the different
DOES>-parts in separate words, and decide which one to invoke based on the offset. For a
zero offset, the field is basically a noop; it is immediate, and therefore no code is generated
when it is compiled.

Chapter 5: Forth Words 133

5.21.5 Structure Glossary

%align align size – gforth “%align”

Align the data space pointer to the alignment align.

%alignment align size – align gforth “%alignment”

The alignment of the structure.

%alloc size align – addr gforth “%alloc”

Allocate size address units with alignment align, giving a data block at addr; throw an
ior code if not successful.

%allocate align size – addr ior gforth “%allocate”

Allocate size address units with alignment align, similar to allocate.

%allot align size – addr gforth “%allot”

Allot size address units of data space with alignment align; the resulting block of data
is found at addr.

cell% – align size gforth “cell%”

char% – align size gforth “char%”

dfloat% – align size gforth “dfloat%”

double% – align size gforth “double%”

end-struct align size "name" – gforth “end-struct”

Define a structure/type descriptor name with alignment align and size size1 (size
rounded up to be a multiple of align).
name execution: – align size1

field align1 offset1 align size "name" – align2 offset2 gforth “field”

Create a field name with offset offset1, and the type given by align size. offset2 is the
offset of the next field, and align2 is the alignment of all fields.
name execution: addr1 – addr2.
addr2=addr1+offset1

float% – align size gforth “float%”

naligned addr1 n – addr2 gforth “naligned”

addr2 is the aligned version of addr1 with respect to the alignment n.

sfloat% – align size gforth “sfloat%”

%size align size – size gforth “%size”

The size of the structure.

struct – align size gforth “struct”

An empty structure, used to start a structure definition.

5.22 Object-oriented Forth

Gforth comes with three packages for object-oriented programming: ‘objects.fs’,
‘oof.fs’, and ‘mini-oof.fs’; none of them is preloaded, so you have to include them
before use. The most important differences between these packages (and others) are
discussed in Section 5.22.6 [Comparison with other object models], page 151. All packages
are written in ANS Forth and can be used with any other ANS Forth.

Chapter 5: Forth Words 134

5.22.1 Why object-oriented programming?

Often we have to deal with several data structures (objects), that have to be treated
similarly in some respects, but differently in others. Graphical objects are the textbook
example: circles, triangles, dinosaurs, icons, and others, and we may want to add more
during program development. We want to apply some operations to any graphical object,
e.g., draw for displaying it on the screen. However, draw has to do something different for
every kind of object.

We could implement draw as a big CASE control structure that executes the appropriate
code depending on the kind of object to be drawn. This would be not be very elegant, and,
moreover, we would have to change draw every time we add a new kind of graphical object
(say, a spaceship).

What we would rather do is: When defining spaceships, we would tell the system: “Here’s
how you draw a spaceship; you figure out the rest”.

This is the problem that all systems solve that (rightfully) call themselves object-
oriented; the object-oriented packages presented here solve this problem (and not much
else).

5.22.2 Object-Oriented Terminology

This section is mainly for reference, so you don’t have to understand all of it right away.
The terminology is mainly Smalltalk-inspired. In short:

class a data structure definition with some extras.

object an instance of the data structure described by the class definition.

instance variables
fields of the data structure.

selector (or method selector) a word (e.g., draw) that performs an operation on a variety
of data structures (classes). A selector describes what operation to perform. In
C++ terminology: a (pure) virtual function.

method the concrete definition that performs the operation described by the selector
for a specific class. A method specifies how the operation is performed for a
specific class.

selector invocation
a call of a selector. One argument of the call (the TOS (top-of-stack)) is used
for determining which method is used. In Smalltalk terminology: a message
(consisting of the selector and the other arguments) is sent to the object.

receiving object
the object used for determining the method executed by a selector invocation.
In the ‘objects.fs’ model, it is the object that is on the TOS when the selector
is invoked. (Receiving comes from the Smalltalk message terminology.)

child class a class that has (inherits) all properties (instance variables, selectors, methods)
from a parent class. In Smalltalk terminology: The subclass inherits from the
superclass. In C++ terminology: The derived class inherits from the base class.

Chapter 5: Forth Words 135

5.22.3 The ‘objects.fs’ model

This section describes the ‘objects.fs’ package. This material also has
been published in M. Anton Ertl, Yet Another Forth Objects Package
(http://www.complang.tuwien.ac.at/forth/objects/objects.html), Forth
Dimensions 19(2), pages 37–43.

This section assumes that you have read Section 5.21 [Structures], page 129.

The techniques on which this model is based have been used to implement the parser
generator, Gray, and have also been used in Gforth for implementing the various flavours
of word lists (hashed or not, case-sensitive or not, special-purpose word lists for locals etc.).

Marcel Hendrix provided helpful comments on this section.

5.22.3.1 Properties of the ‘objects.fs’ model

• It is straightforward to pass objects on the stack. Passing selectors on the stack is a
little less convenient, but possible.

• Objects are just data structures in memory, and are referenced by their address. You
can create words for objects with normal defining words like constant. Likewise, there
is no difference between instance variables that contain objects and those that contain
other data.

• Late binding is efficient and easy to use.

• It avoids parsing, and thus avoids problems with state-smartness and reduced exten-
sibility; for convenience there are a few parsing words, but they have non-parsing
counterparts. There are also a few defining words that parse. This is hard to avoid,
because all standard defining words parse (except :noname); however, such words are
not as bad as many other parsing words, because they are not state-smart.

• It does not try to incorporate everything. It does a few things and does them well
(IMO). In particular, this model was not designed to support information hiding (al-
though it has features that may help); you can use a separate package for achieving
this.

• It is layered; you don’t have to learn and use all features to use this model. Only
a few features are necessary (see Section 5.22.3.2 [Basic Objects Usage], page 135,
see Section 5.22.3.3 [The Objects base class], page 136, see Section 5.22.3.4 [Creating
objects], page 136.), the others are optional and independent of each other.

• An implementation in ANS Forth is available.

5.22.3.2 Basic ‘objects.fs’ Usage

You can define a class for graphical objects like this:

object class \ "object" is the parent class
selector draw (x y graphical --)

end-class graphical

This code defines a class graphical with an operation draw. We can perform the
operation draw on any graphical object, e.g.:

Chapter 5: Forth Words 136

100 100 t-rex draw

where t-rex is a word (say, a constant) that produces a graphical object.

How do we create a graphical object? With the present definitions, we cannot create a
useful graphical object. The class graphical describes graphical objects in general, but not
any concrete graphical object type (C++ users would call it an abstract class); e.g., there is
no method for the selector draw in the class graphical.

For concrete graphical objects, we define child classes of the class graphical, e.g.:

graphical class \ "graphical" is the parent class
cell% field circle-radius

:noname (x y circle --)
circle-radius @ draw-circle ;

overrides draw

:noname (n-radius circle --)
circle-radius ! ;

overrides construct

end-class circle

Here we define a class circle as a child of graphical, with field circle-radius (which
behaves just like a field (see Section 5.21 [Structures], page 129); it defines (using overrides)
new methods for the selectors draw and construct (construct is defined in object, the
parent class of graphical).

Now we can create a circle on the heap (i.e., allocated memory) with:

50 circle heap-new constant my-circle

heap-new invokes construct, thus initializing the field circle-radius with 50. We can
draw this new circle at (100,100) with:

100 100 my-circle draw

Note: You can only invoke a selector if the object on the TOS (the receiving object)
belongs to the class where the selector was defined or one of its descendents; e.g., you
can invoke draw only for objects belonging to graphical or its descendents (e.g., circle).
Immediately before end-class, the search order has to be the same as immediately after
class.

5.22.3.3 The ‘object.fs’ base class

When you define a class, you have to specify a parent class. So how do you start defining
classes? There is one class available from the start: object. It is ancestor for all classes
and so is the only class that has no parent. It has two selectors: construct and print.

5.22.3.4 Creating objects

You can create and initialize an object of a class on the heap with heap-new (... class
– object) and in the dictionary (allocation with allot) with dict-new (... class – object
). Both words invoke construct, which consumes the stack items indicated by "..." above.

Chapter 5: Forth Words 137

If you want to allocate memory for an object yourself, you can get its alignment and size
with class-inst-size 2@ (class – align size). Once you have memory for an object, you
can initialize it with init-object (... class object –); construct does only a part of the
necessary work.

5.22.3.5 Object-Oriented Programming Style

This section is not exhaustive.

In general, it is a good idea to ensure that all methods for the same selector have the
same stack effect: when you invoke a selector, you often have no idea which method will
be invoked, so, unless all methods have the same stack effect, you will not know the stack
effect of the selector invocation.

One exception to this rule is methods for the selector construct. We know which
method is invoked, because we specify the class to be constructed at the same place. Ac-
tually, I defined construct as a selector only to give the users a convenient way to specify
initialization. The way it is used, a mechanism different from selector invocation would be
more natural (but probably would take more code and more space to explain).

5.22.3.6 Class Binding

Normal selector invocations determine the method at run-time depending on the class
of the receiving object. This run-time selection is called late binding.

Sometimes it’s preferable to invoke a different method. For example, you might want
to use the simple method for printing objects instead of the possibly long-winded print

method of the receiver class. You can achieve this by replacing the invocation of print
with:

[bind] object print

in compiled code or:

bind object print

in interpreted code. Alternatively, you can define the method with a name (e.g., print-
object), and then invoke it through the name. Class binding is just a (often more con-
venient) way to achieve the same effect; it avoids name clutter and allows you to invoke
methods directly without naming them first.

A frequent use of class binding is this: When we define a method for a selector, we often
want the method to do what the selector does in the parent class, and a little more. There is
a special word for this purpose: [parent]; [parent] selector is equivalent to [bind] parent
selector , where parent is the parent class of the current class. E.g., a method definition might
look like:

:noname
dup [parent] foo \ do parent’s foo on the receiving object
... \ do some more

; overrides foo

In Object-oriented programming in ANS Forth (Forth Dimensions, March 1997), Andrew
McKewan presents class binding as an optimization technique. I recommend not using it
for this purpose unless you are in an emergency. Late binding is pretty fast with this model

Chapter 5: Forth Words 138

anyway, so the benefit of using class binding is small; the cost of using class binding where
it is not appropriate is reduced maintainability.

While we are at programming style questions: You should bind selectors only to ancestor
classes of the receiving object. E.g., say, you know that the receiving object is of class foo
or its descendents; then you should bind only to foo and its ancestors.

5.22.3.7 Method conveniences

In a method you usually access the receiving object pretty often. If you define the
method as a plain colon definition (e.g., with :noname), you may have to do a lot of stack
gymnastics. To avoid this, you can define the method with m: ... ;m. E.g., you could
define the method for drawing a circle with

m: (x y circle --)
(x y) this circle-radius @ draw-circle ;m

When this method is executed, the receiver object is removed from the stack; you can
access it with this (admittedly, in this example the use of m: ... ;m offers no advantage).
Note that I specify the stack effect for the whole method (i.e. including the receiver object),
not just for the code between m: and ;m. You cannot use exit in m:...;m; instead, use
exitm.25

You will frequently use sequences of the form this field (in the example above: this

circle-radius). If you use the field only in this way, you can define it with inst-var and
eliminate the this before the field name. E.g., the circle class above could also be defined
with:

graphical class
cell% inst-var radius

m: (x y circle --)
radius @ draw-circle ;m

overrides draw

m: (n-radius circle --)
radius ! ;m

overrides construct

end-class circle

radius can only be used in circle and its descendent classes and inside m:...;m.

You can also define fields with inst-value, which is to inst-var what value is to
variable. You can change the value of such a field with [to-inst]. E.g., we could also
define the class circle like this:

graphical class
inst-value radius

m: (x y circle --)
radius draw-circle ;m

25 Moreover, for any word that calls catch and was defined before loading objects.fs, you have to redefine
it like I redefined catch: : catch this >r catch r> to-this ;

Chapter 5: Forth Words 139

overrides draw

m: (n-radius circle --)
[to-inst] radius ;m

overrides construct

end-class circle

5.22.3.8 Classes and Scoping

Inheritance is frequent, unlike structure extension. This exacerbates the problem with
the field name convention (see Section 5.21.3 [Structure Naming Convention], page 132):
One always has to remember in which class the field was originally defined; changing a part
of the class structure would require changes for renaming in otherwise unaffected code.

To solve this problem, I added a scoping mechanism (which was not in my original
charter): A field defined with inst-var (or inst-value) is visible only in the class where
it is defined and in the descendent classes of this class. Using such fields only makes sense
in m:-defined methods in these classes anyway.

This scoping mechanism allows us to use the unadorned field name, because name clashes
with unrelated words become much less likely.

Once we have this mechanism, we can also use it for controlling the visibility of other
words: All words defined after protected are visible only in the current class and its
descendents. public restores the compilation (i.e. current) word list that was in effect
before. If you have several protecteds without an intervening public or set-current,
public will restore the compilation word list in effect before the first of these protecteds.

5.22.3.9 Dividing classes

You may want to do the definition of methods separate from the definition of the class, its
selectors, fields, and instance variables, i.e., separate the implementation from the definition.
You can do this in the following way:

graphical class
inst-value radius

end-class circle

... \ do some other stuff

circle methods \ now we are ready

m: (x y circle --)
radius draw-circle ;m

overrides draw

m: (n-radius circle --)
[to-inst] radius ;m

overrides construct

end-methods

Chapter 5: Forth Words 140

You can use several methods...end-methods sections. The only things you can do to the
class in these sections are: defining methods, and overriding the class’s selectors. You must
not define new selectors or fields.

Note that you often have to override a selector before using it. In particular, you usually
have to override construct with a new method before you can invoke heap-new and friends.
E.g., you must not create a circle before the overrides construct sequence in the example
above.

5.22.3.10 Object Interfaces

In this model you can only call selectors defined in the class of the receiving objects or
in one of its ancestors. If you call a selector with a receiving object that is not in one of
these classes, the result is undefined; if you are lucky, the program crashes immediately.

Now consider the case when you want to have a selector (or several) available in two
classes: You would have to add the selector to a common ancestor class, in the worst case
to object. You may not want to do this, e.g., because someone else is responsible for this
ancestor class.

The solution for this problem is interfaces. An interface is a collection of selectors. If a
class implements an interface, the selectors become available to the class and its descendents.
A class can implement an unlimited number of interfaces. For the problem discussed above,
we would define an interface for the selector(s), and both classes would implement the
interface.

As an example, consider an interface storage for writing objects to disk and getting
them back, and a class foo that implements it. The code would look like this:

interface
selector write (file object --)
selector read1 (file object --)

end-interface storage

bar class
storage implementation

... overrides write

... overrides read1

...
end-class foo

(I would add a word read (file – object) that uses read1 internally, but that’s beyond the
point illustrated here.)

Note that you cannot use protected in an interface; and of course you cannot define
fields.

In the Neon model, all selectors are available for all classes; therefore it does not need
interfaces. The price you pay in this model is slower late binding, and therefore, added
complexity to avoid late binding.

Chapter 5: Forth Words 141

5.22.3.11 ‘objects.fs’ Implementation

An object is a piece of memory, like one of the data structures described with
struct...end-struct. It has a field object-map that points to the method map for the
object’s class.

The method map26 is an array that contains the execution tokens (xts) of the methods
for the object’s class. Each selector contains an offset into a method map.

selector is a defining word that uses CREATE and DOES>. The body of the selector
contains the offset; the DOES> action for a class selector is, basically:

(object addr) @ over object-map @ + @ execute

Since object-map is the first field of the object, it does not generate any code. As you
can see, calling a selector has a small, constant cost.

A class is basically a struct combined with a method map. During the class definition
the alignment and size of the class are passed on the stack, just as with structs, so field

can also be used for defining class fields. However, passing more items on the stack would
be inconvenient, so class builds a data structure in memory, which is accessed through the
variable current-interface. After its definition is complete, the class is represented on
the stack by a pointer (e.g., as parameter for a child class definition).

A new class starts off with the alignment and size of its parent, and a copy of the parent’s
method map. Defining new fields extends the size and alignment; likewise, defining new
selectors extends the method map. overrides just stores a new xt in the method map at
the offset given by the selector.

Class binding just gets the xt at the offset given by the selector from the class’s method
map and compile,s (in the case of [bind]) it.

I implemented this as a value. At the start of an m:...;m method the old this is
stored to the return stack and restored at the end; and the object on the TOS is stored TO

this. This technique has one disadvantage: If the user does not leave the method via ;m,
but via throw or exit, this is not restored (and exit may crash). To deal with the throw

problem, I have redefined catch to save and restore this; the same should be done with
any word that can catch an exception. As for exit, I simply forbid it (as a replacement,
there is exitm).

inst-var is just the same as field, with a different DOES> action:

@ this +

Similar for inst-value.

Each class also has a word list that contains the words defined with inst-var and inst-

value, and its protected words. It also has a pointer to its parent. class pushes the word
lists of the class and all its ancestors onto the search order stack, and end-class drops
them.

An interface is like a class without fields, parent and protected words; i.e., it just has
a method map. If a class implements an interface, its method map contains a pointer to
the method map of the interface. The positive offsets in the map are reserved for class
methods, therefore interface map pointers have negative offsets. Interfaces have offsets that

26 This is Self terminology; in C++ terminology: virtual function table.

Chapter 5: Forth Words 142

are unique throughout the system, unlike class selectors, whose offsets are only unique for
the classes where the selector is available (invokable).

This structure means that interface selectors have to perform one indirection more than
class selectors to find their method. Their body contains the interface map pointer offset
in the class method map, and the method offset in the interface method map. The does>

action for an interface selector is, basically:

(object selector-body)
2dup selector-interface @ (object selector-body object interface-offset)
swap object-map @ + @ (object selector-body map)
swap selector-offset @ + @ execute

where object-map and selector-offset are first fields and generate no code.

As a concrete example, consider the following code:

interface
selector if1sel1
selector if1sel2

end-interface if1

object class
if1 implementation
selector cl1sel1
cell% inst-var cl1iv1

’ m1 overrides construct
’ m2 overrides if1sel1
’ m3 overrides if1sel2
’ m4 overrides cl1sel2
end-class cl1

create obj1 object dict-new drop
create obj2 cl1 dict-new drop

The data structure created by this code (including the data structure for object) is
shown in the figure (objects-implementation.eps), assuming a cell size of 4.

5.22.3.12 ‘objects.fs’ Glossary

bind ... "class" "selector" – ... objects “bind”

Execute the method for selector in class.

<bind> class selector-xt – xt objects “<bind>”

xt is the method for the selector selector-xt in class.

bind’ "class" "selector" – xt objects “bind”’

xt is the method for selector in class.

[bind] compile-time: "class" "selector" – ; run-time: ... object – ... ob-
jects “[bind]”

Compile the method for selector in class.

class parent-class – align offset objects “class”

Start a new class definition as a child of parent-class. align offset are for use by field etc.

Chapter 5: Forth Words 143

class->map class – map objects “class->map”

map is the pointer to class’s method map; it points to the place in the map to which
the selector offsets refer (i.e., where object-maps point to).

class-inst-size class – addr objects “class-inst-size”

Give the size specification for an instance (i.e. an object) of class; used as class-inst-
size 2 (class -- align size).

class-override! xt sel-xt class-map – objects “class-override!”

xt is the new method for the selector sel-xt in class-map.

class-previous class – objects “class-previous”

Drop class’s wordlists from the search order. No checking is made whether class’s
wordlists are actually on the search order.

class>order class – objects “class>order”

Add class’s wordlists to the head of the search-order.

construct ... object – objects “construct”

Initialize the data fields of object. The method for the class object just does nothing: (
object --).

current’ "selector" – xt objects “current”’

xt is the method for selector in the current class.

[current] compile-time: "selector" – ; run-time: ... object – ... objects “[current]”

Compile the method for selector in the current class.

current-interface – addr objects “current-interface”

Variable: contains the class or interface currently being defined.

dict-new ... class – object objects “dict-new”

allot and initialize an object of class class in the dictionary.

end-class align offset "name" – objects “end-class”

name execution: -- class

End a class definition. The resulting class is class.

end-class-noname align offset – class objects “end-class-noname”

End a class definition. The resulting class is class.

end-interface "name" – objects “end-interface”

name execution: -- interface

End an interface definition. The resulting interface is interface.

end-interface-noname – interface objects “end-interface-noname”

End an interface definition. The resulting interface is interface.

end-methods – objects “end-methods”

Switch back from defining methods of a class to normal mode (currently this just restores
the old search order).

exitm – objects “exitm”

exit from a method; restore old this.

heap-new ... class – object objects “heap-new”

allocate and initialize an object of class class.

Chapter 5: Forth Words 144

implementation interface – objects “implementation”

The current class implements interface. I.e., you can use all selectors of the interface in
the current class and its descendents.

init-object ... class object – objects “init-object”

Initialize a chunk of memory (object) to an object of class class; then performs
construct.

inst-value align1 offset1 "name" – align2 offset2 objects “inst-value”

name execution: -- w

w is the value of the field name in this object.

inst-var align1 offset1 align size "name" – align2 offset2 objects “inst-var”

name execution: -- addr

addr is the address of the field name in this object.

interface – objects “interface”

Start an interface definition.

m: – xt colon-sys; run-time: object – objects “m:”

Start a method definition; object becomes new this.

:m "name" – xt; run-time: object – objects “:m”

Start a named method definition; object becomes new this. Has to be ended with ;m.

;m colon-sys –; run-time: – objects “;m”

End a method definition; restore old this.

method xt "name" – objects “method”

name execution: ... object -- ...

Create selector name and makes xt its method in the current class.

methods class – objects “methods”

Makes class the current class. This is intended to be used for defining methods to
override selectors; you cannot define new fields or selectors.

object – class objects “object”

the ancestor of all classes.

overrides xt "selector" – objects “overrides”

replace default method for selector in the current class with xt. overrides must not be
used during an interface definition.

[parent] compile-time: "selector" – ; run-time: ... object – ... objects “[parent]”

Compile the method for selector in the parent of the current class.

print object – objects “print”

Print the object. The method for the class object prints the address of the object and
the address of its class.

protected – objects “protected”

Set the compilation wordlist to the current class’s wordlist

public – objects “public”

Restore the compilation wordlist that was in effect before the last protected that actu-
ally changed the compilation wordlist.

Chapter 5: Forth Words 145

selector "name" – objects “selector”

name execution: ... object -- ...

Create selector name for the current class and its descendents; you can set a method for
the selector in the current class with overrides.

this – object objects “this”

the receiving object of the current method (aka active object).

<to-inst> w xt – objects “<to-inst>”

store w into the field xt in this object.

[to-inst] compile-time: "name" – ; run-time: w – objects “[to-inst]”

store w into field name in this object.

to-this object – objects “to-this”

Set this (used internally, but useful when debugging).

xt-new ... class xt – object objects “xt-new”

Make a new object, using xt (align size -- addr) to get memory.

5.22.4 The ‘oof.fs’ model

This section describes the ‘oof.fs’ package.

The package described in this section has been used in bigFORTH since 1991, and used
for two large applications: a chromatographic system used to create new medicaments, and
a graphic user interface library (MINOS).

You can find a description (in German) of ‘oof.fs’ in Object oriented bigFORTH by
Bernd Paysan, published in Vierte Dimension 10(2), 1994.

5.22.4.1 Properties of the ‘oof.fs’ model

• This model combines object oriented programming with information hiding. It helps
you writing large application, where scoping is necessary, because it provides class-
oriented scoping.

• Named objects, object pointers, and object arrays can be created, selector invocation
uses the “object selector” syntax. Selector invocation to objects and/or selectors on
the stack is a bit less convenient, but possible.

• Selector invocation and instance variable usage of the active object is straightforward,
since both make use of the active object.

• Late binding is efficient and easy to use.

• State-smart objects parse selectors. However, extensibility is provided using a (parsing)
selector postpone and a selector ’.

• An implementation in ANS Forth is available.

5.22.4.2 Basic ‘oof.fs’ Usage

This section uses the same example as for objects (see Section 5.22.3.2 [Basic Objects
Usage], page 135).

You can define a class for graphical objects like this:

Chapter 5: Forth Words 146

object class graphical \ "object" is the parent class
method draw (x y graphical --)

class;

This code defines a class graphical with an operation draw. We can perform the
operation draw on any graphical object, e.g.:

100 100 t-rex draw

where t-rex is an object or object pointer, created with e.g. graphical : t-rex.

How do we create a graphical object? With the present definitions, we cannot create a
useful graphical object. The class graphical describes graphical objects in general, but not
any concrete graphical object type (C++ users would call it an abstract class); e.g., there is
no method for the selector draw in the class graphical.

For concrete graphical objects, we define child classes of the class graphical, e.g.:

graphical class circle \ "graphical" is the parent class
cell var circle-radius

how:
: draw (x y --)

circle-radius @ draw-circle ;

: init (n-radius -- (
circle-radius ! ;

class;

Here we define a class circle as a child of graphical, with a field circle-radius; it
defines new methods for the selectors draw and init (init is defined in object, the parent
class of graphical).

Now we can create a circle in the dictionary with:

50 circle : my-circle

: invokes init, thus initializing the field circle-radius with 50. We can draw this new
circle at (100,100) with:

100 100 my-circle draw

Note: You can only invoke a selector if the receiving object belongs to the class where
the selector was defined or one of its descendents; e.g., you can invoke draw only for objects
belonging to graphical or its descendents (e.g., circle). The scoping mechanism will
check if you try to invoke a selector that is not defined in this class hierarchy, so you’ll get
an error at compilation time.

5.22.4.3 The ‘oof.fs’ base class

When you define a class, you have to specify a parent class. So how do you start defining
classes? There is one class available from the start: object. You have to use it as ancestor
for all classes. It is the only class that has no parent. Classes are also objects, except
that they don’t have instance variables; class manipulation such as inheritance or changing
definitions of a class is handled through selectors of the class object.

object provides a number of selectors:

• class for subclassing, definitions to add definitions later on, and class? to get type
informations (is the class a subclass of the class passed on the stack?).

Chapter 5: Forth Words 147

class "name" – oof “class”

definitions – oof “definitions”

class? o – flag oof “class-query”

• init and dispose as constructor and destructor of the object. init is invocated after
the object’s memory is allocated, while dispose also handles deallocation. Thus if you
redefine dispose, you have to call the parent’s dispose with super dispose, too.

init ... – oof “init”

dispose – oof “dispose”

• new, new[], :, ptr, asptr, and [] to create named and unnamed objects and object
arrays or object pointers.

new – o oof “new”

new[] n – o oof “new-array”

: "name" – oof “define”

ptr "name" – oof “ptr”

asptr o "name" – oof “asptr”

[] n "name" – oof “array”

• :: and super for explicit scoping. You should use explicit scoping only for super classes
or classes with the same set of instance variables. Explicitly-scoped selectors use early
binding.

:: "name" – oof “scope”

super "name" – oof “super”

• self to get the address of the object

self – o oof “self”

• bind, bound, link, and is to assign object pointers and instance defers.

bind o "name" – oof “bind”

bound class addr "name" – oof “bound”

link "name" – class addr oof “link”

is xt "name" – oof “is”

• ’ to obtain selector tokens, send to invocate selectors form the stack, and postpone to
generate selector invocation code.

’ "name" – xt oof “tick”

postpone "name" – oof “postpone”

• with and endwith to select the active object from the stack, and enable its scope. Using
with and endwith also allows you to create code using selector postpone without being
trapped by the state-smart objects.

with o – oof “with”

endwith – oof “endwith”

5.22.4.4 Class Declaration

• Instance variables

Chapter 5: Forth Words 148

var size – oof “var”

Create an instance variable

• Object pointers

ptr – oof “ptr”

Create an instance pointer

asptr class – oof “asptr”

Create an alias to an instance pointer, cast to another class.

• Instance defers

defer – oof “defer”

Create an instance defer

• Method selectors

early – oof “early”

Create a method selector for early binding.

method – oof “method”

Create a method selector.

• Class-wide variables

static – oof “static”

Create a class-wide cell-sized variable.

• End declaration

how: – oof “how-to”

End declaration, start implementation

class; – oof “end-class”

End class declaration or implementation

5.22.4.5 Class Implementation

5.22.5 The ‘mini-oof.fs’ model

Gforth’s third object oriented Forth package is a 12-liner. It uses a mixture of the
‘objects.fs’ and the ‘oof.fs’ syntax, and reduces to the bare minimum of features. This
is based on a posting of Bernd Paysan in comp.lang.forth.

5.22.5.1 Basic ‘mini-oof.fs’ Usage

There is a base class (class, which allocates one cell for the object pointer) plus seven
other words: to define a method, a variable, a class; to end a class, to resolve binding, to
allocate an object and to compile a class method.

object – a-addr mini-oof “object”

object is the base class of all objects.

method m v "name" – m’ v mini-oof “method”

Define a selector.

Chapter 5: Forth Words 149

var m v size "name" – m v’ mini-oof “var”

Define a variable with size bytes.

class class – class selectors vars mini-oof “class”

Start the definition of a class.

end-class class selectors vars "name" – mini-oof “end-class”

End the definition of a class.

defines xt class "name" – mini-oof “defines”

Bind xt to the selector name in class class.

new class – o mini-oof “new”

Create a new incarnation of the class class.

:: class "name" – mini-oof “colon-colon”

Compile the method for the selector name of the class class (not immediate!).

5.22.5.2 Mini-OOF Example

A short example shows how to use this package. This example, in slightly extended
form, is supplied as ‘moof-exm.fs’

object class
method init
method draw

end-class graphical

This code defines a class graphical with an operation draw. We can perform the
operation draw on any graphical object, e.g.:

100 100 t-rex draw

where t-rex is an object or object pointer, created with e.g. graphical new Constant

t-rex.

For concrete graphical objects, we define child classes of the class graphical, e.g.:

graphical class
cell var circle-radius

end-class circle \ "graphical" is the parent class

:noname (x y --)
circle-radius @ draw-circle ; circle defines draw

:noname (r --)
circle-radius ! ; circle defines init

There is no implicit init method, so we have to define one. The creation code of the
object now has to call init explicitely.

circle new Constant my-circle
50 my-circle init

It is also possible to add a function to create named objects with automatic call of init,
given that all objects have init on the same place:

Chapter 5: Forth Words 150

: new: (.. o "name" --)
new dup Constant init ;

80 circle new: large-circle

We can draw this new circle at (100,100) with:

100 100 my-circle draw

5.22.5.3 ‘mini-oof.fs’ Implementation

Object-oriented systems with late binding typically use a “vtable”-approach: the first
variable in each object is a pointer to a table, which contains the methods as function
pointers. The vtable may also contain other information.

So first, let’s declare selectors:

: method (m v "name" -- m’ v) Create over , swap cell+ swap
DOES> (... o -- ...) @ over @ + @ execute ;

During selector declaration, the number of selectors and instance variables is on the
stack (in address units). method creates one selector and increments the selector number.
To execute a selector, it takes the object, fetches the vtable pointer, adds the offset, and
executes the method xt stored there. Each selector takes the object it is invoked with as
top of stack parameter; it passes the parameters (including the object) unchanged to the
appropriate method which should consume that object.

Now, we also have to declare instance variables

: var (m v size "name" -- m v’) Create over , +
DOES> (o -- addr) @ + ;

As before, a word is created with the current offset. Instance variables can have different
sizes (cells, floats, doubles, chars), so all we do is take the size and add it to the offset. If
your machine has alignment restrictions, put the proper aligned or faligned before the
variable, to adjust the variable offset. That’s why it is on the top of stack.

We need a starting point (the base object) and some syntactic sugar:

Create object 1 cells , 2 cells ,
: class (class -- class selectors vars) dup 2@ ;

For inheritance, the vtable of the parent object has to be copied when a new, derived
class is declared. This gives all the methods of the parent class, which can be overridden,
though.

: end-class (class selectors vars "name" --)
Create here >r , dup , 2 cells ?DO [’] noop , 1 cells +LOOP
cell+ dup cell+ r> rot @ 2 cells /string move ;

The first line creates the vtable, initialized with noops. The second line is the inheritance
mechanism, it copies the xts from the parent vtable.

We still have no way to define new methods, let’s do that now:

: defines (xt class "name" --) ’ >body @ + ! ;

To allocate a new object, we need a word, too:

: new (class -- o) here over @ allot swap over ! ;

Sometimes derived classes want to access the method of the parent object. There are
two ways to achieve this with Mini-OOF: first, you could use named words, and second,
you could look up the vtable of the parent object.

Chapter 5: Forth Words 151

: :: (class "name" --) ’ >body @ + @ compile, ;

Nothing can be more confusing than a good example, so here is one. First let’s declare
a text object (called button), that stores text and position:

object class
cell var text
cell var len
cell var x
cell var y
method init
method draw

end-class button

Now, implement the two methods, draw and init:

:noname (o --)
>r r@ x @ r@ y @ at-xy r@ text @ r> len @ type ;
button defines draw

:noname (addr u o --)
>r 0 r@ x ! 0 r@ y ! r@ len ! r> text ! ;
button defines init

To demonstrate inheritance, we define a class bold-button, with no new data and no new
selectors:

button class
end-class bold-button

: bold 27 emit ." [1m" ;
: normal 27 emit ." [0m" ;

The class bold-button has a different draw method to button, but the new method is
defined in terms of the draw method for button:

:noname bold [button :: draw] normal ; bold-button defines draw

Finally, create two objects and apply selectors:

button new Constant foo
s" thin foo" foo init
page
foo draw
bold-button new Constant bar
s" fat bar" bar init
1 bar y !
bar draw

5.22.6 Comparison with other object models

Many object-oriented Forth extensions have been proposed (A survey of object-oriented
Forths (SIGPLAN Notices, April 1996) by Bradford J. Rodriguez and W. F. S. Poehlman
lists 17). This section discusses the relation of the object models described here to two
well-known and two closely-related (by the use of method maps) models. Andras Zsoter
helped us with this section.

Chapter 5: Forth Words 152

The most popular model currently seems to be the Neon model (see Object-oriented
programming in ANS Forth (Forth Dimensions, March 1997) by Andrew McKewan) but
this model has a number of limitations27:

• It uses a selector object syntax, which makes it unnatural to pass objects on the stack.

• It requires that the selector parses the input stream (at compile time); this leads to
reduced extensibility and to bugs that are hard to find.

• It allows using every selector on every object; this eliminates the need for interfaces,
but makes it harder to create efficient implementations.

Another well-known publication is Object-Oriented Forth (Academic Press, London,
1987) by Dick Pountain. However, it is not really about object-oriented programming,
because it hardly deals with late binding. Instead, it focuses on features like information
hiding and overloading that are characteristic of modular languages like Ada (83).

In Does late binding have to be slow? (http://www.forth.org/oopf.html) (Forth Di-
mensions 18(1) 1996, pages 31-35) Andras Zsoter describes a model that makes heavy use
of an active object (like this in ‘objects.fs’): The active object is not only used for
accessing all fields, but also specifies the receiving object of every selector invocation; you
have to change the active object explicitly with { ... }, whereas in ‘objects.fs’ it changes
more or less implicitly at m: ... ;m. Such a change at the method entry point is unneces-
sary with Zsoter’s model, because the receiving object is the active object already. On the
other hand, the explicit change is absolutely necessary in that model, because otherwise no
one could ever change the active object. An ANS Forth implementation of this model is
available through http://www.forth.org/oopf.html.

The ‘oof.fs’ model combines information hiding and overloading resolution (by keeping
names in various word lists) with object-oriented programming. It sets the active ob-
ject implicitly on method entry, but also allows explicit changing (with >o...o> or with
with...endwith). It uses parsing and state-smart objects and classes for resolving over-
loading and for early binding: the object or class parses the selector and determines the
method from this. If the selector is not parsed by an object or class, it performs a call
to the selector for the active object (late binding), like Zsoter’s model. Fields are always
accessed through the active object. The big disadvantage of this model is the parsing and
the state-smartness, which reduces extensibility and increases the opportunities for subtle
bugs; essentially, you are only safe if you never tick or postpone an object or class (Bernd
disagrees, but I (Anton) am not convinced).

The ‘mini-oof.fs’ model is quite similar to a very stripped-down version of the
‘objects.fs’ model, but syntactically it is a mixture of the ‘objects.fs’ and ‘oof.fs’
models.

5.23 Programming Tools

5.23.1 Examining data and code

The following words inspect the stack non-destructively:

27 A longer version of this critique can be found in On Standardizing Object-Oriented Forth Extensions
(Forth Dimensions, May 1997) by Anton Ertl.

Chapter 5: Forth Words 153

.s – tools “dot-s”

Display the number of items on the data stack, followed by a list of the items; TOS is
the right-most item.

f.s – gforth “f-dot-s”

Display the number of items on the floating-point stack, followed by a list of the items;
TOS is the right-most item.

There is a word .r but it does not display the return stack! It is used for formatted
numeric output (see Section 5.19.1 [Simple numeric output], page 114).

depth – +n core “depth”

+n is the number of values that were on the data stack before +n itself was placed on
the stack.

fdepth – +n float “f-depth”

+n is the current number of (floating-point) values on the floating-point stack.

clearstack ... – gforth “clear-stack”

remove and discard all/any items from the data stack.

The following words inspect memory.

? a-addr – tools “question”

Display the contents of address a-addr in the current number base.

dump addr u – tools “dump”

Display u lines of memory starting at address addr. Each line displays the contents of 16
bytes. When Gforth is running under an operating system you may get ‘Invalid memory

address’ errors if you attempt to access arbitrary locations.

And finally, see allows to inspect code:

see "<spaces>name" – tools “see”

Locate name using the current search order. Display the definition of name. Since this
is achieved by decompiling the definition, the formatting is mechanised and some source
information (comments, interpreted sequences within definitions etc.) is lost.

xt-see xt – gforth “xt-see”

Decompile the definition represented by xt.

simple-see "name" – gforth “simple-see”

a simple decompiler that’s closer to dump than see.

simple-see-range addr1 addr2 – gforth “simple-see-range”

5.23.2 Forgetting words

Forth allows you to forget words (and everything that was alloted in the dictonary after
them) in a LIFO manner.

marker "<spaces> name" – core-ext “marker”

Create a definition, name (called a mark) whose execution semantics are to remove itself
and everything defined after it.

The most common use of this feature is during progam development: when you change a
source file, forget all the words it defined and load it again (since you also forget everything

Chapter 5: Forth Words 154

defined after the source file was loaded, you have to reload that, too). Note that effects
like storing to variables and destroyed system words are not undone when you forget words.
With a system like Gforth, that is fast enough at starting up and compiling, I find it more
convenient to exit and restart Gforth, as this gives me a clean slate.

Here’s an example of using marker at the start of a source file that you are debugging;
it ensures that you only ever have one copy of the file’s definitions compiled at any time:

[IFDEF] my-code
my-code

[ENDIF]

marker my-code
init-included-files

\ .. definitions start here
\ .
\ .
\ end

5.23.3 Debugging

Languages with a slow edit/compile/link/test development loop tend to require sophis-
ticated tracing/stepping debuggers to facilate debugging.

A much better (faster) way in fast-compiling languages is to add printing code at well-
selected places, let the program run, look at the output, see where things went wrong, add
more printing code, etc., until the bug is found.

The simple debugging aids provided in ‘debugs.fs’ are meant to support this style of
debugging.

The word ~~ prints debugging information (by default the source location and the stack
contents). It is easy to insert. If you use Emacs it is also easy to remove (C-x ~ in the Emacs
Forth mode to query-replace them with nothing). The deferred words printdebugdata and
.debugline control the output of ~~. The default source location output format works well
with Emacs’ compilation mode, so you can step through the program at the source level
using C-x ‘ (the advantage over a stepping debugger is that you can step in any direction
and you know where the crash has happened or where the strange data has occurred).

~~ compilation – ; run-time – gforth “tilde-tilde”

printdebugdata – gforth “print-debug-data”

.debugline nfile nline – gforth “print-debug-line”

~~ (and assertions) will usually print the wrong file name if a marker is executed in the
same file after their occurance. They will print ‘*somewhere*’ as file name if a marker is
executed in the same file before their occurance.

5.23.4 Assertions

It is a good idea to make your programs self-checking, especially if you make an assump-
tion that may become invalid during maintenance (for example, that a certain field of a
data structure is never zero). Gforth supports assertions for this purpose. They are used
like this:

Chapter 5: Forth Words 155

assert(flag)

The code between assert(and) should compute a flag, that should be true if everything
is alright and false otherwise. It should not change anything else on the stack. The overall
stack effect of the assertion is (--). E.g.

assert(1 1 + 2 =) \ what we learn in school
assert(dup 0<>) \ assert that the top of stack is not zero
assert(false) \ this code should not be reached

The need for assertions is different at different times. During debugging, we want more
checking, in production we sometimes care more for speed. Therefore, assertions can be
turned off, i.e., the assertion becomes a comment. Depending on the importance of an
assertion and the time it takes to check it, you may want to turn off some assertions and
keep others turned on. Gforth provides several levels of assertions for this purpose:

assert0(– gforth “assert-zero”

Important assertions that should always be turned on.

assert1(– gforth “assert-one”

Normal assertions; turned on by default.

assert2(– gforth “assert-two”

Debugging assertions.

assert3(– gforth “assert-three”

Slow assertions that you may not want to turn on in normal debugging; you would turn
them on mainly for thorough checking.

assert(– gforth “assert(”

Equivalent to assert1(

) – gforth “close-paren”

End an assertion.

The variable assert-level specifies the highest assertions that are turned on. I.e., at
the default assert-level of one, assert0(and assert1(assertions perform checking,
while assert2(and assert3(assertions are treated as comments.

The value of assert-level is evaluated at compile-time, not at run-time. Therefore you
cannot turn assertions on or off at run-time; you have to set the assert-level appropriately
before compiling a piece of code. You can compile different pieces of code at different
assert-levels (e.g., a trusted library at level 1 and newly-written code at level 3).

assert-level – a-addr gforth “assert-level”

All assertions above this level are turned off.

If an assertion fails, a message compatible with Emacs’ compilation mode is produced
and the execution is aborted (currently with ABORT". If there is interest, we will introduce a
special throw code. But if you intend to catch a specific condition, using throw is probably
more appropriate than an assertion).

Assertions (and ~~) will usually print the wrong file name if a marker is executed in the
same file after their occurance. They will print ‘*somewhere*’ as file name if a marker is
executed in the same file before their occurance.

Definitions in ANS Forth for these assertion words are provided in ‘compat/assert.fs’.

Chapter 5: Forth Words 156

5.23.5 Singlestep Debugger

The singlestep debugger does not work in this release.

When you create a new word there’s often the need to check whether it behaves correctly
or not. You can do this by typing dbg badword. A debug session might look like this:

: badword 0 DO i . LOOP ; ok
2 dbg badword
: badword
Scanning code...

Nesting debugger ready!

400D4738 8049BC4 0 -> [2] 00002 00000
400D4740 8049F68 DO -> [0]
400D4744 804A0C8 i -> [1] 00000
400D4748 400C5E60 . -> 0 [0]
400D474C 8049D0C LOOP -> [0]
400D4744 804A0C8 i -> [1] 00001
400D4748 400C5E60 . -> 1 [0]
400D474C 8049D0C LOOP -> [0]
400D4758 804B384 ; -> ok

Each line displayed is one step. You always have to hit return to execute the next word
that is displayed. If you don’t want to execute the next word in a whole, you have to type
n for nest. Here is an overview what keys are available:

〈RET〉 Next; Execute the next word.

n Nest; Single step through next word.

u Unnest; Stop debugging and execute rest of word. If we got to this word with
nest, continue debugging with the calling word.

d Done; Stop debugging and execute rest.

s Stop; Abort immediately.

Debugging large application with this mechanism is very difficult, because you have to
nest very deeply into the program before the interesting part begins. This takes a lot of
time.

To do it more directly put a BREAK: command into your source code. When program
execution reaches BREAK: the single step debugger is invoked and you have all the features
described above.

If you have more than one part to debug it is useful to know where the program has
stopped at the moment. You can do this by the BREAK" string" command. This behaves
like BREAK: except that string is typed out when the “breakpoint” is reached.

dbg "name" – gforth “dbg”

break: – gforth “break:”

break" ’ccc"’ – gforth “break"”

Chapter 5: Forth Words 157

5.24 Assembler and Code Words

5.24.1 Code and ;code

Gforth provides some words for defining primitives (words written in machine code),
and for defining the machine-code equivalent of DOES>-based defining words. However, the
machine-independent nature of Gforth poses a few problems: First of all, Gforth runs on
several architectures, so it can provide no standard assembler. What’s worse is that the
register allocation not only depends on the processor, but also on the gcc version and
options used.

The words that Gforth offers encapsulate some system dependences (e.g., the header
structure), so a system-independent assembler may be used in Gforth. If you do not have
an assembler, you can compile machine code directly with , and c,28.

assembler – tools-ext “assembler”

init-asm – gforth “init-asm”

code "name" – colon-sys tools-ext “code”

end-code colon-sys – gforth “end-code”

;code compilation. colon-sys1 – colon-sys2 tools-ext “semicolon-code”

flush-icache c-addr u – gforth “flush-icache”

Make sure that the instruction cache of the processor (if there is one) does not contain
stale data at c-addr and u bytes afterwards. END-CODE performs a flush-icache automat-
ically. Caveat: flush-icache might not work on your installation; this is usually the case
if direct threading is not supported on your machine (take a look at your ‘machine.h’) and
your machine has a separate instruction cache. In such cases, flush-icache does nothing
instead of flushing the instruction cache.

If flush-icache does not work correctly, code words etc. will not work (reliably), either.

The typical usage of these code words can be shown most easily by analogy to the
equivalent high-level defining words:

: foo code foo
<high-level Forth words> <assembler>

; end-code

: bar : bar
<high-level Forth words> <high-level Forth words>
CREATE CREATE

<high-level Forth words> <high-level Forth words>
DOES> ;code

<high-level Forth words> <assembler>
; end-code

In the assembly code you will want to refer to the inner interpreter’s registers (e.g.,
the data stack pointer) and you may want to use other registers for temporary storage.
Unfortunately, the register allocation is installation-dependent.

28 This isn’t portable, because these words emit stuff in data space; it works because Gforth has unified
code/data spaces. Assembler isn’t likely to be portable anyway.

Chapter 5: Forth Words 158

In particular, ip (Forth instruction pointer) and rp (return stack pointer) may be in
different places in gforth and gforth-fast, or different installations. This means that you
cannot write a NEXT routine that works reliably on both versions or different installations;
so for doing NEXT, I recommend jumping to ’ noop >code-address, which contains nothing
but a NEXT.

For general accesses to the inner interpreter’s registers, the easiest solution is to use ex-
plicit register declarations (see section “Variables in Specified Registers” in GNU C Manual)
for all of the inner interpreter’s registers: You have to compile Gforth with -DFORCE_REG

(configure option --enable-force-reg) and the appropriate declarations must be present
in the machine.h file (see mips.h for an example; you can find a full list of all declarable
register symbols with grep register engine.c). If you give explicit registers to all vari-
ables that are declared at the beginning of engine(), you should be able to use the other
caller-saved registers for temporary storage. Alternatively, you can use the gcc option
-ffixed-REG (see section “Options for Code Generation Conventions” in GNU C Man-
ual) to reserve a register (however, this restriction on register allocation may slow Gforth
significantly).

If this solution is not viable (e.g., because gcc does not allow you to explicitly declare
all the registers you need), you have to find out by looking at the code where the inner
interpreter’s registers reside and which registers can be used for temporary storage. You
can get an assembly listing of the engine’s code with make engine.s.

In any case, it is good practice to abstract your assembly code from the actual register
allocation. E.g., if the data stack pointer resides in register $17, create an alias for this
register called sp, and use that in your assembly code.

Another option for implementing normal and defining words efficiently is to add the
desired functionality to the source of Gforth. For normal words you just have to edit
‘primitives’ (see Section 14.3.1 [Automatic Generation], page 197). Defining words
(equivalent to ;CODE words, for fast defined words) may require changes in ‘engine.c’,
‘kernel.fs’, ‘prims2x.fs’, and possibly ‘cross.fs’.

5.24.2 Common Assembler

The assemblers in Gforth generally use a postfix syntax, i.e., the instruction name follows
the operands.

The operands are passed in the usual order (the same that is used in the manual of the
architecture). Since they all are Forth words, they have to be separated by spaces; you can
also use Forth words to compute the operands.

The instruction names usually end with a ,. This makes it easier to visually separate
instructions if you put several of them on one line; it also avoids shadowing other Forth
words (e.g., and).

Registers are usually specified by number; e.g., (decimal) 11 specifies registers R11 and
F11 on the Alpha architecture (which one, depends on the instruction). The usual names
are also available, e.g., s2 for R11 on Alpha.

Control flow is specified similar to normal Forth code (see Section 5.8.4 [Arbitrary control
structures], page 69), with if,, ahead,, then,, begin,, until,, again,, cs-roll, cs-
pick, else,, while,, and repeat,. The conditions are specified in a way specific to each
assembler.

Chapter 5: Forth Words 159

Note that the register assignments of the Gforth engine can change between Gforth
versions, or even between different compilations of the same Gforth version (e.g., if you use
a different GCC version). So if you want to refer to Gforth’s registers (e.g., the stack pointer
or TOS), I recommend defining your own words for refering to these registers, and using
them later on; then you can easily adapt to a changed register assignment. The stability of
the register assignment is usually better if you build Gforth with --enable-force-reg.

The most common use of these registers is to dispatch to the next word (the next

routine). A portable way to do this is to jump to ’ noop >code-address (of course, this is
less efficient than integrating the next code and scheduling it well).

Another difference between Gforth version is that the top of stack is kept in memory in
gforth and, on most platforms, in a register in gforth-fast.

5.24.3 Common Disassembler

You can disassemble a code word with see (see Section 5.23.3 [Debugging], page 154).
You can disassemble a section of memory with

doc-disasm

The disassembler generally produces output that can be fed into the assembler (i.e.,
same syntax, etc.). It also includes additional information in comments. In particular, the
address of the instruction is given in a comment before the instruction.

See may display more or less than the actual code of the word, because the recognition
of the end of the code is unreliable. You can use disasm if it did not display enough. It
may display more, if the code word is not immediately followed by a named word. If you
have something else there, you can follow the word with align latest , to ensure that the
end is recognized.

5.24.4 386 Assembler

The 386 assembler included in Gforth was written by Bernd Paysan, it’s available under
GPL, and originally part of bigFORTH.

The 386 disassembler included in Gforth was written by Andrew McKewan and is in the
public domain.

The disassembler displays code in an Intel-like prefix syntax.

The assembler uses a postfix syntax with reversed parameters.

The assembler includes all instruction of the Athlon, i.e. 486 core instructions, Pentium
and PPro extensions, floating point, MMX, 3Dnow!, but not ISSE. It’s an integrated 16-
and 32-bit assembler. Default is 32 bit, you can switch to 16 bit with .86 and back to 32
bit with .386.

There are several prefixes to switch between different operation sizes, .b for byte accesses,
.w for word accesses, .d for double-word accesses. Addressing modes can be switched with
.wa for 16 bit addresses, and .da for 32 bit addresses. You don’t need a prefix for byte
register names (AL et al).

For floating point operations, the prefixes are .fs (IEEE single), .fl (IEEE double),
.fx (extended), .fw (word), .fd (double-word), and .fq (quad-word).

Chapter 5: Forth Words 160

The MMX opcodes don’t have size prefixes, they are spelled out like in the Intel assem-
bler. Instead of move from and to memory, there are PLDQ/PLDD and PSTQ/PSTD.

The registers lack the ’e’ prefix; even in 32 bit mode, eax is called ax. Immediate values
are indicated by postfixing them with #, e.g., 3 #. Here are some examples of addressing
modes in various syntaxes:

Gforth Intel (NASM) AT&T (gas) Name
.w ax ax %ax register (16 bit)
ax eax %eax register (32 bit)
3 # offset 3 $3 immediate
1000 #) byte ptr 1000 1000 displacement
bx) [ebx] (%ebx) base
100 di d) 100[edi] 100(%edi) base+displacement
20 ax *4 i#) 20[eax*4] 20(,%eax,4) (index*scale)+displacement
di ax *4 i) [edi][eax*4] (%edi,%eax,4) base+(index*scale)
4 bx cx di) 4[ebx][ecx] 4(%ebx,%ecx) base+index+displacement
12 sp ax *2 di) 12[esp][eax*2] 12(%esp,%eax,2) base+(index*scale)+displacement

You can use L) and LI) instead of D) and DI) to enforce 32-bit displacement fields
(useful for later patching).

Some example of instructions are:

ax bx mov \ move ebx,eax
3 # ax mov \ mov eax,3
100 di) ax mov \ mov eax,100[edi]
4 bx cx di) ax mov \ mov eax,4[ebx][ecx]
.w ax bx mov \ mov bx,ax

The following forms are supported for binary instructions:

<reg> <reg> <inst>
<n> # <reg> <inst>
<mem> <reg> <inst>
<reg> <mem> <inst>

Immediate to memory is not supported. The shift/rotate syntax is:

<reg/mem> 1 # shl \ shortens to shift without immediate
<reg/mem> 4 # shl
<reg/mem> cl shl

Precede string instructions (movs etc.) with .b to get the byte version.

The control structure words IF UNTIL etc. must be preceded by one of these condi-
tions: vs vc u< u>= 0= 0<> u<= u> 0< 0>= ps pc < >= <= >. (Note that most of these words
shadow some Forth words when assembler is in front of forth in the search path, e.g., in
code words). Currently the control structure words use one stack item, so you have to use
roll instead of cs-roll to shuffle them (you can also use swap etc.).

Here is an example of a code word (assumes that the stack pointer is in esi and the TOS
is in ebx):

code my+ (n1 n2 -- n)
4 si D) bx add
4 # si add
Next

end-code

Chapter 5: Forth Words 161

5.24.5 Alpha Assembler

The Alpha assembler and disassembler were originally written by Bernd Thallner.

The register names a0–a5 are not available to avoid shadowing hex numbers.

Immediate forms of arithmetic instructions are distinguished by a # just before the ,,
e.g., and#, (note: lda, does not count as arithmetic instruction).

You have to specify all operands to an instruction, even those that other assemblers
consider optional, e.g., the destination register for br,, or the destination register and hint
for jmp,.

You can specify conditions for if, by removing the first b and the trailing , from a
branch with a corresponding name; e.g.,

11 fgt if, \ if F11>0e
...

endif,

fbgt, gives fgt.

5.24.6 MIPS assembler

The MIPS assembler was originally written by Christian Pirker.

Currently the assembler and disassembler only cover the MIPS-I architecture (R3000),
and don’t support FP instructions.

The register names $a0–$a3 are not available to avoid shadowing hex numbers.

Because there is no way to distinguish registers from immediate values, you have to
explicitly use the immediate forms of instructions, i.e., addiu,, not just addu, (as does this
implicitly).

If the architecture manual specifies several formats for the instruction (e.g., for jalr,),
you usually have to use the one with more arguments (i.e., two for jalr,). When in doubt,
see arch/mips/testasm.fs for an example of correct use.

Branches and jumps in the MIPS architecture have a delay slot. You have to fill it
yourself (the simplest way is to use nop,), the assembler does not do it for you (unlike as).
Even if,, ahead,, until,, again,, while,, else, and repeat, need a delay slot. Since
begin, and then, just specify branch targets, they are not affected.

Note that you must not put branches, jumps, or li, into the delay slot: li, may expand
to several instructions, and control flow instructions may not be put into the branch delay
slot in any case.

For branches the argument specifying the target is a relative address; You have to add
the address of the delay slot to get the absolute address.

The MIPS architecture also has load delay slots and restrictions on using mfhi, and
mflo,; you have to order the instructions yourself to satisfy these restrictions, the assembler
does not do it for you.

You can specify the conditions for if, etc. by taking a conditional branch and leaving
away the b at the start and the , at the end. E.g.,

4 5 eq if,
... \ do something if $4 equals $5

then,

Chapter 5: Forth Words 162

5.24.7 Other assemblers

If you want to contribute another assembler/disassembler, please contact us
(anton@mips.complang.tuwien.ac.at) to check if we have such an assembler already. If
you are writing them from scratch, please use a similar syntax style as the one we use
(i.e., postfix, commas at the end of the instruction names, see Section 5.24.2 [Common
Assembler], page 158); make the output of the disassembler be valid input for the
assembler, and keep the style similar to the style we used.

Hints on implementation: The most important part is to have a good test suite that
contains all instructions. Once you have that, the rest is easy. For actual coding you can
take a look at ‘arch/mips/disasm.fs’ to get some ideas on how to use data for both the
assembler and disassembler, avoiding redundancy and some potential bugs. You can also
look at that file (and see Section 5.9.8.3 [Advanced does> usage example], page 81) to get
ideas how to factor a disassembler.

Start with the disassembler, because it’s easier to reuse data from the disassembler for
the assembler than the other way round.

For the assembler, take a look at ‘arch/alpha/asm.fs’, which shows how simple it can
be.

5.25 Threading Words

These words provide access to code addresses and other threading stuff in Gforth (and,
possibly, other interpretive Forths). It more or less abstracts away the differences between
direct and indirect threading (and, for direct threading, the machine dependences). How-
ever, at present this wordset is still incomplete. It is also pretty low-level; some day it
will hopefully be made unnecessary by an internals wordset that abstracts implementation
details away completely.

The terminology used here stems from indirect threaded Forth systems; in such a system,
the XT of a word is represented by the CFA (code field address) of a word; the CFA points to
a cell that contains the code address. The code address is the address of some machine code
that performs the run-time action of invoking the word (e.g., the dovar: routine pushes the
address of the body of the word (a variable) on the stack).

In an indirect threaded Forth, you can get the code address of name with ’ name @; in
Gforth you can get it with ’ name >code-address, independent of the threading method.

threading-method – n gforth “threading-method”

0 if the engine is direct threaded. Note that this may change during the lifetime of an
image.

>code-address xt – c addr gforth “>code-address”

c-addr is the code address of the word xt.

code-address! c addr xt – gforth “code-address!”

Create a code field with code address c-addr at xt.

For a word defined with DOES>, the code address usually points to a jump instruction
(the does-handler) that jumps to the dodoes routine (in Gforth on some platforms, it can
also point to the dodoes routine itself). What you are typically interested in, though, is

Chapter 5: Forth Words 163

whether a word is a DOES>-defined word, and what Forth code it executes; >does-code tells
you that.

>does-code xt – a addr gforth “>does-code”

If xt is the execution token of a child of a DOES> word, a-addr is the start of the Forth
code after the DOES>; Otherwise a-addr is 0.

To create a DOES>-defined word with the following basic words, you have to set up a
DOES>-handler with does-handler!; /does-handler aus behind you have to place your
executable Forth code. Finally you have to create a word and modify its behaviour with
does-handler!.

does-code! a addr xt – gforth “does-code!”

Create a code field at xt for a child of a DOES>-word; a-addr is the start of the Forth
code after DOES>.

does-handler! a addr – gforth “does-handler!”

Create a DOES>-handler at address a-addr. Normally, a-addr points just behind a DOES>.

/does-handler – n gforth “/does-handler”

The size of a DOES>-handler (includes possible padding).

The code addresses produced by various defining words are produced by the following
words:

docol: – addr gforth “docol:”

The code address of a colon definition.

docon: – addr gforth “docon:”

The code address of a CONSTANT.

dovar: – addr gforth “dovar:”

The code address of a CREATEd word.

douser: – addr gforth “douser:”

The code address of a USER variable.

dodefer: – addr gforth “dodefer:”

The code address of a defered word.

dofield: – addr gforth “dofield:”

The code address of a field.

The following two words generalize >code-address, >does-code, code-address!, and
does-code!:

>definer xt – definer unknown “>definer”

Definer is a unique identifier for the way the xt was defined. Words defined with dif-
ferent does>-codes have different definers. The definer can be used for comparison and in
definer!.

definer! definer xt – unknown “definer!”

The word represented by xt changes its behaviour to the behaviour associated with
definer.

Chapter 5: Forth Words 164

5.26 Passing Commands to the Operating System

Gforth allows you to pass an arbitrary string to the host operating system shell (if such
a thing exists) for execution.

sh "..." – gforth “sh”

Parse a string and use system to pass it to the host operating system for execution in a
sub-shell.

system c-addr u – gforth “system”

Pass the string specified by c-addr u to the host operating system for execution in a
sub-shell.

$? – n gforth “dollar-question”

Value – the exit status returned by the most recently executed system command.

getenv c-addr1 u1 – c-addr2 u2 gforth “getenv”

The string c-addr1 u1 specifies an environment variable. The string c-addr2 u2 is the
host operating system’s expansion of that environment variable. If the environment variable
does not exist, c-addr2 u2 specifies a string 0 characters in length.

5.27 Keeping track of Time

ms n – facility-ext “ms”

Wait at least n milli-second.

time&date – nsec nmin nhour nday nmonth nyear facility-ext “time-and-date”

Report the current time of day. Seconds, minutes and hours are numbered from 0.
Months are numbered from 1.

utime – dtime gforth “utime”

Report the current time in microseconds since some epoch.

cputime – duser dsystem gforth “cputime”

duser and dsystem are the respective user- and system-level CPU times used since the
start of the Forth system (excluding child processes), in microseconds (the granularity may
be much larger, however). On platforms without the getrusage call, it reports elapsed time
(since some epoch) for duser and 0 for dsystem.

5.28 Miscellaneous Words

These section lists the ANS Forth words that are not documented elsewhere in this
manual. Ultimately, they all need proper homes.

quit ?? – ?? core “quit”

Empty the return stack, make the user input device the input source, enter interpret
state and start the text interpreter.

The following ANS Forth words are not currently supported by Gforth (see Chapter 8
[ANS conformance], page 167):

EDITOR EMIT? FORGET

Chapter 6: Error messages 165

6 Error messages

A typical Gforth error message looks like this:

in file included from \evaluated string/:-1
in file included from ./yyy.fs:1
./xxx.fs:4: Invalid memory address
bar
^^^
Backtrace:
$400E664C @
$400E6664 foo

The message identifying the error is Invalid memory address. The error happened
when text-interpreting line 4 of the file ‘./xxx.fs’. This line is given (it contains bar), and
the word on the line where the error happened, is pointed out (with ^^^).

The file containing the error was included in line 1 of ‘./yyy.fs’, and ‘yyy.fs’ was
included from a non-file (in this case, by giving ‘yyy.fs’ as command-line parameter to
Gforth).

At the end of the error message you find a return stack dump that can be interpreted as
a backtrace (possibly empty). On top you find the top of the return stack when the throw

happened, and at the bottom you find the return stack entry just above the return stack of
the topmost text interpreter.

To the right of most return stack entries you see a guess for the word that pushed that
return stack entry as its return address. This gives a backtrace. In our case we see that
bar called foo, and foo called @ (and @ had an Invalid memory address exception).

Note that the backtrace is not perfect: We don’t know which return stack entries are
return addresses (so we may get false positives); and in some cases (e.g., for abort") we
cannot determine from the return address the word that pushed the return address, so for
some return addresses you see no names in the return stack dump.

The return stack dump represents the return stack at the time when a specific throw

was executed. In programs that make use of catch, it is not necessarily clear which throw

should be used for the return stack dump (e.g., consider one throw that indicates an error,
which is caught, and during recovery another error happens; which throw should be used
for the stack dump?). Gforth presents the return stack dump for the first throw after the
last executed (not returned-to) catch; this works well in the usual case.

Gforth is able to do a return stack dump for throws generated from primitives (e.g.,
invalid memory address, stack empty etc.); gforth-fast is only able to do a return stack
dump from a directly called throw (including abort etc.). Given an exception caused by
a primitive in gforth-fast, you will typically see no return stack dump at all; however, if
the exception is caught by catch (e.g., for restoring some state), and then thrown again,
the return stack dump will be for the first such throw.

Chapter 7: Tools 166

7 Tools

See also Chapter 12 [Emacs and Gforth], page 185.

7.1 ‘ans-report.fs’: Report the words used, sorted by
wordset

If you want to label a Forth program as ANS Forth Program, you must document which
wordsets the program uses; for extension wordsets, it is helpful to list the words the program
requires from these wordsets (because Forth systems are allowed to provide only some words
of them).

The ‘ans-report.fs’ tool makes it easy for you to determine which words from which
wordset and which non-ANS words your application uses. You simply have to include
‘ans-report.fs’ before loading the program you want to check. After loading your pro-
gram, you can get the report with print-ans-report. A typical use is to run this as batch
job like this:

gforth ans-report.fs myprog.fs -e "print-ans-report bye"

The output looks like this (for ‘compat/control.fs’):

The program uses the following words
from CORE :
: POSTPONE THEN ; immediate ?dup IF 0=
from BLOCK-EXT :
\
from FILE :
(

7.1.1 Caveats

Note that ‘ans-report.fs’ just checks which words are used, not whether they are used
in an ANS Forth conforming way!

Some words are defined in several wordsets in the standard. ‘ans-report.fs’ reports
them for only one of the wordsets, and not necessarily the one you expect. It depends
on usage which wordset is the right one to specify. E.g., if you only use the compilation
semantics of S", it is a Core word; if you also use its interpretation semantics, it is a File
word.

Chapter 8: ANS conformance 167

8 ANS conformance

To the best of our knowledge, Gforth is an

ANS Forth System

• providing the Core Extensions word set

• providing the Block word set

• providing the Block Extensions word set

• providing the Double-Number word set

• providing the Double-Number Extensions word set

• providing the Exception word set

• providing the Exception Extensions word set

• providing the Facility word set

• providing EKEY, EKEY>CHAR, EKEY?, MS and TIME&DATE from the Facility Extensions
word set

• providing the File Access word set

• providing the File Access Extensions word set

• providing the Floating-Point word set

• providing the Floating-Point Extensions word set

• providing the Locals word set

• providing the Locals Extensions word set

• providing the Memory-Allocation word set

• providing the Memory-Allocation Extensions word set (that one’s easy)

• providing the Programming-Tools word set

• providing ;CODE, AHEAD, ASSEMBLER, BYE, CODE, CS-PICK, CS-ROLL, STATE, [ELSE],
[IF], [THEN] from the Programming-Tools Extensions word set

• providing the Search-Order word set

• providing the Search-Order Extensions word set

• providing the String word set

• providing the String Extensions word set (another easy one)

Gforth has the following environmental restrictions:

• While processing the OS command line, if an exception is not caught, Gforth exits with
a non-zero exit code instyead of performing QUIT.

• When an throw is performed after a query, Gforth does not allways restore the input
source specification in effect at the corresponding catch.

In addition, ANS Forth systems are required to document certain implementation
choices. This chapter tries to meet these requirements. In many cases it gives a way to ask
the system for the information instead of providing the information directly, in particular,
if the information depends on the processor, the operating system or the installation
options chosen, or if they are likely to change during the maintenance of Gforth.

Chapter 8: ANS conformance 168

8.1 The Core Words

8.1.1 Implementation Defined Options

(Cell) aligned addresses:
processor-dependent. Gforth’s alignment words perform natural alignment
(e.g., an address aligned for a datum of size 8 is divisible by 8). Unaligned
accesses usually result in a -23 THROW.

EMIT and non-graphic characters:
The character is output using the C library function (actually, macro) putc.

character editing of ACCEPT and EXPECT:
This is modeled on the GNU readline library (see section “Command Line
Editing” in The GNU Readline Library) with Emacs-like key bindings. Tab

deviates a little by producing a full word completion every time you type it
(instead of producing the common prefix of all completions). See Section 2.3
[Command-line editing], page 6.

character set:
The character set of your computer and display device. Gforth is 8-bit-clean
(but some other component in your system may make trouble).

Character-aligned address requirements:
installation-dependent. Currently a character is represented by a C unsigned

char; in the future we might switch to wchar_t (Comments on that requested).

character-set extensions and matching of names:
Any character except the ASCII NUL character can be used in a name. Match-
ing is case-insensitive (except in TABLEs). The matching is performed using the
C library function strncasecmp, whose function is probably influenced by the
locale. E.g., the C locale does not know about accents and umlauts, so they
are matched case-sensitively in that locale. For portability reasons it is best to
write programs such that they work in the C locale. Then one can use libraries
written by a Polish programmer (who might use words containing ISO Latin-2
encoded characters) and by a French programmer (ISO Latin-1) in the same
program (of course, WORDS will produce funny results for some of the words
(which ones, depends on the font you are using)). Also, the locale you prefer
may not be available in other operating systems. Hopefully, Unicode will solve
these problems one day.

conditions under which control characters match a space delimiter:
If word is called with the space character as a delimiter, all white-space char-
acters (as identified by the C macro isspace()) are delimiters. Parse, on the
other hand, treats space like other delimiters. Parse-word, which is used by
the outer interpreter (aka text interpreter) by default, treats all white-space
characters as delimiters.

format of the control-flow stack:
The data stack is used as control-flow stack. The size of a control-flow stack
item in cells is given by the constant cs-item-size. At the time of this writing,

Chapter 8: ANS conformance 169

an item consists of a (pointer to a) locals list (third), an address in the code
(second), and a tag for identifying the item (TOS). The following tags are used:
defstart, live-orig, dead-orig, dest, do-dest, scopestart.

conversion of digits > 35
The characters [\]^_’ are the digits with the decimal value 36−41. There is
no way to input many of the larger digits.

display after input terminates in ACCEPT and EXPECT:
The cursor is moved to the end of the entered string. If the input is terminated
using the Return key, a space is typed.

exception abort sequence of ABORT":
The error string is stored into the variable "error and a -2 throw is performed.

input line terminator:
For interactive input, C-m (CR) and C-j (LF) terminate lines. One of these
characters is typically produced when you type the Enter or Return key.

maximum size of a counted string:
s" /counted-string" environment? drop .. Currently 255 characters on all
platforms, but this may change.

maximum size of a parsed string:
Given by the constant /line. Currently 255 characters.

maximum size of a definition name, in characters:
MAXU/8

maximum string length for ENVIRONMENT?, in characters:
MAXU/8

method of selecting the user input device:
The user input device is the standard input. There is currently no way to
change it from within Gforth. However, the input can typically be redirected
in the command line that starts Gforth.

method of selecting the user output device:
EMIT and TYPE output to the file-id stored in the value outfile-id (stdout
by default). Gforth uses unbuffered output when the user output device is a
terminal, otherwise the output is buffered.

methods of dictionary compilation:
What are we expected to document here?

number of bits in one address unit:
s" address-units-bits" environment? drop .. 8 in all current platforms.

number representation and arithmetic:
Processor-dependent. Binary two’s complement on all current platforms.

ranges for integer types:
Installation-dependent. Make environmental queries for MAX-N, MAX-U, MAX-D
and MAX-UD. The lower bounds for unsigned (and positive) types is 0. The lower
bound for signed types on two’s complement and one’s complement machines
machines can be computed by adding 1 to the upper bound.

Chapter 8: ANS conformance 170

read-only data space regions:
The whole Forth data space is writable.

size of buffer at WORD:
PAD HERE - .. 104 characters on 32-bit machines. The buffer is shared with the
pictured numeric output string. If overwriting PAD is acceptable, it is as large
as the remaining dictionary space, although only as much can be sensibly used
as fits in a counted string.

size of one cell in address units:
1 cells ..

size of one character in address units:
1 chars .. 1 on all current platforms.

size of the keyboard terminal buffer:
Varies. You can determine the size at a specific time using lp@ tib - .. It is
shared with the locals stack and TIBs of files that include the current file. You
can change the amount of space for TIBs and locals stack at Gforth startup
with the command line option -l.

size of the pictured numeric output buffer:
PAD HERE - .. 104 characters on 32-bit machines. The buffer is shared with
WORD.

size of the scratch area returned by PAD:
The remainder of dictionary space. unused pad here - - ..

system case-sensitivity characteristics:
Dictionary searches are case-insensitive (except in TABLEs). However, as ex-
plained above under character-set extensions, the matching for non-ASCII char-
acters is determined by the locale you are using. In the default C locale all
non-ASCII characters are matched case-sensitively.

system prompt:
ok in interpret state, compiled in compile state.

division rounding:
installation dependent. s" floored" environment? drop .. We leave the
choice to gcc (what to use for /) and to you (whether to use fm/mod, sm/rem
or simply /).

values of STATE when true:
-1.

values returned after arithmetic overflow:
On two’s complement machines, arithmetic is performed modulo 2**bits-per-
cell for single arithmetic and 4**bits-per-cell for double arithmetic (with ap-
propriate mapping for signed types). Division by zero typically results in a -55

throw (Floating-point unidentified fault) or -10 throw (divide by zero).

whether the current definition can be found after DOES>:
No.

Chapter 8: ANS conformance 171

8.1.2 Ambiguous conditions

a name is neither a word nor a number:
-13 throw (Undefined word).

a definition name exceeds the maximum length allowed:
-19 throw (Word name too long)

addressing a region not inside the various data spaces of the forth system:
The stacks, code space and header space are accessible. Machine code space
is typically readable. Accessing other addresses gives results dependent on the
operating system. On decent systems: -9 throw (Invalid memory address).

argument type incompatible with parameter:
This is usually not caught. Some words perform checks, e.g., the control flow
words, and issue a ABORT" or -12 THROW (Argument type mismatch).

attempting to obtain the execution token of a word with undefined execution semantics:
-14 throw (Interpreting a compile-only word). In some cases, you get an exe-
cution token for compile-only-error (which performs a -14 throw when ex-
ecuted).

dividing by zero:
On some platforms, this produces a -10 throw (Division by zero); on other
systems, this typically results in a -55 throw (Floating-point unidentified fault).

insufficient data stack or return stack space:
Depending on the operating system, the installation, and the invocation of
Gforth, this is either checked by the memory management hardware, or it is
not checked. If it is checked, you typically get a -3 throw (Stack overflow),
-5 throw (Return stack overflow), or -9 throw (Invalid memory address) (de-
pending on the platform and how you achieved the overflow) as soon as the
overflow happens. If it is not checked, overflows typically result in mysterious
illegal memory accesses, producing -9 throw (Invalid memory address) or -23

throw (Address alignment exception); they might also destroy the internal data
structure of ALLOCATE and friends, resulting in various errors in these words.

insufficient space for loop control parameters:
Like other return stack overflows.

insufficient space in the dictionary:
If you try to allot (either directly with allot, or indirectly with ,, create etc.)
more memory than available in the dictionary, you get a -8 throw (Dictionary
overflow). If you try to access memory beyond the end of the dictionary, the
results are similar to stack overflows.

interpreting a word with undefined interpretation semantics:
For some words, we have defined interpretation semantics. For the others: -14
throw (Interpreting a compile-only word).

modifying the contents of the input buffer or a string literal:
These are located in writable memory and can be modified.

Chapter 8: ANS conformance 172

overflow of the pictured numeric output string:
-17 throw (Pictured numeric ouput string overflow).

parsed string overflow:
PARSE cannot overflow. WORD does not check for overflow.

producing a result out of range:
On two’s complement machines, arithmetic is performed modulo 2**bits-per-
cell for single arithmetic and 4**bits-per-cell for double arithmetic (with ap-
propriate mapping for signed types). Division by zero typically results in a -10

throw (divide by zero) or -55 throw (floating point unidentified fault). convert
and >number currently overflow silently.

reading from an empty data or return stack:
The data stack is checked by the outer (aka text) interpreter after every word
executed. If it has underflowed, a -4 throw (Stack underflow) is performed.
Apart from that, stacks may be checked or not, depending on operating system,
installation, and invocation. If they are caught by a check, they typically result
in -4 throw (Stack underflow), -6 throw (Return stack underflow) or -9 throw

(Invalid memory address), depending on the platform and which stack under-
flows and by how much. Note that even if the system uses checking (through the
MMU), your program may have to underflow by a significant number of stack
items to trigger the reaction (the reason for this is that the MMU, and therefore
the checking, works with a page-size granularity). If there is no checking, the
symptoms resulting from an underflow are similar to those from an overflow.
Unbalanced return stack errors can result in a variety of symptoms, includ-
ing -9 throw (Invalid memory address) and Illegal Instruction (typically -260

throw).

unexpected end of the input buffer, resulting in an attempt to use a zero-length string as a
name:

Create and its descendants perform a -16 throw (Attempt to use zero-length
string as a name). Words like ’ probably will not find what they search. Note
that it is possible to create zero-length names with nextname (should it not?).

>IN greater than input buffer:
The next invocation of a parsing word returns a string with length 0.

RECURSE appears after DOES>:
Compiles a recursive call to the defining word, not to the defined word.

argument input source different than current input source for RESTORE-INPUT:
-12 THROW. Note that, once an input file is closed (e.g., because the end of the
file was reached), its source-id may be reused. Therefore, restoring an input
source specification referencing a closed file may lead to unpredictable results
instead of a -12 THROW.

In the future, Gforth may be able to restore input source specifications from
other than the current input source.

data space containing definitions gets de-allocated:
Deallocation with allot is not checked. This typically results in memory access
faults or execution of illegal instructions.

Chapter 8: ANS conformance 173

data space read/write with incorrect alignment:
Processor-dependent. Typically results in a -23 throw (Address alignment ex-
ception). Under Linux-Intel on a 486 or later processor with alignment turned
on, incorrect alignment results in a -9 throw (Invalid memory address). There
are reportedly some processors with alignment restrictions that do not report
violations.

data space pointer not properly aligned, ,, C,:
Like other alignment errors.

less than u+2 stack items (PICK and ROLL):
Like other stack underflows.

loop control parameters not available:
Not checked. The counted loop words simply assume that the top of return
stack items are loop control parameters and behave accordingly.

most recent definition does not have a name (IMMEDIATE):
abort" last word was headerless".

name not defined by VALUE used by TO:
-32 throw (Invalid name argument) (unless name is a local or was defined by
CONSTANT; in the latter case it just changes the constant).

name not found (’, POSTPONE, [’], [COMPILE]):
-13 throw (Undefined word)

parameters are not of the same type (DO, ?DO, WITHIN):
Gforth behaves as if they were of the same type. I.e., you can predict the
behaviour by interpreting all parameters as, e.g., signed.

POSTPONE or [COMPILE] applied to TO:
Assume : X POSTPONE TO ; IMMEDIATE. X performs the compilation semantics
of TO.

String longer than a counted string returned by WORD:
Not checked. The string will be ok, but the count will, of course, contain only
the least significant bits of the length.

u greater than or equal to the number of bits in a cell (LSHIFT, RSHIFT):
Processor-dependent. Typical behaviours are returning 0 and using only the
low bits of the shift count.

word not defined via CREATE:
>BODY produces the PFA of the word no matter how it was defined.

DOES> changes the execution semantics of the last defined word no matter how
it was defined. E.g., CONSTANT DOES> is equivalent to CREATE , DOES>.

words improperly used outside <# and #>:
Not checked. As usual, you can expect memory faults.

Chapter 8: ANS conformance 174

8.1.3 Other system documentation

nonstandard words using PAD:
None.

operator’s terminal facilities available:
After processing the OS’s command line, Gforth goes into interactive mode, and
you can give commands to Gforth interactively. The actual facilities available
depend on how you invoke Gforth.

program data space available:
UNUSED . gives the remaining dictionary space. The total dictionary space can
be specified with the -m switch (see Section 2.1 [Invoking Gforth], page 3) when
Gforth starts up.

return stack space available:
You can compute the total return stack space in cells with s" RETURN-STACK-

CELLS" environment? drop .. You can specify it at startup time with the -r

switch (see Section 2.1 [Invoking Gforth], page 3).

stack space available:
You can compute the total data stack space in cells with s" STACK-CELLS"

environment? drop .. You can specify it at startup time with the -d switch
(see Section 2.1 [Invoking Gforth], page 3).

system dictionary space required, in address units:
Type here forthstart - . after startup. At the time of this writing, this gives
80080 (bytes) on a 32-bit system.

8.2 The optional Block word set

8.2.1 Implementation Defined Options

the format for display by LIST:
First the screen number is displayed, then 16 lines of 64 characters, each line
preceded by the line number.

the length of a line affected by \:
64 characters.

8.2.2 Ambiguous conditions

correct block read was not possible:
Typically results in a throw of some OS-derived value (between -512 and -2048).
If the blocks file was just not long enough, blanks are supplied for the missing
portion.

I/O exception in block transfer:
Typically results in a throw of some OS-derived value (between -512 and -2048).

invalid block number:
-35 throw (Invalid block number)

Chapter 8: ANS conformance 175

a program directly alters the contents of BLK:
The input stream is switched to that other block, at the same position. If the
storing to BLK happens when interpreting non-block input, the system will get
quite confused when the block ends.

no current block buffer for UPDATE:
UPDATE has no effect.

8.2.3 Other system documentation

any restrictions a multiprogramming system places on the use of buffer addresses:
No restrictions (yet).

the number of blocks available for source and data:
depends on your disk space.

8.3 The optional Double Number word set

8.3.1 Ambiguous conditions

d outside of range of n in D>S:
The least significant cell of d is produced.

8.4 The optional Exception word set

8.4.1 Implementation Defined Options

THROW-codes used in the system:
The codes -256−-511 are used for reporting signals. The mapping from OS
signal numbers to throw codes is -256−signal. The codes -512−-2047 are used
for OS errors (for file and memory allocation operations). The mapping from OS
error numbers to throw codes is -512−errno. One side effect of this mapping is
that undefined OS errors produce a message with a strange number; e.g., -1000
THROW results in Unknown error 488 on my system.

8.5 The optional Facility word set

8.5.1 Implementation Defined Options

encoding of keyboard events (EKEY):
Keys corresponding to ASCII characters are encoded as ASCII characters.
Other keys are encoded with the constants k-left, k-right, k-up, k-down,
k-home, k-end, k1, k2, k3, k4, k5, k6, k7, k8, k9, k10, k11, k12.

duration of a system clock tick:
System dependent. With respect to MS, the time is specified in microseconds.
How well the OS and the hardware implement this, is another question.

Chapter 8: ANS conformance 176

repeatability to be expected from the execution of MS:
System dependent. On Unix, a lot depends on load. If the system is lightly
loaded, and the delay is short enough that Gforth does not get swapped out,
the performance should be acceptable. Under MS-DOS and other single-tasking
systems, it should be good.

8.5.2 Ambiguous conditions

AT-XY can’t be performed on user output device:
Largely terminal dependent. No range checks are done on the arguments. No
errors are reported. You may see some garbage appearing, you may see simply
nothing happen.

8.6 The optional File-Access word set

8.6.1 Implementation Defined Options

file access methods used:
R/O, R/W and BIN work as you would expect. W/O translates into the C file
opening mode w (or wb): The file is cleared, if it exists, and created, if it
does not (with both open-file and create-file). Under Unix create-file

creates a file with 666 permissions modified by your umask.

file exceptions:
The file words do not raise exceptions (except, perhaps, memory access faults
when you pass illegal addresses or file-ids).

file line terminator:
System-dependent. Gforth uses C’s newline character as line terminator. What
the actual character code(s) of this are is system-dependent.

file name format:
System dependent. Gforth just uses the file name format of your OS.

information returned by FILE-STATUS:
FILE-STATUS returns the most powerful file access mode allowed for the file:
Either R/O, W/O or R/W. If the file cannot be accessed, R/O BIN is returned. BIN
is applicable along with the returned mode.

input file state after an exception when including source:
All files that are left via the exception are closed.

ior values and meaning:
The iors returned by the file and memory allocation words are intended as
throw codes. They typically are in the range -512−-2047 of OS errors. The
mapping from OS error numbers to iors is -512−errno.

maximum depth of file input nesting:
limited by the amount of return stack, locals/TIB stack, and the number of
open files available. This should not give you troubles.

Chapter 8: ANS conformance 177

maximum size of input line:
/line. Currently 255.

methods of mapping block ranges to files:
By default, blocks are accessed in the file ‘blocks.fb’ in the current working
directory. The file can be switched with USE.

number of string buffers provided by S":
1

size of string buffer used by S":
/line. currently 255.

8.6.2 Ambiguous conditions

attempting to position a file outside its boundaries:
REPOSITION-FILE is performed as usual: Afterwards, FILE-POSITION returns
the value given to REPOSITION-FILE.

attempting to read from file positions not yet written:
End-of-file, i.e., zero characters are read and no error is reported.

file-id is invalid (INCLUDE-FILE):
An appropriate exception may be thrown, but a memory fault or other problem
is more probable.

I/O exception reading or closing file-id (INCLUDE-FILE, INCLUDED):
The ior produced by the operation, that discovered the problem, is thrown.

named file cannot be opened (INCLUDED):
The ior produced by open-file is thrown.

requesting an unmapped block number:
There are no unmapped legal block numbers. On some operating systems,
writing a block with a large number may overflow the file system and have an
error message as consequence.

using source-id when blk is non-zero:
source-id performs its function. Typically it will give the id of the source
which loaded the block. (Better ideas?)

8.7 The optional Floating-Point word set

8.7.1 Implementation Defined Options

format and range of floating point numbers:
System-dependent; the double type of C.

results of REPRESENT when float is out of range:
System dependent; REPRESENT is implemented using the C library function
ecvt() and inherits its behaviour in this respect.

Chapter 8: ANS conformance 178

rounding or truncation of floating-point numbers:
System dependent; the rounding behaviour is inherited from the hosting C
compiler. IEEE-FP-based (i.e., most) systems by default round to nearest, and
break ties by rounding to even (i.e., such that the last bit of the mantissa is 0).

size of floating-point stack:
s" FLOATING-STACK" environment? drop . gives the total size of the floating-
point stack (in floats). You can specify this on startup with the command-line
option -f (see Section 2.1 [Invoking Gforth], page 3).

width of floating-point stack:
1 floats.

8.7.2 Ambiguous conditions

df@ or df! used with an address that is not double-float aligned:
System-dependent. Typically results in a -23 THROW like other alignment vio-
lations.

f@ or f! used with an address that is not float aligned:
System-dependent. Typically results in a -23 THROW like other alignment vio-
lations.

floating-point result out of range:
System-dependent. Can result in a -43 throw (floating point overflow), -54

throw (floating point underflow), -41 throw (floating point inexact result), -
55 THROW (Floating-point unidentified fault), or can produce a special value
representing, e.g., Infinity.

sf@ or sf! used with an address that is not single-float aligned:
System-dependent. Typically results in an alignment fault like other alignment
violations.

base is not decimal (REPRESENT, F., FE., FS.):
The floating-point number is converted into decimal nonetheless.

Both arguments are equal to zero (FATAN2):
System-dependent. FATAN2 is implemented using the C library function
atan2().

Using FTAN on an argument r1 where cos(r1) is zero:
System-dependent. Anyway, typically the cos of r1 will not be zero because of
small errors and the tan will be a very large (or very small) but finite number.

d cannot be presented precisely as a float in D>F:
The result is rounded to the nearest float.

dividing by zero:
Platform-dependent; can produce an Infinity, NaN, -42 throw (floating point
divide by zero) or -55 throw (Floating-point unidentified fault).

exponent too big for conversion (DF!, DF@, SF!, SF@):
System dependent. On IEEE-FP based systems the number is converted into
an infinity.

Chapter 8: ANS conformance 179

float<1 (FACOSH):
Platform-dependent; on IEEE-FP systems typically produces a NaN.

float=<-1 (FLNP1):
Platform-dependent; on IEEE-FP systems typically produces a NaN (or a neg-
ative infinity for float=-1).

float=<0 (FLN, FLOG):
Platform-dependent; on IEEE-FP systems typically produces a NaN (or a neg-
ative infinity for float=0).

float<0 (FASINH, FSQRT):
Platform-dependent; for fsqrt this typically gives a NaN, for fasinh some
platforms produce a NaN, others a number (bug in the C library?).

|float|>1 (FACOS, FASIN, FATANH):
Platform-dependent; IEEE-FP systems typically produce a NaN.

integer part of float cannot be represented by d in F>D:
Platform-dependent; typically, some double number is produced and no error
is reported.

string larger than pictured numeric output area (f., fe., fs.):
Precision characters of the numeric output area are used. If precision is too
high, these words will smash the data or code close to here.

8.8 The optional Locals word set

8.8.1 Implementation Defined Options

maximum number of locals in a definition:
s" #locals" environment? drop .. Currently 15. This is a lower bound, e.g.,
on a 32-bit machine there can be 41 locals of up to 8 characters. The number
of locals in a definition is bounded by the size of locals-buffer, which contains
the names of the locals.

8.8.2 Ambiguous conditions

executing a named local in interpretation state:
Locals have no interpretation semantics. If you try to perform the interpretation
semantics, you will get a -14 throw somewhere (Interpreting a compile-only
word). If you perform the compilation semantics, the locals access will be
compiled (irrespective of state).

name not defined by VALUE or (LOCAL) (TO):
-32 throw (Invalid name argument)

8.9 The optional Memory-Allocation word set

Chapter 8: ANS conformance 180

8.9.1 Implementation Defined Options

values and meaning of ior :
The iors returned by the file and memory allocation words are intended as
throw codes. They typically are in the range -512−-2047 of OS errors. The
mapping from OS error numbers to iors is -512−errno.

8.10 The optional Programming-Tools word set

8.10.1 Implementation Defined Options

ending sequence for input following ;CODE and CODE:
END-CODE

manner of processing input following ;CODE and CODE:
The ASSEMBLER vocabulary is pushed on the search order stack, and the input
is processed by the text interpreter, (starting) in interpret state.

search order capability for EDITOR and ASSEMBLER:
The ANS Forth search order word set.

source and format of display by SEE:
The source for see is the executable code used by the inner interpreter. The
current see tries to output Forth source code (and on some platforms, assembly
code for primitives) as well as possible.

8.10.2 Ambiguous conditions

deleting the compilation word list (FORGET):
Not implemented (yet).

fewer than u+1 items on the control-flow stack (CS-PICK, CS-ROLL):
This typically results in an abort" with a descriptive error message (may change
into a -22 throw (Control structure mismatch) in the future). You may also
get a memory access error. If you are unlucky, this ambiguous condition is not
caught.

name can’t be found (FORGET):
Not implemented (yet).

name not defined via CREATE:
;CODE behaves like DOES> in this respect, i.e., it changes the execution semantics
of the last defined word no matter how it was defined.

POSTPONE applied to [IF]:
After defining : X POSTPONE [IF] ; IMMEDIATE. X is equivalent to [IF].

reaching the end of the input source before matching [ELSE] or [THEN]:
Continue in the same state of conditional compilation in the next outer input
source. Currently there is no warning to the user about this.

removing a needed definition (FORGET):
Not implemented (yet).

Chapter 8: ANS conformance 181

8.11 The optional Search-Order word set

8.11.1 Implementation Defined Options

maximum number of word lists in search order:
s" wordlists" environment? drop .. Currently 16.

minimum search order:
root root.

8.11.2 Ambiguous conditions

changing the compilation word list (during compilation):
The word is entered into the word list that was the compilation word list at the
start of the definition. Any changes to the name field (e.g., immediate) or the
code field (e.g., when executing DOES>) are applied to the latest defined word
(as reported by latest or latestxt), if possible, irrespective of the compilation
word list.

search order empty (previous):
abort" Vocstack empty".

too many word lists in search order (also):
abort" Vocstack full".

Chapter 9: Should I use Gforth extensions? 182

9 Should I use Gforth extensions?

As you read through the rest of this manual, you will see documentation for Standard
words, and documentation for some appealing Gforth extensions. You might ask yourself
the question: “Should I restrict myself to the standard, or should I use the extensions?”

The answer depends on the goals you have for the program you are working on:

• Is it just for yourself or do you want to share it with others?

• If you want to share it, do the others all use Gforth?

• If it is just for yourself, do you want to restrict yourself to Gforth?

If restricting the program to Gforth is ok, then there is no reason not to use extensions.
It is still a good idea to keep to the standard where it is easy, in case you want to reuse
these parts in another program that you want to be portable.

If you want to be able to port the program to other Forth systems, there are the following
points to consider:

• Most Forth systems that are being maintained support the ANS Forth standard. So if
your program complies with the standard, it will be portable among many systems.

• A number of the Gforth extensions can be implemented in ANS Forth using public-
domain files provided in the ‘compat/’ directory. These are mentioned in the text in
passing. There is no reason not to use these extensions, your program will still be ANS
Forth compliant; just include the appropriate compat files with your program.

• The tool ‘ans-report.fs’ (see Section 7.1 [ANS Report], page 166) makes it easy to
analyse your program and determine what non-Standard words it relies upon. However,
it does not check whether you use standard words in a non-standard way.

• Some techniques are not standardized by ANS Forth, and are hard or impossible to
implement in a standard way, but can be implemented in most Forth systems easily,
and usually in similar ways (e.g., accessing word headers). Forth has a rich historical
precedent for programmers taking advantage of implementation-dependent features of
their tools (for example, relying on a knowledge of the dictionary structure). Some-
times these techniques are necessary to extract every last bit of performance from the
hardware, sometimes they are just a programming shorthand.

• Does using a Gforth extension save more work than the porting this part to other Forth
systems (if any) will cost?

• Is the additional functionality worth the reduction in portability and the additional
porting problems?

In order to perform these consideratios, you need to know what’s standard and what’s
not. This manual generally states if something is non-standard, but the authoritative source
is the standard document (http://www.taygeta.com/forth/dpans.html). Appendix A
of the Standard (Rationale) provides a valuable insight into the thought processes of the
technical committee.

Note also that portability between Forth systems is not the only portability issue; there
is also the issue of portability between different platforms (processor/OS combinations).

Chapter 10: Model 183

10 Model

This chapter has yet to be written. It will contain information, on which internal struc-
tures you can rely.

Chapter 11: Integrating Gforth into C programs 184

11 Integrating Gforth into C programs

This is not yet implemented.

Several people like to use Forth as scripting language for applications that are otherwise
written in C, C++, or some other language.

The Forth system ATLAST provides facilities for embedding it into applications; un-
fortunately it has several disadvantages: most importantly, it is not based on ANS Forth,
and it is apparently dead (i.e., not developed further and not supported). The facilities
provided by Gforth in this area are inspired by ATLAST’s facilities, so making the switch
should not be hard.

We also tried to design the interface such that it can easily be implemented by other
Forth systems, so that we may one day arrive at a standardized interface. Such a standard
interface would allow you to replace the Forth system without having to rewrite C code.

You embed the Gforth interpreter by linking with the library libgforth.a (give the
compiler the option -lgforth). All global symbols in this library that belong to the in-
terface, have the prefix forth_. (Global symbols that are used internally have the prefix
gforth_).

You can include the declarations of Forth types and the functions and variables of the
interface with #include <forth.h>.

Types.

Variables.

Data and FP Stack pointer. Area sizes.

functions.

forth init(imagefile) forth evaluate(string) exceptions? forth goto(address) (or
forth execute(xt)?) forth continue() (a corountining mechanism)

Adding primitives.

No checking.

Signals?

Accessing the Stacks

Chapter 12: Emacs and Gforth 185

12 Emacs and Gforth

Gforth comes with ‘gforth.el’, an improved version of ‘forth.el’ by Goran Rydqvist
(included in the TILE package). The improvements are:

• A better handling of indentation.

• A custom hilighting engine for Forth-code.

• Comment paragraph filling (M-q)

• Commenting (C-x \) and uncommenting (C-u C-x \) of regions

• Removal of debugging tracers (C-x ~, see Section 5.23.3 [Debugging], page 154).

• Support of the info-lookup feature for looking up the documentation of a word.

• Support for reading and writing blocks files.

To get a basic description of these features, enter Forth mode and type C-h m.

In addition, Gforth supports Emacs quite well: The source code locations given in error
messages, debugging output (from ~~) and failed assertion messages are in the right format
for Emacs’ compilation mode (see section “Running Compilations under Emacs” in Emacs
Manual) so the source location corresponding to an error or other message is only a few
keystrokes away (C-x ‘ for the next error, C-c C-c for the error under the cursor).

Moreover, for words documented in this manual, you can look up the glossary entry
quickly by using C-h TAB (info-lookup-symbol, see section “Documentation Commands”
in Emacs Manual). This feature requires Emacs 20.3 or later and does not work for words
containing :.

12.1 Installing gforth.el

To make the features from ‘gforth.el’ available in Emacs, add the following lines to
your ‘.emacs’ file:

(autoload ’forth-mode "gforth.el")
(setq auto-mode-alist (cons ’("\\.fs\\’" . forth-mode)

auto-mode-alist))
(autoload ’forth-block-mode "gforth.el")
(setq auto-mode-alist (cons ’("\\.fb\\’" . forth-block-mode)

auto-mode-alist))
(add-hook ’forth-mode-hook (function (lambda ()

;; customize variables here:
(setq forth-indent-level 4)
(setq forth-minor-indent-level 2)
(setq forth-hilight-level 3)
;;; ...

)))

12.2 Emacs Tags

If you require ‘etags.fs’, a new ‘TAGS’ file will be produced (see section “Tags Ta-
bles” in Emacs Manual) that contains the definitions of all words defined afterwards. You
can then find the source for a word using M-.. Note that Emacs can use several tags

Chapter 12: Emacs and Gforth 186

files at the same time (e.g., one for the Gforth sources and one for your program, see sec-
tion “Selecting a Tags Table” in Emacs Manual). The TAGS file for the preloaded words is
‘$(datadir)/gforth/$(VERSION)/TAGS’ (e.g., ‘/usr/local/share/gforth/0.2.0/TAGS’).
To get the best behaviour with ‘etags.fs’, you should avoid putting definitions both be-
fore and after require etc., otherwise you will see the same file visited several times by
commands like tags-search.

12.3 Hilighting

‘gforth.el’ comes with a custom source hilighting engine. When you open a file in
forth-mode, it will be completely parsed, assigning faces to keywords, comments, strings
etc. While you edit the file, modified regions get parsed and updated on-the-fly.

Use the variable ‘forth-hilight-level’ to change the level of decoration from 0 (no hilighting
at all) to 3 (the default). Even if you set the hilighting level to 0, the parser will still work
in the background, collecting information about whether regions of text are “compiled” or
“interpreted”. Those information are required for auto-indentation to work properly. Set
‘forth-disable-parser’ to non-nil if your computer is too slow to handle parsing. This will
have an impact on the smartness of the auto-indentation engine, though.

Sometimes Forth sources define new features that should be hilighted, new control struc-
tures, defining-words etc. You can use the variable ‘forth-custom-words’ to make forth-

mode hilight additional words and constructs. See the docstring of ‘forth-words’ for details
(in Emacs, type C-h v forth-words).

‘forth-custom-words’ is meant to be customized in your ‘.emacs’ file. To customize
hilighing in a file-specific manner, set ‘forth-local-words’ in a local-variables section at the
end of your source file (see section “Variables” in Emacs Manual).

Example:

0 [IF]
Local Variables:
forth-local-words:

((("t:") definition-starter (font-lock-keyword-face . 1)
"[\t\n]" t name (font-lock-function-name-face . 3))

((";t") definition-ender (font-lock-keyword-face . 1)))
End:

[THEN]

12.4 Auto-Indentation

forth-mode automatically tries to indent lines in a smart way, whenever you type 〈TAB〉

or break a line with C-m.

Simple customization can be achieved by setting ‘forth-indent-level’ and ‘forth-minor-
indent-level’ in your ‘.emacs’ file. For historical reasons ‘gforth.el’ indents per default by
multiples of 4 columns. To use the more traditional 3-column indentation, add the following
lines to your ‘.emacs’:

(add-hook ’forth-mode-hook (function (lambda ()
;; customize variables here:
(setq forth-indent-level 3)

Chapter 12: Emacs and Gforth 187

(setq forth-minor-indent-level 1)
)))

If you want indentation to recognize non-default words, customize it by setting ‘forth-
custom-indent-words’ in your ‘.emacs’. See the docstring of ‘forth-indent-words’ for details
(in Emacs, type C-h v forth-indent-words).

To customize indentation in a file-specific manner, set ‘forth-local-indent-words’ in a
local-variables section at the end of your source file (see section “Local Variables in Files”
in Emacs Manual).

Example:

0 [IF]
Local Variables:
forth-local-indent-words:

((("t:") (0 . 2) (0 . 2))
((";t") (-2 . 0) (0 . -2)))

End:
[THEN]

12.5 Blocks Files

forth-mode Autodetects blocks files by checking whether the length of the first line
exceeds 1023 characters. It then tries to convert the file into normal text format. When
you save the file, it will be written to disk as normal stream-source file.

If you want to write blocks files, use forth-blocks-mode. It inherits all the features
from forth-mode, plus some additions:

• Files are written to disk in blocks file format.

• Screen numbers are displayed in the mode line (enumerated beginning with the value
of ‘forth-block-base’)

• Warnings are displayed when lines exceed 64 characters.

• The beginning of the currently edited block is marked with an overlay-arrow.

There are some restrictions you should be aware of. When you open a blocks file that
contains tabulator or newline characters, these characters will be translated into spaces
when the file is written back to disk. If tabs or newlines are encountered during blocks file
reading, an error is output to the echo area. So have a look at the ‘*Messages*’ buffer,
when Emacs’ bell rings during reading.

Please consult the docstring of forth-blocks-mode for more information by typing C-h

v forth-blocks-mode).

Chapter 13: Image Files 188

13 Image Files

An image file is a file containing an image of the Forth dictionary, i.e., compiled Forth
code and data residing in the dictionary. By convention, we use the extension .fi for image
files.

13.1 Image Licensing Issues

An image created with gforthmi (see Section 13.5.1 [gforthmi], page 190) or savesystem
(see Section 13.3 [Non-Relocatable Image Files], page 189) includes the original image; i.e.,
according to copyright law it is a derived work of the original image.

Since Gforth is distributed under the GNU GPL, the newly created image falls under
the GNU GPL, too. In particular, this means that if you distribute the image, you have to
make all of the sources for the image available, including those you wrote. For details see
Section D.2 [GNU General Public License (Section 3)], page 214.

If you create an image with cross (see Section 13.5.2 [cross.fs], page 191), the image
contains only code compiled from the sources you gave it; if none of these sources is under
the GPL, the terms discussed above do not apply to the image. However, if your image
needs an engine (a gforth binary) that is under the GPL, you should make sure that you
distribute both in a way that is at most a mere aggregation, if you don’t want the terms of
the GPL to apply to the image.

13.2 Image File Background

Gforth consists not only of primitives (in the engine), but also of definitions written in
Forth. Since the Forth compiler itself belongs to those definitions, it is not possible to start
the system with the engine and the Forth source alone. Therefore we provide the Forth
code as an image file in nearly executable form. When Gforth starts up, a C routine loads
the image file into memory, optionally relocates the addresses, then sets up the memory
(stacks etc.) according to information in the image file, and (finally) starts executing Forth
code.

The image file variants represent different compromises between the goals of making it
easy to generate image files and making them portable.

Win32Forth 3.4 and Mitch Bradley’s cforth use relocation at run-time. This avoids
many of the complications discussed below (image files are data relocatable without further
ado), but costs performance (one addition per memory access).

By contrast, the Gforth loader performs relocation at image load time. The loader also
has to replace tokens that represent primitive calls with the appropriate code-field addresses
(or code addresses in the case of direct threading).

There are three kinds of image files, with different degrees of relocatability:
non-relocatable, data-relocatable, and fully relocatable image files.

These image file variants have several restrictions in common; they are caused by the
design of the image file loader:

• There is only one segment; in particular, this means, that an image file cannot represent
ALLOCATEd memory chunks (and pointers to them). The contents of the stacks are not
represented, either.

Chapter 13: Image Files 189

• The only kinds of relocation supported are: adding the same offset to all cells that
represent data addresses; and replacing special tokens with code addresses or with
pieces of machine code.

If any complex computations involving addresses are performed, the results cannot be
represented in the image file. Several applications that use such computations come to
mind:

− Hashing addresses (or data structures which contain addresses) for table lookup. If
you use Gforth’s tables or wordlists for this purpose, you will have no problem,
because the hash tables are recomputed automatically when the system is started.
If you use your own hash tables, you will have to do something similar.

− There’s a cute implementation of doubly-linked lists that uses XORed addresses.
You could represent such lists as singly-linked in the image file, and restore the
doubly-linked representation on startup.1

− The code addresses of run-time routines like docol: cannot be represented in
the image file (because their tokens would be replaced by machine code in direct
threaded implementations). As a workaround, compute these addresses at run-
time with >code-address from the executions tokens of appropriate words (see
the definitions of docol: and friends in ‘kernel/getdoers.fs’).

− On many architectures addresses are represented in machine code in some shifted
or mangled form. You cannot put CODE words that contain absolute addresses in
this form in a relocatable image file. Workarounds are representing the address in
some relative form (e.g., relative to the CFA, which is present in some register),
or loading the address from a place where it is stored in a non-mangled form.

13.3 Non-Relocatable Image Files

These files are simple memory dumps of the dictionary. They are specific to the ex-
ecutable (i.e., ‘gforth’ file) they were created with. What’s worse, they are specific to
the place on which the dictionary resided when the image was created. Now, there is no
guarantee that the dictionary will reside at the same place the next time you start Gforth,
so there’s no guarantee that a non-relocatable image will work the next time (Gforth will
complain instead of crashing, though).

You can create a non-relocatable image file with

savesystem "name" – gforth “savesystem”

13.4 Data-Relocatable Image Files

These files contain relocatable data addresses, but fixed code addresses (instead of to-
kens). They are specific to the executable (i.e., ‘gforth’ file) they were created with. For
direct threading on some architectures (e.g., the i386), data-relocatable images do not work.
You get a data-relocatable image, if you use ‘gforthmi’ with a Gforth binary that is not
doubly indirect threaded (see Section 13.5 [Fully Relocatable Image Files], page 190).

1 In my opinion, though, you should think thrice before using a doubly-linked list (whatever
implementation).

Chapter 13: Image Files 190

13.5 Fully Relocatable Image Files

These image files have relocatable data addresses, and tokens for code addresses. They
can be used with different binaries (e.g., with and without debugging) on the same machine,
and even across machines with the same data formats (byte order, cell size, floating point
format). However, they are usually specific to the version of Gforth they were created with.
The files ‘gforth.fi’ and ‘kernl*.fi’ are fully relocatable.

There are two ways to create a fully relocatable image file:

13.5.1 ‘gforthmi’

You will usually use ‘gforthmi’. If you want to create an image file that contains
everything you would load by invoking Gforth with gforth options, you simply say:

gforthmi file options

E.g., if you want to create an image ‘asm.fi’ that has the file ‘asm.fs’ loaded in addition
to the usual stuff, you could do it like this:

gforthmi asm.fi asm.fs

‘gforthmi’ is implemented as a sh script and works like this: It produces two non-
relocatable images for different addresses and then compares them. Its output reflects
this: first you see the output (if any) of the two Gforth invocations that produce the non-
relocatable image files, then you see the output of the comparing program: It displays the
offset used for data addresses and the offset used for code addresses; moreover, for each cell
that cannot be represented correctly in the image files, it displays a line like this:

78DC BFFFFA50 BFFFFA40

This means that at offset $78dc from forthstart, one input image contains $bffffa50,
and the other contains $bffffa40. Since these cells cannot be represented correctly in the
output image, you should examine these places in the dictionary and verify that these cells
are dead (i.e., not read before they are written).

If you insert the option --application in front of the image file name, you will get
an image that uses the --appl-image option instead of the --image-file option (see
Section 2.1 [Invoking Gforth], page 3). When you execute such an image on Unix (by
typing the image name as command), the Gforth engine will pass all options to the image
instead of trying to interpret them as engine options.

If you type ‘gforthmi’ with no arguments, it prints some usage instructions.

There are a few wrinkles: After processing the passed options, the words savesystem and
bye must be visible. A special doubly indirect threaded version of the ‘gforth’ executable
is used for creating the non-relocatable images; you can pass the exact filename of this
executable through the environment variable GFORTHD (default: ‘gforth-ditc’); if you pass
a version that is not doubly indirect threaded, you will not get a fully relocatable image,
but a data-relocatable image (because there is no code address offset). The normal ‘gforth’
executable is used for creating the relocatable image; you can pass the exact filename of
this executable through the environment variable GFORTH.

Chapter 13: Image Files 191

13.5.2 ‘cross.fs’

You can also use cross, a batch compiler that accepts a Forth-like programming language
(see Chapter 15 [Cross Compiler], page 202).

cross allows you to create image files for machines with different data sizes and data
formats than the one used for generating the image file. You can also use it to create
an application image that does not contain a Forth compiler. These features are bought
with restrictions and inconveniences in programming. E.g., addresses have to be stored in
memory with special words (A!, A,, etc.) in order to make the code relocatable.

13.6 Stack and Dictionary Sizes

If you invoke Gforth with a command line flag for the size (see Section 2.1 [Invoking
Gforth], page 3), the size you specify is stored in the dictionary. If you save the dictionary
with savesystem or create an image with ‘gforthmi’, this size will become the default
for the resulting image file. E.g., the following will create a fully relocatable version of
‘gforth.fi’ with a 1MB dictionary:

gforthmi gforth.fi -m 1M

In other words, if you want to set the default size for the dictionary and the stacks of
an image, just invoke ‘gforthmi’ with the appropriate options when creating the image.

Note: For cache-friendly behaviour (i.e., good performance), you should make the sizes
of the stacks modulo, say, 2K, somewhat different. E.g., the default stack sizes are: data:
16k (mod 2k=0); fp: 15.5k (mod 2k=1.5k); return: 15k(mod 2k=1k); locals: 14.5k (mod
2k=0.5k).

13.7 Running Image Files

You can invoke Gforth with an image file image instead of the default ‘gforth.fi’ with
the -i flag (see Section 2.1 [Invoking Gforth], page 3):

gforth -i image

If your operating system supports starting scripts with a line of the form #! ..., you
just have to type the image file name to start Gforth with this image file (note that the file
extension .fi is just a convention). I.e., to run Gforth with the image file image, you can
just type image instead of gforth -i image. This works because every .fi file starts with
a line of this format:

#! /usr/local/bin/gforth-0.4.0 -i

The file and pathname for the Gforth engine specified on this line is the specific Gforth
executable that it was built against; i.e. the value of the environment variable GFORTH at
the time that ‘gforthmi’ was executed.

You can make use of the same shell capability to make a Forth source file into an
executable. For example, if you place this text in a file:

#! /usr/local/bin/gforth

." Hello, world" CR
bye

Chapter 13: Image Files 192

and then make the file executable (chmod +x in Unix), you can run it directly from the
command line. The sequence #! is used in two ways; firstly, it is recognised as a “magic
sequence” by the operating system2 secondly it is treated as a comment character by Gforth.
Because of the second usage, a space is required between #! and the path to the executable
(moreover, some Unixes require the sequence #! /).

The disadvantage of this latter technique, compared with using ‘gforthmi’, is that it
is slightly slower; the Forth source code is compiled on-the-fly, each time the program is
invoked.

#! – gforth “hash-bang”

An alias for \

13.8 Modifying the Startup Sequence

You can add your own initialization to the startup sequence through the deferred word
’cold. ’cold is invoked just before the image-specific command line processing (i.e., loading
files and evaluating (-e) strings) starts.

A sequence for adding your initialization usually looks like this:

:noname
Defers ’cold \ do other initialization stuff (e.g., rehashing wordlists)
... \ your stuff

; IS ’cold

You can make a turnkey image by letting ’cold execute a word (your turnkey applica-
tion) that never returns; instead, it exits Gforth via bye or throw.

You can access the (image-specific) command-line arguments through the variables argc
and argv. arg provides convenient access to argv.

If ’cold exits normally, Gforth processes the command-line arguments as files to be
loaded and strings to be evaluated. Therefore, ’cold should remove the arguments it has
used in this case.

’cold – gforth “tick-cold”

argc – addr gforth “argc”

Variable – the number of command-line arguments (including the command name).

argv – addr gforth “argv”

Variable – a pointer to a vector of pointers to the command-line arguments (including
the command-name). Each argument is represented as a C-style string.

arg n – addr count gforth “arg”

Return the string for the nth command-line argument.

2 The Unix kernel actually recognises two types of files: executable files and files of data, where the data
is processed by an interpreter that is specified on the “interpreter line” – the first line of the file, starting
with the sequence #!. There may be a small limit (e.g., 32) on the number of characters that may be
specified on the interpreter line.

Chapter 14: Engine 193

14 Engine

Reading this chapter is not necessary for programming with Gforth. It may be helpful
for finding your way in the Gforth sources.

The ideas in this section have also been published in the following papers: Bernd
Paysan, ANS fig/GNU/??? Forth (in German), Forth-Tagung ’93; M. Anton Ertl, A
Portable Forth Engine (http://www.complang.tuwien.ac.at/papers/ertl93.ps.Z), Eu-
roForth ’93; M. Anton Ertl, Threaded code variations and optimizations (extended version)
(http://www.complang.tuwien.ac.at/papers/ertl02.ps.gz), Forth-Tagung ’02.

14.1 Portability

An important goal of the Gforth Project is availability across a wide range of personal
machines. fig-Forth, and, to a lesser extent, F83, achieved this goal by manually coding
the engine in assembly language for several then-popular processors. This approach is very
labor-intensive and the results are short-lived due to progress in computer architecture.

Others have avoided this problem by coding in C, e.g., Mitch Bradley (cforth), Mikael
Patel (TILE) and Dirk Zoller (pfe). This approach is particularly popular for UNIX-based
Forths due to the large variety of architectures of UNIX machines. Unfortunately an im-
plementation in C does not mix well with the goals of efficiency and with using traditional
techniques: Indirect or direct threading cannot be expressed in C, and switch threading,
the fastest technique available in C, is significantly slower. Another problem with C is that
it is very cumbersome to express double integer arithmetic.

Fortunately, there is a portable language that does not have these limitations: GNU
C, the version of C processed by the GNU C compiler (see section “Extensions to the C
Language Family” in GNU C Manual). Its labels as values feature (see section “Labels
as Values” in GNU C Manual) makes direct and indirect threading possible, its long long

type (see section “Double-Word Integers” in GNU C Manual) corresponds to Forth’s double
numbers on many systems. GNU C is freely available on all important (and many unim-
portant) UNIX machines, VMS, 80386s running MS-DOS, the Amiga, and the Atari ST, so
a Forth written in GNU C can run on all these machines.

Writing in a portable language has the reputation of producing code that is slower than
assembly. For our Forth engine we repeatedly looked at the code produced by the compiler
and eliminated most compiler-induced inefficiencies by appropriate changes in the source
code.

However, register allocation cannot be portably influenced by the programmer, leading
to some inefficiencies on register-starved machines. We use explicit register declarations (see
section “Variables in Specified Registers” in GNU C Manual) to improve the speed on some
machines. They are turned on by using the configuration flag --enable-force-reg (gcc
switch -DFORCE_REG). Unfortunately, this feature not only depends on the machine, but
also on the compiler version: On some machines some compiler versions produce incorrect
code when certain explicit register declarations are used. So by default -DFORCE_REG is not
used.

Chapter 14: Engine 194

14.2 Threading

GNU C’s labels as values extension (available since gcc-2.0, see section “Labels as
Values” in GNU C Manual) makes it possible to take the address of label by writing &&label .
This address can then be used in a statement like goto *address. I.e., goto *&&x is the
same as goto x.

With this feature an indirect threaded NEXT looks like:

cfa = *ip++;
ca = *cfa;
goto *ca;

For those unfamiliar with the names: ip is the Forth instruction pointer; the cfa (code-
field address) corresponds to ANS Forths execution token and points to the code field of
the next word to be executed; The ca (code address) fetched from there points to some
executable code, e.g., a primitive or the colon definition handler docol.

Direct threading is even simpler:

ca = *ip++;
goto *ca;

Of course we have packaged the whole thing neatly in macros called NEXT and NEXT1

(the part of NEXT after fetching the cfa).

14.2.1 Scheduling

There is a little complication: Pipelined and superscalar processors, i.e., RISC and some
modern CISC machines can process independent instructions while waiting for the results
of an instruction. The compiler usually reorders (schedules) the instructions in a way that
achieves good usage of these delay slots. However, on our first tries the compiler did not do
well on scheduling primitives. E.g., for + implemented as

n=sp[0]+sp[1];
sp++;
sp[0]=n;
NEXT;

the NEXT comes strictly after the other code, i.e., there is nearly no scheduling. After a
little thought the problem becomes clear: The compiler cannot know that sp and ip point
to different addresses (and the version of gcc we used would not know it even if it was
possible), so it could not move the load of the cfa above the store to the TOS. Indeed the
pointers could be the same, if code on or very near the top of stack were executed. In the
interest of speed we chose to forbid this probably unused “feature” and helped the compiler
in scheduling: NEXT is divided into several parts: NEXT_P0, NEXT_P1 and NEXT_P2). + now
looks like:

NEXT_P0;
n=sp[0]+sp[1];
sp++;
NEXT_P1;
sp[0]=n;
NEXT_P2;

Chapter 14: Engine 195

There are various schemes that distribute the different operations of NEXT between these
parts in several ways; in general, different schemes perform best on different processors.
We use a scheme for most architectures that performs well for most processors of this
architecture; in the future we may switch to benchmarking and chosing the scheme on
installation time.

14.2.2 Direct or Indirect Threaded?

Threaded forth code consists of references to primitives (simple machine code routines
like +) and to non-primitives (e.g., colon definitions, variables, constants); for a specific class
of non-primitives (e.g., variables) there is one code routine (e.g., dovar), but each variable
needs a separate reference to its data.

Traditionally Forth has been implemented as indirect threaded code, because this allows
to use only one cell to reference a non-primitive (basically you point to the data, and find
the code address there).

However, threaded code in Gforth (since 0.6.0) uses two cells for non-primitives, one for
the code address, and one for the data address; the data pointer is an immediate argument
for the virtual machine instruction represented by the code address. We call this primitive-
centric threaded code, because all code addresses point to simple primitives. E.g., for a
variable, the code address is for lit (also used for integer literals like 99).

Primitive-centric threaded code allows us to use (faster) direct threading as dispatch
method, completely portably (direct threaded code in Gforth before 0.6.0 required
architecture-specific code). It also eliminates the performance problems related to
I-cache consistency that 386 implementations have with direct threaded code, and allows
additional optimizations.

There is a catch, however: the xt parameter of execute can occupy only one cell, so
how do we pass non-primitives with their code and data addresses to them? Our answer is
to use indirect threaded dispatch for execute and other words that use a single-cell xt. So,
normal threaded code in colon definitions uses direct threading, and execute and similar
words, which dispatch to xts on the data stack, use indirect threaded code. We call this
hybrid direct/indirect threaded code.

The engines gforth and gforth-fast use hybrid direct/indirect threaded code. This
means that with these engines you cannot use , to compile an xt. Instead, you have to use
compile,.

If you want to compile xts with ,, use gforth-itc. This engine uses plain old indirect
threaded code. It still compiles in a primitive-centric style, so you cannot use compile,

instead of , (e.g., for producing tables of xts with] word1 word2 ... [). If you want to do
that, you have to use gforth-itc and execute ’ , is compile,. Your program can check if
it is running on a hybrid direct/indirect threaded engine or a pure indirect threaded engine
with threading-method (see Section 5.25 [Threading Words], page 162).

14.2.3 Dynamic Superinstructions

The engines gforth and gforth-fast use another optimization: Dynamic superinstruc-
tions with replication. As an example, consider the following colon definition:

Chapter 14: Engine 196

: squared (n1 -- n2)
dup * ;

Gforth compiles this into the threaded code sequence

dup
*
;s

In normal direct threaded code there is a code address occupying one cell for each of
these primitives. Each code address points to a machine code routine, and the interpreter
jumps to this machine code in order to execute the primitive. The routines for these three
primitives are (in gforth-fast on the 386):

Code dup
($804B950) add esi , # -4 \ $83 $C6 $FC
($804B953) add ebx , # 4 \ $83 $C3 $4
($804B956) mov dword ptr 4 [esi] , ecx \ $89 $4E $4
($804B959) jmp dword ptr FC [ebx] \ $FF $63 $FC
end-code
Code *
($804ACC4) mov eax , dword ptr 4 [esi] \ $8B $46 $4
($804ACC7) add esi , # 4 \ $83 $C6 $4
($804ACCA) add ebx , # 4 \ $83 $C3 $4
($804ACCD) imul ecx , eax \ $F $AF $C8
($804ACD0) jmp dword ptr FC [ebx] \ $FF $63 $FC
end-code
Code ;s
($804A693) mov eax , dword ptr [edi] \ $8B $7
($804A695) add edi , # 4 \ $83 $C7 $4
($804A698) lea ebx , dword ptr 4 [eax] \ $8D $58 $4
($804A69B) jmp dword ptr FC [ebx] \ $FF $63 $FC
end-code

With dynamic superinstructions and replication the compiler does not just lay down the
threaded code, but also copies the machine code fragments, usually without the jump at
the end.

($4057D27D) add esi , # -4 \ $83 $C6 $FC
($4057D280) add ebx , # 4 \ $83 $C3 $4
($4057D283) mov dword ptr 4 [esi] , ecx \ $89 $4E $4
($4057D286) mov eax , dword ptr 4 [esi] \ $8B $46 $4
($4057D289) add esi , # 4 \ $83 $C6 $4
($4057D28C) add ebx , # 4 \ $83 $C3 $4
($4057D28F) imul ecx , eax \ $F $AF $C8
($4057D292) mov eax , dword ptr [edi] \ $8B $7
($4057D294) add edi , # 4 \ $83 $C7 $4
($4057D297) lea ebx , dword ptr 4 [eax] \ $8D $58 $4
($4057D29A) jmp dword ptr FC [ebx] \ $FF $63 $FC

Only when a threaded-code control-flow change happens (e.g., in ;s), the jump is ap-
pended. This optimization eliminates many of these jumps and makes the rest much more
predictable. The speedup depends on the processor and the application; on the Athlon and
Pentium III this optimization typically produces a speedup by a factor of 2.

Chapter 14: Engine 197

The code addresses in the direct-threaded code are set to point to the appropriate points
in the copied machine code, in this example like this:

primitive code address
dup $4057D27D
* $4057D286
;s $4057D292

Thus there can be threaded-code jumps to any place in this piece of code. This also
simplifies decompilation quite a bit.

You can disable this optimization with ‘--no-dynamic’. You can use the copying with-
out eliminating the jumps (i.e., dynamic replication, but without superinstructions) with
‘--no-super’; this gives the branch prediction benefit alone; the effect on performance de-
pends on the CPU; on the Athlon and Pentium III the speedup is a little less than for
dynamic superinstructions with replication.

One use of these options is if you want to patch the threaded code. With superinstruc-
tions, many of the dispatch jumps are eliminated, so patching often has no effect. These
options preserve all the dispatch jumps.

On some machines dynamic superinstructions are disabled by default, because it is unsafe
on these machines. However, if you feel adventurous, you can enable it with ‘--dynamic’.

14.2.4 DOES>

One of the most complex parts of a Forth engine is dodoes, i.e., the chunk of code
executed by every word defined by a CREATE...DOES> pair; actually with primitive-centric
code, this is only needed if the xt of the word is executed. The main problem here is:
How to find the Forth code to be executed, i.e. the code after the DOES> (the DOES>-code)?
There are two solutions:

In fig-Forth the code field points directly to the dodoes and the DOES>-code address is
stored in the cell after the code address (i.e. at CFA cell+). It may seem that this solution
is illegal in the Forth-79 and all later standards, because in fig-Forth this address lies in the
body (which is illegal in these standards). However, by making the code field larger for all
words this solution becomes legal again. We use this approach. Leaving a cell unused in
most words is a bit wasteful, but on the machines we are targeting this is hardly a problem.

14.3 Primitives

14.3.1 Automatic Generation

Since the primitives are implemented in a portable language, there is no longer any
need to minimize the number of primitives. On the contrary, having many primitives has
an advantage: speed. In order to reduce the number of errors in primitives and to make
programming them easier, we provide a tool, the primitive generator (‘prims2x.fs’ aka
Vmgen, see section “Introduction” in Vmgen), that automatically generates most (and
sometimes all) of the C code for a primitive from the stack effect notation. The source for
a primitive has the following form:

Chapter 14: Engine 198

Forth-name (stack-effect) category [pronounc.]
[""glossary entry""]
C code
[:
Forth code]

The items in brackets are optional. The category and glossary fields are there for gener-
ating the documentation, the Forth code is there for manual implementations on machines
without GNU C. E.g., the source for the primitive + is:

+ (n1 n2 -- n) core plus
n = n1+n2;

This looks like a specification, but in fact n = n1+n2 is C code. Our primitive generation
tool extracts a lot of information from the stack effect notations1: The number of items
popped from and pushed on the stack, their type, and by what name they are referred to in
the C code. It then generates a C code prelude and postlude for each primitive. The final
C code for + looks like this:

I_plus: /* + (n1 n2 -- n) */ /* label, stack effect */
/* */ /* documentation */
NAME("+") /* debugging output (with -DDEBUG) */
{
DEF_CA /* definition of variable ca (indirect threading) */
Cell n1; /* definitions of variables */
Cell n2;
Cell n;
NEXT_P0; /* NEXT part 0 */
n1 = (Cell) sp[1]; /* input */
n2 = (Cell) TOS;
sp += 1; /* stack adjustment */
{
n = n1+n2; /* C code taken from the source */
}
NEXT_P1; /* NEXT part 1 */
TOS = (Cell)n; /* output */
NEXT_P2; /* NEXT part 2 */
}

This looks long and inefficient, but the GNU C compiler optimizes quite well and pro-
duces optimal code for + on, e.g., the R3000 and the HP RISC machines: Defining the ns
does not produce any code, and using them as intermediate storage also adds no cost.

There are also other optimizations that are not illustrated by this example: assignments
between simple variables are usually for free (copy propagation). If one of the stack items
is not used by the primitive (e.g. in drop), the compiler eliminates the load from the stack
(dead code elimination). On the other hand, there are some things that the compiler does
not do, therefore they are performed by ‘prims2x.fs’: The compiler does not optimize code
away that stores a stack item to the place where it just came from (e.g., over).

1 We use a one-stack notation, even though we have separate data and floating-point stacks; The separate
notation can be generated easily from the unified notation.

Chapter 14: Engine 199

While programming a primitive is usually easy, there are a few cases where the pro-
grammer has to take the actions of the generator into account, most notably ?dup, but also
words that do not (always) fall through to NEXT.

For more information

14.3.2 TOS Optimization

An important optimization for stack machine emulators, e.g., Forth engines, is keeping
one or more of the top stack items in registers. If a word has the stack effect in1...inx --

out1...outy, keeping the top n items in registers

• is better than keeping n-1 items, if x>=n and y>=n, due to fewer loads from and stores
to the stack.

• is slower than keeping n-1 items, if x<>y and x<n and y<n, due to additional moves
between registers.

In particular, keeping one item in a register is never a disadvantage, if there are enough
registers. Keeping two items in registers is a disadvantage for frequent words like ?branch,
constants, variables, literals and i. Therefore our generator only produces code that keeps
zero or one items in registers. The generated C code covers both cases; the selection
between these alternatives is made at C-compile time using the switch -DUSE_TOS. TOS in
the C code for + is just a simple variable name in the one-item case, otherwise it is a macro
that expands into sp[0]. Note that the GNU C compiler tries to keep simple variables like
TOS in registers, and it usually succeeds, if there are enough registers.

The primitive generator performs the TOS optimization for the floating-point stack,
too (-DUSE_FTOS). For floating-point operations the benefit of this optimization is even
larger: floating-point operations take quite long on most processors, but can be performed
in parallel with other operations as long as their results are not used. If the FP-TOS is kept
in a register, this works. If it is kept on the stack, i.e., in memory, the store into memory
has to wait for the result of the floating-point operation, lengthening the execution time of
the primitive considerably.

The TOS optimization makes the automatic generation of primitives a bit more com-
plicated. Just replacing all occurrences of sp[0] by TOS is not sufficient. There are some
special cases to consider:

• In the case of dup (w -- w w) the generator must not eliminate the store to the original
location of the item on the stack, if the TOS optimization is turned on.

• Primitives with stack effects of the form -- out1...outy must store the TOS to the stack
at the start. Likewise, primitives with the stack effect in1...inx -- must load the TOS
from the stack at the end. But for the null stack effect -- no stores or loads should be
generated.

14.3.3 Produced code

To see what assembly code is produced for the primitives on your machine with your com-
piler and your flag settings, type make engine.s and look at the resulting file ‘engine.s’.
Alternatively, you can also disassemble the code of primitives with see on some architec-
tures.

Chapter 14: Engine 200

14.4 Performance

On RISCs the Gforth engine is very close to optimal; i.e., it is usually impossible to
write a significantly faster threaded-code engine.

On register-starved machines like the 386 architecture processors improvements are pos-
sible, because gcc does not utilize the registers as well as a human, even with explicit register
declarations; e.g., Bernd Beuster wrote a Forth system fragment in assembly language and
hand-tuned it for the 486; this system is 1.19 times faster on the Sieve benchmark on a
486DX2/66 than Gforth compiled with gcc-2.6.3 with -DFORCE_REG. The situation has
improved with gcc-2.95 and gforth-0.4.9; now the most important virtual machine registers
fit in real registers (and we can even afford to use the TOS optimization), resulting in a
speedup of 1.14 on the sieve over the earlier results. And dynamic superinstructions provide
another speedup (but only around a factor 1.2 on the 486).

The potential advantage of assembly language implementations is not necessarily real-
ized in complete Forth systems: We compared Gforth-0.5.9 (direct threaded, compiled with
gcc-2.95.1 and -DFORCE_REG) with Win32Forth 1.2093 (newer versions are reportedly
much faster), LMI’s NT Forth (Beta, May 1994) and Eforth (with and without peephole
(aka pinhole) optimization of the threaded code); all these systems were written in as-
sembly language. We also compared Gforth with three systems written in C: PFE-0.9.14
(compiled with gcc-2.6.3 with the default configuration for Linux: -O2 -fomit-frame-

pointer -DUSE_REGS -DUNROLL_NEXT), ThisForth Beta (compiled with gcc-2.6.3 -O3 -

fomit-frame-pointer; ThisForth employs peephole optimization of the threaded code) and
TILE (compiled with make opt). We benchmarked Gforth, PFE, ThisForth and TILE on
a 486DX2/66 under Linux. Kenneth O’Heskin kindly provided the results for Win32Forth
and NT Forth on a 486DX2/66 with similar memory performance under Windows NT.
Marcel Hendrix ported Eforth to Linux, then extended it to run the benchmarks, added
the peephole optimizer, ran the benchmarks and reported the results.

We used four small benchmarks: the ubiquitous Sieve; bubble-sorting and matrix multi-
plication come from the Stanford integer benchmarks and have been translated into Forth
by Martin Fraeman; we used the versions included in the TILE Forth package, but with
bigger data set sizes; and a recursive Fibonacci number computation for benchmarking call-
ing performance. The following table shows the time taken for the benchmarks scaled by
the time taken by Gforth (in other words, it shows the speedup factor that Gforth achieved
over the other systems).

relative Win32- NT eforth This-
time Gforth Forth Forth eforth +opt PFE Forth TILE
sieve 1.00 2.16 1.78 2.16 1.32 2.46 4.96 13.37
bubble 1.00 1.93 2.07 2.18 1.29 2.21 5.70
matmul 1.00 1.92 1.76 1.90 0.96 2.06 5.32
fib 1.00 2.32 2.03 1.86 1.31 2.64 4.55 6.54

You may be quite surprised by the good performance of Gforth when compared with
systems written in assembly language. One important reason for the disappointing per-
formance of these other systems is probably that they are not written optimally for the
486 (e.g., they use the lods instruction). In addition, Win32Forth uses a comfortable, but
costly method for relocating the Forth image: like cforth, it computes the actual addresses

Chapter 14: Engine 201

at run time, resulting in two address computations per NEXT (see Section 13.2 [Image File
Background], page 188).

The speedup of Gforth over PFE, ThisForth and TILE can be easily explained with the
self-imposed restriction of the latter systems to standard C, which makes efficient threading
impossible (however, the measured implementation of PFE uses a GNU C extension: see
section “Defining Global Register Variables” in GNU C Manual). Moreover, current C
compilers have a hard time optimizing other aspects of the ThisForth and the TILE source.

The performance of Gforth on 386 architecture processors varies widely with the version
of gcc used. E.g., gcc-2.5.8 failed to allocate any of the virtual machine registers into
real machine registers by itself and would not work correctly with explicit register declara-
tions, giving a significantly slower engine (on a 486DX2/66 running the Sieve) than the one
measured above.

Note that there have been several releases of Win32Forth since the release presented
here, so the results presented above may have little predictive value for the performance of
Win32Forth today (results for the current release on an i486DX2/66 are welcome).

In Translating Forth to Efficient C (http://www.complang.tuwien.ac.at/papers/ertl&maierhofer95.ps.gz)
by M. Anton Ertl and Martin Maierhofer (presented at EuroForth ’95), an indirect
threaded version of Gforth is compared with Win32Forth, NT Forth, PFE, ThisForth,
and several native code systems; that version of Gforth is slower on a 486 than
the version used here. You can find a newer version of these measurements at
http://www.complang.tuwien.ac.at/forth/performance.html. You can find numbers
for Gforth on various machines in ‘Benchres’.

Chapter 15: Cross Compiler 202

15 Cross Compiler

The cross compiler is used to bootstrap a Forth kernel. Since Gforth is mostly written in
Forth, including crucial parts like the outer interpreter and compiler, it needs compiled Forth
code to get started. The cross compiler allows to create new images for other architectures,
even running under another Forth system.

15.1 Using the Cross Compiler

The cross compiler uses a language that resembles Forth, but isn’t. The main difference
is that you can execute Forth code after definition, while you usually can’t execute the code
compiled by cross, because the code you are compiling is typically for a different computer
than the one you are compiling on.

The Makefile is already set up to allow you to create kernels for new architectures with
a simple make command. The generic kernels using the GCC compiled virtual machine are
created in the normal build process with make. To create a embedded Gforth executable
for e.g. the 8086 processor (running on a DOS machine), type

make kernl-8086.fi

This will use the machine description from the ‘arch/8086’ directory to create a new
kernel. A machine file may look like that:

\ Parameter for target systems 06oct92py

4 Constant cell \ cell size in bytes
2 Constant cell<< \ cell shift to bytes
5 Constant cell>bit \ cell shift to bits
8 Constant bits/char \ bits per character
8 Constant bits/byte \ bits per byte [default: 8]
8 Constant float \ bytes per float
8 Constant /maxalign \ maximum alignment in bytes

false Constant bigendian \ byte order
(true=big, false=little)

include machpc.fs \ feature list

This part is obligatory for the cross compiler itself, the feature list is used by the kernel to
conditionally compile some features in and out, depending on whether the target supports
these features.

There are some optional features, if you define your own primitives, have an assembler,
or need special, nonstandard preparation to make the boot process work. asm-include

includes an assembler, prims-include includes primitives, and >boot prepares for booting.

: asm-include ." Include assembler" cr
s" arch/8086/asm.fs" included ;

: prims-include ." Include primitives" cr
s" arch/8086/prim.fs" included ;

: >boot ." Prepare booting" cr

Chapter 15: Cross Compiler 203

s" ’ boot >body into-forth 1+ !" evaluate ;

These words are used as sort of macro during the cross compilation in the file
‘kernel/main.fs’. Instead of using these macros, it would be possible — but more
complicated — to write a new kernel project file, too.

‘kernel/main.fs’ expects the machine description file name on the stack; the cross
compiler itself (‘cross.fs’) assumes that either mach-file leaves a counted string on the
stack, or machine-file leaves an address, count pair of the filename on the stack.

The feature list is typically controlled using SetValue, generic files that are used by
several projects can use DefaultValue instead. Both functions work like Value, when the
value isn’t defined, but SetValue works like to if the value is defined, and DefaultValue

doesn’t set anything, if the value is defined.

\ generic mach file for pc gforth 03sep97jaw

true DefaultValue NIL \ relocating

>ENVIRON

true DefaultValue file \ controls the presence of the
\ file access wordset

true DefaultValue OS \ flag to indicate a operating system

true DefaultValue prims \ true: primitives are c-code

true DefaultValue floating \ floating point wordset is present

true DefaultValue glocals \ gforth locals are present
\ will be loaded

true DefaultValue dcomps \ double number comparisons

true DefaultValue hash \ hashing primitives are loaded/present

true DefaultValue xconds \ used together with glocals,
\ special conditionals supporting gforths’
\ local variables

true DefaultValue header \ save a header information

true DefaultValue backtrace \ enables backtrace code

false DefaultValue ec
false DefaultValue crlf

cell 2 = [IF] &32 [ELSE] &256 [THEN] KB DefaultValue kernel-size

&16 KB DefaultValue stack-size
&15 KB &512 + DefaultValue fstack-size
&15 KB DefaultValue rstack-size
&14 KB &512 + DefaultValue lstack-size

Chapter 15: Cross Compiler 204

15.2 How the Cross Compiler Works

Appendix A: Bugs 205

Appendix A Bugs

Known bugs are described in the file ‘BUGS’ in the Gforth distribution.

If you find a bug, please submit a bug report through https://savannah.gnu.org/bugs/?func=addbug&group=gforth.

• A program (or a sequence of keyboard commands) that reproduces the bug.

• A description of what you think constitutes the buggy behaviour.

• The Gforth version used (it is announced at the start of an interactive Gforth session).

• The machine and operating system (on Unix systems uname -a will report this infor-
mation).

• The installation options (you can find the configure options at the start of
‘config.status’) and configuration (configure output or ‘config.cache’).

• A complete list of changes (if any) you (or your installer) have made to the Gforth
sources.

For a thorough guide on reporting bugs read section “How to Report Bugs” in GNU C
Manual.

Appendix B: Authors and Ancestors of Gforth 206

Appendix B Authors and Ancestors of Gforth

B.1 Authors and Contributors

The Gforth project was started in mid-1992 by Bernd Paysan and Anton Ertl. The
third major author was Jens Wilke. Neal Crook contributed a lot to the manual. As-
semblers and disassemblers were contributed by Andrew McKewan, Christian Pirker, and
Bernd Thallner. Lennart Benschop (who was one of Gforth’s first users, in mid-1993) and
Stuart Ramsden inspired us with their continuous feedback. Lennart Benshop contributed
‘glosgen.fs’, while Stuart Ramsden has been working on automatic support for calling C
libraries. Helpful comments also came from Paul Kleinrubatscher, Christian Pirker, Dirk
Zoller, Marcel Hendrix, John Wavrik, Barrie Stott, Marc de Groot, Jorge Acerada, Bruce
Hoyt, Robert Epprecht, Dennis Ruffer and David N. Williams. Since the release of Gforth-
0.2.1 there were also helpful comments from many others; thank you all, sorry for not listing
you here (but digging through my mailbox to extract your names is on my to-do list).

Gforth also owes a lot to the authors of the tools we used (GCC, CVS, and autoconf,
among others), and to the creators of the Internet: Gforth was developed across the Internet,
and its authors did not meet physically for the first 4 years of development.

B.2 Pedigree

Gforth descends from bigFORTH (1993) and fig-Forth. Of course, a significant part of
the design of Gforth was prescribed by ANS Forth.

Bernd Paysan wrote bigFORTH, a descendent from TurboForth, an unreleased 32 bit
native code version of VolksForth for the Atari ST, written mostly by Dietrich Weineck.

VolksForth was written by Klaus Schleisiek, Bernd Pennemann, Georg Rehfeld and Di-
etrich Weineck for the C64 (called UltraForth there) in the mid-80s and ported to the Atari
ST in 1986. It descends from F83.

Henry Laxen and Mike Perry wrote F83 as a model implementation of the Forth-83
standard. !! Pedigree? When?

A team led by Bill Ragsdale implemented fig-Forth on many processors in 1979. Robert
Selzer and Bill Ragsdale developed the original implementation of fig-Forth for the 6502
based on microForth.

The principal architect of microForth was Dean Sanderson. microForth was FORTH,
Inc.’s first off-the-shelf product. It was developed in 1976 for the 1802, and subsequently
implemented on the 8080, the 6800 and the Z80.

All earlier Forth systems were custom-made, usually by Charles Moore, who discovered
(as he puts it) Forth during the late 60s. The first full Forth existed in 1971.

A part of the information in this section comes from The Evolution of Forth
(http://www.forth.com/Content/History/History1.htm) by Elizabeth D. Rather,
Donald R. Colburn and Charles H. Moore, presented at the HOPL-II conference and
preprinted in SIGPLAN Notices 28(3), 1993. You can find more historical and genealogical
information about Forth there.

Appendix C: Other Forth-related information 207

Appendix C Other Forth-related information

There is an active news group (comp.lang.forth) discussing Forth (including Gforth) and
Forth-related issues. Its FAQs (http://www.complang.tuwien.ac.at/forth/faq/faq-general-2.html)
(frequently asked questions and their answers) contains a lot of information on Forth. You
should read it before posting to comp.lang.forth.

The ANS Forth standard is most usable in its HTML form (http://www.taygeta.com/forth/dpans.html).

Appendix D: Licenses 208

Appendix D Licenses

D.1 GNU Free Documentation License

Version 1.1, March 2000

Copyright c© 2000 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other written document
free in the sense of freedom: to assure everyone the effective freedom to copy and
redistribute it, with or without modifying it, either commercially or noncommercially.
Secondarily, this License preserves for the author and publisher a way to get credit for
their work, while not being considered responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work that contains a notice placed by
the copyright holder saying it can be distributed under the terms of this License. The
“Document”, below, refers to any such manual or work. Any member of the public is
a licensee, and is addressed as “you”.

A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (For example, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released
under this License.

Appendix D: Licenses 209

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License.

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, whose contents can
be viewed and edited directly and straightforwardly with generic text editors or (for
images composed of pixels) generic paint programs or (for drawings) some widely avail-
able drawing editor, and that is suitable for input to text formatters or for automatic
translation to a variety of formats suitable for input to text formatters. A copy made
in an otherwise Transparent file format whose markup has been designed to thwart or
discourage subsequent modification by readers is not Transparent. A copy that is not
“Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ascii without
markup, Texinfo input format, LaTEX input format, sgml or xml using a
publicly available dtd, and standard-conforming simple html designed for human
modification. Opaque formats include PostScript, pdf, proprietary formats that can
be read and edited only by proprietary word processors, sgml or xml for which the
dtd and/or processing tools are not generally available, and the machine-generated
html produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies of the Document numbering more than 100, and the
Document’s license notice requires Cover Texts, you must enclose the copies in covers
that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front
cover, and Back-Cover Texts on the back cover. Both covers must also clearly and
legibly identify you as the publisher of these copies. The front cover must present the
full title with all words of the title equally prominent and visible. You may add other
material on the covers in addition. Copying with changes limited to the covers, as long
as they preserve the title of the Document and satisfy these conditions, can be treated
as verbatim copying in other respects.

Appendix D: Licenses 210

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a publicly-accessible computer-network
location containing a complete Transparent copy of the Document, free of added ma-
terial, which the general network-using public has access to download anonymously at
no charge using public-standard network protocols. If you use the latter option, you
must take reasonably prudent steps, when you begin distribution of Opaque copies
in quantity, to ensure that this Transparent copy will remain thus accessible at the
stated location until at least one year after the last time you distribute an Opaque
copy (directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,
be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has less
than five).

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section entitled “History”, and its title, and add to it an item stating
at least the title, year, new authors, and publisher of the Modified Version as
given on the Title Page. If there is no section entitled “History” in the Document,

Appendix D: Licenses 211

create one stating the title, year, authors, and publisher of the Document as given
on its Title Page, then add an item describing the Modified Version as stated in
the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

K. In any section entitled “Acknowledgments” or “Dedications”, preserve the sec-
tion’s title, and preserve in the section all the substance and tone of each of the
contributor acknowledgments and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

M. Delete any section entitled “Endorsements”. Such a section may not be included
in the Modified Version.

N. Do not retitle any existing section as “Endorsements” or to conflict in title with
any Invariant Section.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their
titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

You may add a section entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice.

Appendix D: Licenses 212

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections entitled “History” in the various
original documents, forming one section entitled “History”; likewise combine any sec-
tions entitled “Acknowledgments”, and any sections entitled “Dedications”. You must
delete all sections entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, does not
as a whole count as a Modified Version of the Document, provided no compilation
copyright is claimed for the compilation. Such a compilation is called an “aggregate”,
and this License does not apply to the other self-contained works thus compiled with
the Document, on account of their being thus compiled, if they are not themselves
derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one quarter of the entire aggregate, the Document’s
Cover Texts may be placed on covers that surround only the Document within the
aggregate. Otherwise they must appear on covers around the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License provided that
you also include the original English version of this License. In case of a disagreement
between the translation and the original English version of this License, the original
English version will prevail.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or

Appendix D: Licenses 213

distribute the Document is void, and will automatically terminate your rights under
this License. However, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties remain in full
compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation.

Appendix D: Licenses 214

D.1.1 ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.1
or any later version published by the Free Software Foundation;
with the Invariant Sections being list their titles, with the
Front-Cover Texts being list, and with the Back-Cover Texts being list.
A copy of the license is included in the section entitled ‘‘GNU
Free Documentation License’’.

If you have no Invariant Sections, write “with no Invariant Sections” instead of saying
which ones are invariant. If you have no Front-Cover Texts, write “no Front-Cover Texts”
instead of “Front-Cover Texts being list”; likewise for Back-Cover Texts.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

D.2 GNU GENERAL PUBLIC LICENSE

Version 2, June 1991

Copyright c© 1989, 1991 Free Software Foundation, Inc.
59 Temple Place - Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and
change it. By contrast, the GNU General Public License is intended to guarantee your
freedom to share and change free software—to make sure the software is free for all its users.
This General Public License applies to most of the Free Software Foundation’s software
and to any other program whose authors commit to using it. (Some other Free Software
Foundation software is covered by the GNU Library General Public License instead.) You
can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General
Public Licenses are designed to make sure that you have the freedom to distribute copies
of free software (and charge for this service if you wish), that you receive source code or
can get it if you want it, that you can change the software or use pieces of it in new free
programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you
these rights or to ask you to surrender the rights. These restrictions translate to certain
responsibilities for you if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you
must give the recipients all the rights that you have. You must make sure that they, too,

Appendix D: Licenses 215

receive or can get the source code. And you must show them these terms so they know
their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this
license which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone
understands that there is no warranty for this free software. If the software is modified by
someone else and passed on, we want its recipients to know that what they have is not the
original, so that any problems introduced by others will not reflect on the original authors’
reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid
the danger that redistributors of a free program will individually obtain patent licenses, in
effect making the program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

TERMS AND CONDITIONS FOR COPYING,
DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains a notice placed
by the copyright holder saying it may be distributed under the terms of this General
Public License. The “Program”, below, refers to any such program or work, and a
“work based on the Program” means either the Program or any derivative work under
copyright law: that is to say, a work containing the Program or a portion of it, either
verbatim or with modifications and/or translated into another language. (Hereinafter,
translation is included without limitation in the term “modification”.) Each licensee is
addressed as “you”.

Activities other than copying, distribution and modification are not covered by this
License; they are outside its scope. The act of running the Program is not restricted,
and the output from the Program is covered only if its contents constitute a work based
on the Program (independent of having been made by running the Program). Whether
that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s source code as you
receive it, in any medium, provided that you conspicuously and appropriately publish
on each copy an appropriate copyright notice and disclaimer of warranty; keep intact
all the notices that refer to this License and to the absence of any warranty; and give
any other recipients of the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your
option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a
work based on the Program, and copy and distribute such modifications or work under
the terms of Section 1 above, provided that you also meet all of these conditions:

a. You must cause the modified files to carry prominent notices stating that you
changed the files and the date of any change.

Appendix D: Licenses 216

b. You must cause any work that you distribute or publish, that in whole or in part
contains or is derived from the Program or any part thereof, to be licensed as a
whole at no charge to all third parties under the terms of this License.

c. If the modified program normally reads commands interactively when run, you
must cause it, when started running for such interactive use in the most ordinary
way, to print or display an announcement including an appropriate copyright notice
and a notice that there is no warranty (or else, saying that you provide a warranty)
and that users may redistribute the program under these conditions, and telling
the user how to view a copy of this License. (Exception: if the Program itself is
interactive but does not normally print such an announcement, your work based
on the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections
of that work are not derived from the Program, and can be reasonably considered
independent and separate works in themselves, then this License, and its terms, do not
apply to those sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based on the Program,
the distribution of the whole must be on the terms of this License, whose permissions
for other licensees extend to the entire whole, and thus to each and every part regardless
of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to
work written entirely by you; rather, the intent is to exercise the right to control the
distribution of derivative or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with the
Program (or with a work based on the Program) on a volume of a storage or distribution
medium does not bring the other work under the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2)
in object code or executable form under the terms of Sections 1 and 2 above provided
that you also do one of the following:

a. Accompany it with the complete corresponding machine-readable source code,
which must be distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,

b. Accompany it with a written offer, valid for at least three years, to give any third
party, for a charge no more than your cost of physically performing source distri-
bution, a complete machine-readable copy of the corresponding source code, to be
distributed under the terms of Sections 1 and 2 above on a medium customarily
used for software interchange; or,

c. Accompany it with the information you received as to the offer to distribute cor-
responding source code. (This alternative is allowed only for noncommercial dis-
tribution and only if you received the program in object code or executable form
with such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifi-
cations to it. For an executable work, complete source code means all the source code
for all modules it contains, plus any associated interface definition files, plus the scripts
used to control compilation and installation of the executable. However, as a spe-
cial exception, the source code distributed need not include anything that is normally

Appendix D: Licenses 217

distributed (in either source or binary form) with the major components (compiler,
kernel, and so on) of the operating system on which the executable runs, unless that
component itself accompanies the executable.

If distribution of executable or object code is made by offering access to copy from
a designated place, then offering equivalent access to copy the source code from the
same place counts as distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense or
distribute the Program is void, and will automatically terminate your rights under this
License. However, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties remain in full
compliance.

5. You are not required to accept this License, since you have not signed it. However,
nothing else grants you permission to modify or distribute the Program or its derivative
works. These actions are prohibited by law if you do not accept this License. Therefore,
by modifying or distributing the Program (or any work based on the Program), you
indicate your acceptance of this License to do so, and all its terms and conditions for
copying, distributing or modifying the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Program), the
recipient automatically receives a license from the original licensor to copy, distribute
or modify the Program subject to these terms and conditions. You may not impose
any further restrictions on the recipients’ exercise of the rights granted herein. You are
not responsible for enforcing compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for any
other reason (not limited to patent issues), conditions are imposed on you (whether by
court order, agreement or otherwise) that contradict the conditions of this License, they
do not excuse you from the conditions of this License. If you cannot distribute so as
to satisfy simultaneously your obligations under this License and any other pertinent
obligations, then as a consequence you may not distribute the Program at all. For
example, if a patent license would not permit royalty-free redistribution of the Program
by all those who receive copies directly or indirectly through you, then the only way
you could satisfy both it and this License would be to refrain entirely from distribution
of the Program.

If any portion of this section is held invalid or unenforceable under any particular
circumstance, the balance of the section is intended to apply and the section as a
whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other
property right claims or to contest validity of any such claims; this section has the
sole purpose of protecting the integrity of the free software distribution system, which
is implemented by public license practices. Many people have made generous contri-
butions to the wide range of software distributed through that system in reliance on
consistent application of that system; it is up to the author/donor to decide if he or
she is willing to distribute software through any other system and a licensee cannot
impose that choice.

Appendix D: Licenses 218

This section is intended to make thoroughly clear what is believed to be a consequence
of the rest of this License.

8. If the distribution and/or use of the Program is restricted in certain countries either
by patents or by copyrighted interfaces, the original copyright holder who places the
Program under this License may add an explicit geographical distribution limitation
excluding those countries, so that distribution is permitted only in or among countries
not thus excluded. In such case, this License incorporates the limitation as if written
in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the General
Public License from time to time. Such new versions will be similar in spirit to the
present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a
version number of this License which applies to it and “any later version”, you have
the option of following the terms and conditions either of that version or of any later
version published by the Free Software Foundation. If the Program does not specify a
version number of this License, you may choose any version ever published by the Free
Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose distri-
bution conditions are different, write to the author to ask for permission. For software
which is copyrighted by the Free Software Foundation, write to the Free Software Foun-
dation; we sometimes make exceptions for this. Our decision will be guided by the two
goals of preserving the free status of all derivatives of our free software and of promoting
the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLI-
CABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPY-
RIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS
IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE
RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH
YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST
OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO
MAY MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED
ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL,
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF
THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT
LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR
LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE
PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH

Appendix D: Licenses 219

HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

END OF TERMS AND CONDITIONS

Appendix D: Licenses 220

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to
the public, the best way to achieve this is to make it free software which everyone can
redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the
start of each source file to most effectively convey the exclusion of warranty; and each file
should have at least the “copyright” line and a pointer to where the full notice is found.

one line to give the program’s name and a brief idea of what it does.
Copyright (C) year name of author

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts in an
interactive mode:

Gnomovision version 69, Copyright (C) year name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details
type ‘show w’.
This is free software, and you are welcome to redistribute it
under certain conditions; type ‘show c’ for details.

The hypothetical commands ‘show w’ and ‘show c’ should show the appropriate parts of
the General Public License. Of course, the commands you use may be called something
other than ‘show w’ and ‘show c’; they could even be mouse-clicks or menu items—whatever
suits your program.

You should also get your employer (if you work as a programmer) or your school, if any,
to sign a “copyright disclaimer” for the program, if necessary. Here is a sample; alter the
names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program
‘Gnomovision’ (which makes passes at compilers) written by James Hacker.

signature of Ty Coon, 1 April 1989
Ty Coon, President of Vice

This General Public License does not permit incorporating your program into proprietary
programs. If your program is a subroutine library, you may consider it more useful to permit

Appendix D: Licenses 221

linking proprietary applications with the library. If this is what you want to do, use the
GNU Library General Public License instead of this License.

Word Index 222

Word Index

This index is a list of Forth words that have “glossary” entries within this manual. Each
word is listed with its stack effect and wordset.

!
! w a-addr -- core . 61

#
ud1 -- ud2 core . 116
#! -- gforth . 192
#> xd -- addr u core . 116

#>> -- gforth . 116
#s ud -- 0 0 core . 116
#tib unknown . 96

$
$? -- n gforth . 164

%
%align align size -- gforth 133
%alignment align size -- align gforth 133

%alloc size align -- addr gforth 133
%allocate align size -- addr ior gforth 133
%allot align size -- addr gforth 133
%size align size -- size gforth 133

’
’ "name" -- xt core . 88

’ "name" -- xt oof . 147
’cold -- gforth . 192

(
(compilation ’ccc<close-paren>’ -- ; run-time --

core,file . 51
(local) addr u -- local 129

)
) -- gforth . 155

*
* n1 n2 -- n core . 52
*/ n1 n2 n3 -- n4 core . 54
*/mod n1 n2 n3 -- n4 n5 core. 54

+
+ n1 n2 -- n core . 52

+! n a-addr -- core . 61

+DO compilation -- do-sys ; run-time n1 n2 -- |
loop-sys gforth . 69

+load i*x n -- j*x gforth 113

+LOOP compilation do-sys -- ; run-time loop-sys1 n
-- | loop-sys2 core . 69

+thru i*x n1 n2 -- j*x gforth 113

,
, w -- core . 60

-
- n1 n2 -- n core . 52

--> -- gforth . 113

-DO compilation -- do-sys ; run-time n1 n2 -- |
loop-sys gforth . 69

-LOOP compilation do-sys -- ; run-time loop-sys1 u
-- | loop-sys2 gforth . 69

-rot w1 w2 w3 -- w3 w1 w2 gforth 57

-trailing c addr u1 -- c addr u2 string 65

.

. n -- core . 114

." compilation ’ccc"’ -- ; run-time -- core . . . 118

.(compilation&interpretation "ccc<paren>" --
core-ext . 118

.\" compilation ’ccc"’ -- ; run-time -- gforth

. 119

.debugline nfile nline -- gforth 154

.id nt -- unknown. 90

.name nt -- unknown . 90

.path path-addr -- gforth 110

.r n1 n2 -- core-ext . 114

.s -- tools . 152

/
/ n1 n2 -- n core . 52

/does-handler -- n gforth 163

/mod n1 n2 -- n3 n4 core. 52

/string c-addr1 u1 n -- c-addr2 u2 string . . . 65

Word Index 223

:
: "name" -- oof . 147

: "name" -- colon-sys core 76

:: "name" -- oof . 147

:: class "name" -- mini-oof 149

:m "name" -- xt; run-time: object -- objects

. 144

:noname -- xt colon-sys core-ext 76

;
; compilation colon-sys -- ; run-time nest-sys

core . 76

;code compilation. colon-sys1 -- colon-sys2
tools-ext . 157

;m colon-sys --; run-time: -- objects 144

;s R:w -- gforth . 71

<
< n1 n2 -- f core . 53

<# -- core . 115

<<# -- gforth . 115

<= n1 n2 -- f gforth . 53

<> n1 n2 -- f core-ext . 53

<bind> class selector-xt -- xt objects 142

<compilation compilation. orig colon-sys --
gforth . 88

<interpretation compilation. orig colon-sys --
gforth . 88

<IS> "name" xt -- gforth 85

<to-inst> w xt -- objects 145

=
= n1 n2 -- f core . 53

>
> n1 n2 -- f core . 53

>= n1 n2 -- f gforth . 53

>body xt -- a addr core . 81

>code-address xt -- c addr gforth 162

>definer xt -- definer unknown 163

>does-code xt -- a addr gforth 163

>float c-addr u -- flag float. 121

>in unknown . 96

>l w -- gforth . 127

>name xt -- nt|0 gforth . 90

>number ud1 c-addr1 u1 -- ud2 c-addr2 u2 core

. 121

>order wid -- gforth . 102

>r w -- R:w core . 58

?
? a-addr -- tools . 153
?DO compilation -- do-sys ; run-time w1 w2 -- |

loop-sys core-ext . 69
?dup w -- w core . 57
?DUP-0=-IF compilation -- orig ; run-time n -- n|

gforth . 69
?DUP-IF compilation -- orig ; run-time n -- n|

gforth . 69
?LEAVE compilation -- ; run-time f | f loop-sys --

gforth . 70

@
@ a-addr -- w core . 61
@local# #noffset -- w gforth 127

[
[-- core. 91
[’] compilation. "name" -- ; run-time. -- xt core

. 88
[+LOOP] n -- gforth . 100
[?DO] n-limit n-index -- gforth. 100
[] n "name" -- oof . 147
[AGAIN] -- gforth . 100
[BEGIN] -- gforth . 100
[bind] compile-time: "class" "selector" -- ;

run-time: ... object -- ... objects 142
[Char] compilation ’<spaces>ccc’ -- ; run-time -- c

core. 119
[COMP’] compilation "name" -- ; run-time -- w xt

gforth . 89
[compile] compilation "name" -- ; run-time ? -- ?

core-ext . 92
[current] compile-time: "selector" -- ; run-time:

... object -- ... objects 143
[DO] n-limit n-index -- gforth 100
[ELSE] -- tools-ext . 100
[ENDIF] -- gforth . 100
[FOR] n -- gforth . 100
[IF] flag -- tools-ext . 99
[IFDEF] "<spaces>name" -- gforth 100
[IFUNDEF] "<spaces>name" -- gforth 100
[IS] compilation "name" -- ; run-time xt --

gforth . 85
[LOOP] -- gforth . 100
[NEXT] n -- gforth . 100
[parent] compile-time: "selector" -- ; run-time: ...

object -- ... objects . 144
[REPEAT] -- gforth . 100
[THEN] -- tools-ext . 100
[to-inst] compile-time: "name" -- ; run-time: w

-- objects. 145
[UNTIL] flag -- gforth . 100
[WHILE] flag -- gforth . 100

Word Index 224

]
] -- core. 91
]L compilation: n -- ; run-time: -- n gforth . . . 91

\
\ compilation ’ccc<newline>’ -- ; run-time --

core-ext,block-ext. 51
\"-parse "string"<"> -- c-addr u unknown . . . 101
\G compilation ’ccc<newline>’ -- ; run-time --

gforth . 51

~
~~ compilation -- ; run-time -- gforth 154

0
0< n -- f core . 53
0<= n -- f gforth . 53
0<> n -- f core-ext . 53
0= n -- f core . 53
0> n -- f core-ext . 53
0>= n -- f gforth . 53

1
1+ n1 -- n2 core . 52
1- n1 -- n2 core . 52
1/f r1 -- r2 gforth . 56

2
2! w1 w2 a-addr -- core . 62
2* n1 -- n2 core . 53
2, w1 w2 -- gforth . 60
2/ n1 -- n2 core . 53
2>r d -- R:d core-ext . 58
2@ a-addr -- w1 w2 core . 62
2Constant w1 w2 "name" -- double 75
2drop w1 w2 -- core . 57
2dup w1 w2 -- w1 w2 w1 w2 core. 58
2Literal compilation w1 w2 -- ; run-time -- w1

w2 double . 91
2nip w1 w2 w3 w4 -- w3 w4 gforth 57
2over w1 w2 w3 w4 -- w1 w2 w3 w4 w1 w2 core

. 58
2r> R:d -- d core-ext . 58
2r@ R:d -- R:d d core-ext 58
2rdrop R:d -- gforth . 58
2rot w1 w2 w3 w4 w5 w6 -- w3 w4 w5 w6 w1 w2

double-ext . 58
2swap w1 w2 w3 w4 -- w3 w4 w1 w2 core 58
2tuck w1 w2 w3 w4 -- w3 w4 w1 w2 w3 w4

gforth . 58
2Variable "name" -- double 74

A
abort ?? -- ?? core,exception-ext 73
ABORT" compilation ’ccc"’ -- ; run-time f --

core,exception-ext. 73
abs n -- u core . 52
accept c-addr +n1 -- +n2 core 121
ADDRESS-UNIT-BITS -- n environment 64
AGAIN compilation dest -- ; run-time -- core-ext

. 69
AHEAD compilation -- orig ; run-time -- tools-ext

. 69
Alias xt "name" -- gforth 85
align -- core . 60
aligned c-addr -- a-addr core 63
allocate u -- a-addr wior memory. 61
allot n -- core . 60
also -- search-ext . 103
also-path c-addr len path-addr -- gforth . . . 110
and w1 w2 -- w core. 53
arg n -- addr count gforth. 192
argc -- addr gforth . 192
argv -- addr gforth . 192
asptr class -- oof . 148
asptr o "name" -- oof . 147
assembler -- tools-ext 157
assert(-- gforth . 155
assert-level -- a-addr gforth 155
assert0(-- gforth . 155
assert1(-- gforth . 155
assert2(-- gforth . 155
assert3(-- gforth . 155
ASSUME-LIVE orig -- orig gforth 125
at-xy u1 u2 -- facility 119

B
base -- a-addr core . 98
BEGIN compilation -- dest ; run-time -- core . . 69
bin fam1 -- fam2 file . 108
bind ... "class" "selector" -- ... objects 142
bind o "name" -- oof . 147
bind’ "class" "selector" -- xt objects 142
bl -- c-char core . 118
blank c-addr u -- string . 64
blk unknown . 96
block u -- a-addr block. 112
block-included a-addr u -- gforth 113
block-offset -- addr gforth. 112
block-position u -- block 112
bound class addr "name" -- oof. 147
bounds addr u -- addr+u addr gforth 65
break" ’ccc"’ -- gforth . 156
break: -- gforth . 156
broken-pipe-error -- n gforth 122
buffer u -- a-addr block 113
bye -- tools-ext . 6

Word Index 225

C
c! c c-addr -- core . 62
C" compilation "ccc<quote>" -- ; run-time --

c-addr core-ext . 119
c, c -- core . 60
c@ c-addr -- c core . 62
case compilation -- case-sys ; run-time --

core-ext . 70
catch ... xt -- ... n exception 72
cell -- u gforth . 63
cell% -- align size gforth 133
cell+ a-addr1 -- a-addr2 core 63
cells n1 -- n2 core . 63
cfalign -- gforth . 61
cfaligned addr1 -- addr2 gforth 64
char ’<spaces>ccc’ -- c core 119
char% -- align size gforth 133
char+ c-addr1 -- c-addr2 core 63
chars n1 -- n2 core . 63
class "name" -- oof . 146
class class -- class selectors vars mini-oof . . 149
class parent-class -- align offset objects. . . . 142
class->map class -- map objects 142
class-inst-size class -- addr objects 143
class-override! xt sel-xt class-map -- objects

. 143
class-previous class -- objects 143
class; -- oof . 148
class>order class -- objects 143
class? o -- flag oof . 147
clear-path path-addr -- gforth 110
clearstack ... -- gforth 153
close-file wfileid -- wior file 108
close-pipe wfileid -- wretval wior gforth . . . 121
cmove c-from c-to u -- string 64
cmove> c-from c-to u -- string 64
code "name" -- colon-sys tools-ext 157
code-address! c addr xt -- gforth 162
common-list list1 list2 -- list3 gforth-internal

. 128
COMP’ "name" -- w xt gforth 89
compare c-addr1 u1 c-addr2 u2 -- n string . . . 64
compilation> compilation. -- orig colon-sys

gforth . 88
compile, xt -- core-ext . 93
compile-lp+! n -- gforth. 127
compile-only -- gforth. 86
Constant w "name" -- core 75
construct ... object -- objects 143
context -- addr gforth . 104
convert ud1 c-addr1 -- ud2 c-addr2 core-ext

. 121
count c-addr1 -- c-addr2 u core 118
cputime -- duser dsystem gforth 164
cr -- core . 119
Create "name" -- core . 73
create-file c-addr u wfam -- wfileid wior file

. 108

create-interpret/compile "name" -- gforth

. 88
CS-PICK ... u -- ... destu tools-ext 69
CS-ROLL destu/origu .. dest0/orig0 u -- ..

dest0/orig0 destu/origu tools-ext 69
current -- addr gforth . 104
current’ "selector" -- xt objects 143
current-interface -- addr objects 143

D
d+ d1 d2 -- d double. 52
d- d1 d2 -- d double. 52
d. d -- double . 114
d.r d n -- double . 114
d< d1 d2 -- f double . 54
d<= d1 d2 -- f gforth . 54
d<> d1 d2 -- f gforth . 54
d= d1 d2 -- f double . 54
d> d1 d2 -- f gforth . 54
d>= d1 d2 -- f gforth . 54
d>f d -- r float . 55
d>s d -- n double . 52
d0< d -- f double . 54
d0<= d -- f gforth . 54
d0<> d -- f gforth . 54
d0= d -- f double . 54
d0> d -- f gforth . 54
d0>= d -- f gforth . 54
d2* d1 -- d2 double . 53
d2/ d1 -- d2 double . 53
dabs d -- ud double . 52
dbg "name" -- gforth . 156
dec. n -- gforth . 114
decimal -- core . 98
Defer "name" -- gforth . 85
defer -- oof . 148
defers compilation "name" -- ; run-time ... -- ...

gforth . 85
definer! definer xt -- unknown 163
defines xt class "name" -- mini-oof 149
definitions -- oof . 147
definitions -- search. 102
delete-file c-addr u -- wior file. 108
depth -- +n core . 153
df! r df-addr -- float-ext 62
df@ df-addr -- r float-ext 62
dfalign -- float-ext . 61
dfaligned c-addr -- df-addr float-ext 64
dfloat% -- align size gforth 133
dfloat+ df-addr1 -- df-addr2 float-ext 64
dfloats n1 -- n2 float-ext 63
dict-new ... class -- object objects 143
dispose -- oof . 147
dmax d1 d2 -- d double . 52
dmin d1 d2 -- d double . 52
dnegate d1 -- d2 double . 52

Word Index 226

DO compilation -- do-sys ; run-time w1 w2 --
loop-sys core . 69

docol: -- addr gforth . 163
docon: -- addr gforth . 163
dodefer: -- addr gforth 163
does-code! a addr xt -- gforth 163
does-handler! a addr -- gforth 163
DOES> compilation colon-sys1 -- colon-sys2 ;

run-time nest-sys -- core 81
dofield: -- addr gforth 163
DONE compilation orig -- ; run-time -- gforth

. 70
double% -- align size gforth 133
douser: -- addr gforth . 163
dovar: -- addr gforth . 163
dpl -- a-addr gforth. 98
drop w -- core . 57
du< ud1 ud2 -- f double-ext 54
du<= ud1 ud2 -- f gforth. 54
du> ud1 ud2 -- f gforth . 54
du>= ud1 ud2 -- f gforth. 54
dump addr u -- tools . 153
dup w -- w w core . 57

E
early -- oof . 148
edit-line c-addr n1 n2 -- n3 gforth 121
ekey -- u facility-ext . 120
ekey>char u -- u false | c true facility-ext

. 120
ekey? -- flag unknown . 120
ELSE compilation orig1 -- orig2 ; run-time f --

core . 69
emit c -- core . 118
emit-file c wfileid -- wior gforth 109
empty-buffer buffer -- gforth 113
empty-buffers -- block-ext 113
end-class align offset "name" -- objects . . . 143
end-class class selectors vars "name" --

mini-oof . 149
end-class-noname align offset -- class objects

. 143
end-code colon-sys -- gforth 157
end-interface "name" -- objects 143
end-interface-noname -- interface objects

. 143
end-methods -- objects 143
end-struct align size "name" -- gforth 133
endcase compilation case-sys -- ; run-time x --

core-ext . 70
ENDIF compilation orig -- ; run-time -- gforth

. 69
endof compilation case-sys1 of-sys -- case-sys2 ;

run-time -- core-ext . 70
endscope compilation scope -- ; run-time --

gforth . 123

endtry compilation orig -- ; run-time -- gforth

. 73
endwith -- oof . 147
environment-wordlist -- wid gforth 106
environment? c-addr u -- false / ... true core

. 106
erase addr u -- core-ext 64
evaluate ... addr u -- ... core,block 97
exception addr u -- n gforth 72
execute xt -- core . 89
execute-parsing ... addr u xt -- ... unknown

. 101
execute-parsing-file i*x fileid xt -- j*x

unknown . 101
EXIT compilation -- ; run-time nest-sys -- core

. 71
exitm -- objects . 143
expect c-addr +n -- core-ext 121

F
f! r f-addr -- float. 62
f* r1 r2 -- r3 float . 55
f** r1 r2 -- r3 float-ext 55
f+ r1 r2 -- r3 float . 55
f, f -- gforth . 60
f- r1 r2 -- r3 float . 55
f. r -- float-ext . 114
f.rdp rf +nr +nd +np -- gforth 115
f.s -- gforth . 153
f/ r1 r2 -- r3 float . 55
f< r1 r2 -- f float . 57
f<= r1 r2 -- f gforth . 57
f<> r1 r2 -- f gforth . 57
f= r1 r2 -- f gforth . 57
f> r1 r2 -- f gforth . 57
f>= r1 r2 -- f gforth . 57
f>d r -- d float . 55
f>l r -- gforth . 127
f>str-rdp rf +nr +nd +np -- c-addr nr gforth

. 116
f@ f-addr -- r float. 62
f@local# #noffset -- r gforth 127
f~ r1 r2 r3 -- flag float-ext 56
f~abs r1 r2 r3 -- flag gforth 56
f~rel r1 r2 r3 -- flag gforth 56
f0< r -- f float . 57
f0<= r -- f gforth . 57
f0<> r -- f gforth . 57
f0= r -- f float . 57
f0> r -- f gforth . 57
f0>= r -- f gforth . 57
f2* r1 -- r2 gforth . 56
f2/ r1 -- r2 gforth . 56
fabs r1 -- r2 float-ext . 55
facos r1 -- r2 float-ext . 56
facosh r1 -- r2 float-ext. 56
falign -- float . 61

Word Index 227

faligned c-addr -- f-addr float 63
falog r1 -- r2 float-ext . 55
false -- f core-ext. 51
fasin r1 -- r2 float-ext . 56
fasinh r1 -- r2 float-ext. 56
fatan r1 -- r2 float-ext . 56
fatan2 r1 r2 -- r3 float-ext 56
fatanh r1 -- r2 float-ext. 56
fconstant r "name" -- float. 75
fcos r1 -- r2 float-ext . 56
fcosh r1 -- r2 float-ext . 56
fdepth -- +n float . 153
fdrop r -- float . 58
fdup r -- r r float . 58
fe. r -- float-ext . 114
fexp r1 -- r2 float-ext . 55
fexpm1 r1 -- r2 float-ext. 55
field align1 offset1 align size "name" -- align2

offset2 gforth . 133
file-position wfileid -- ud wior file 109
file-size wfileid -- ud wior file 109
file-status c-addr u -- wfam wior file-ext

. 109
fill c-addr u c -- core . 64
find c-addr -- xt +-1 | c-addr 0 core,search

. 103
find-name c-addr u -- nt | 0 gforth 90
FLiteral compilation r -- ; run-time -- r float

. 91
fln r1 -- r2 float-ext . 55
flnp1 r1 -- r2 float-ext . 55
float -- u gforth . 63
float% -- align size gforth 133
float+ f-addr1 -- f-addr2 float 63
floating-stack -- n environment 58
floats n1 -- n2 float . 63
flog r1 -- r2 float-ext . 55
floor r1 -- r2 float . 55
FLOORED -- f environment 52
flush -- block . 113
flush-file wfileid -- wior file-ext 109
flush-icache c-addr u -- gforth 157
fm/mod d1 n1 -- n2 n3 core 54
fmax r1 r2 -- r3 float . 55
fmin r1 r2 -- r3 float . 55
fnegate r1 -- r2 float . 55
fnip r1 r2 -- r2 gforth . 58
FOR compilation -- do-sys ; run-time u -- loop-sys

gforth . 69
Forth -- search-ext . 103
forth-wordlist -- wid search 102
fover r1 r2 -- r1 r2 r1 float 58
fp! f-addr -- gforth . 59
fp@ -- f-addr gforth . 59
fp0 -- a-addr gforth. 59
fpath -- path-addr gforth 109
fpick u -- r gforth . 58
free a-addr -- wior memory 61

frot r1 r2 r3 -- r2 r3 r1 float 58
fround r1 -- r2 gforth . 55
fs. r -- float-ext . 115
fsin r1 -- r2 float-ext . 56
fsincos r1 -- r2 r3 float-ext 56
fsinh r1 -- r2 float-ext . 56
fsqrt r1 -- r2 float-ext . 55
fswap r1 r2 -- r2 r1 float 58
ftan r1 -- r2 float-ext . 56
ftanh r1 -- r2 float-ext . 56
ftuck r1 r2 -- r2 r1 r2 gforth 58
fvariable "name" -- float 75

G
get-block-fid -- wfileid gforth 112
get-current -- wid search. 102
get-order -- widn .. wid1 n search 102
getenv c-addr1 u1 -- c-addr2 u2 gforth 164
gforth -- c-addr u gforth-environment. 106

H
heap-new ... class -- object objects 143
here -- addr core . 60
hex -- core-ext . 98
hex. u -- gforth . 114
hold char -- core . 116
how: -- oof . 148

I
i R:n -- R:n n core . 67
id. nt -- gforth . 90
IF compilation -- orig ; run-time f -- core 69
immediate -- core . 86
implementation interface -- objects 143
include ... "file" -- ... gforth 108
include-file i*x wfileid -- j*x unknown 107
included i*x c-addr u -- j*x file 107
included? c-addr u -- f gforth 107
init ... -- oof . 147
init-asm -- gforth . 157
init-object ... class object -- objects 144
inst-value align1 offset1 "name" -- align2 offset2

objects . 144
inst-var align1 offset1 align size "name" --

align2 offset2 objects 144
interface -- objects . 144
interpret/compile: interp-xt comp-xt "name" --

gforth . 86
interpretation> compilation. -- orig colon-sys

gforth . 88
invert w1 -- w2 core. 53
IS xt "name" -- gforth . 85
is xt "name" -- oof . 147

Word Index 228

J
j R:n R:d1 -- n R:n R:d1 core 67

K
k R:n R:d1 R:d2 -- n R:n R:d1 R:d2 gforth . . 67
key -- char core . 120
key? -- flag facility . 120

L
laddr# #noffset -- c-addr gforth 127
latest -- nt gforth . 90
latestxt -- xt gforth . 77
LEAVE compilation -- ; run-time loop-sys -- core

. 70
link "name" -- class addr oof 147
list u -- block-ext . 112
list-size list -- u gforth-internal. 128
Literal compilation n -- ; run-time -- n core

. 91
load i*x n -- j*x block . 113
LOOP compilation do-sys -- ; run-time loop-sys1 --

| loop-sys2 core . 69
lp! c-addr -- gforth 59, 127
lp+!# #noffset -- gforth 127
lp@ -- addr gforth . 59
lp0 -- a-addr gforth. 59
lshift u1 n -- u2 core . 53

M
m* n1 n2 -- d core . 54
m*/ d1 n2 u3 -- dquot double 54
m+ d1 n -- d2 double. 54
m: -- xt colon-sys; run-time: object -- objects

. 144
marker "<spaces> name" -- core-ext 153
max n1 n2 -- n core . 52
maxalign -- gforth . 61
maxaligned addr1 -- addr2 gforth 64
method -- oof . 148
method m v "name" -- m’ v mini-oof 148
method xt "name" -- objects 144
methods class -- objects 144
min n1 n2 -- n core . 52
mod n1 n2 -- n core . 52
move c-from c-to ucount -- core 64
ms n -- facility-ext . 164

N
naligned addr1 n -- addr2 gforth 133
name -- c-addr u gforth-obsolete 101
name>comp nt -- w xt gforth 90
name>int nt -- xt gforth. 90
name>string nt -- addr count gforth 90

name?int nt -- xt gforth. 90
needs ... "name" -- ... gforth 108
negate n1 -- n2 core . 52
new -- o oof . 147
new class -- o mini-oof . 149
new[] n -- o oof . 147
NEXT compilation do-sys -- ; run-time loop-sys1 --

| loop-sys2 gforth . 70
nextname c-addr u -- gforth 77
nip w1 w2 -- w2 core-ext 57
noname -- gforth . 77

O
object -- a-addr mini-oof 148
object -- class objects . 144
of compilation -- of-sys ; run-time x1 x2 -- |x1

core-ext . 70
off a-addr -- gforth. 51
on a-addr -- gforth . 51
Only -- search-ext . 103
open-blocks c-addr u -- gforth 112
open-file c-addr u wfam -- wfileid wior file

. 108
open-path-file addr1 u1 path-addr -- wfileid

addr2 u2 0 | ior gforth 110
open-pipe c-addr u wfam -- wfileid wior gforth

. 121
or w1 w2 -- w core . 53
order -- search-ext . 103
os-class -- c-addr u gforth-environment . . 106
over w1 w2 -- w1 w2 w1 core 57
overrides xt "selector" -- objects 144

P
pad -- c-addr core-ext . 121
page -- facility . 119
parse char "ccc<char>" -- c-addr u core-ext

. 101
parse-word "name" -- c-addr u gforth 101
path+ path-addr "dir" -- gforth 110
path-allot umax -- unknown 110
path= path-addr "dir1|dir2|dir3" gforth . . . 110
perform a-addr -- gforth 89
pi -- r gforth . 56
pick u -- w core-ext . 57
postpone "name" -- core 92
postpone "name" -- oof 147
postpone, w xt -- gforth 89
precision -- u float-ext 56
previous -- search-ext 102
print object -- objects. 144
printdebugdata -- gforth 154
protected -- objects . 144
ptr "name" -- oof . 147
ptr -- oof . 148
public -- objects . 144

Word Index 229

Q
query -- core-ext . 97
quit ?? -- ?? core . 164

R
r/o -- fam file . 108
r/w -- fam file . 108
r> R:w -- w core . 58
r@ -- w ; R: w -- w core. 58
rdrop R:w -- gforth . 58
read-file c-addr u1 wfileid -- u2 wior file

. 108
read-line c addr u1 wfileid -- u2 flag wior

unknown . 108
recover compilation orig1 -- orig2 ; run-time --

gforth . 73
recurse compilation -- ; run-time ?? -- ?? core

. 71
recursive compilation -- ; run-time -- gforth

. 71
refill -- flag core-ext,block-ext,file-ext

. 101
rename-file c-addr1 u1 c-addr2 u2 -- wior

file-ext . 108
REPEAT compilation orig dest -- ; run-time -- core

. 69
reposition-file ud wfileid -- wior file 109
represent r c-addr u -- n f1 f2 float 116
require ... "file" -- ... gforth 108
required i*x addr u -- j*x gforth 108
resize a-addr1 u -- a-addr2 wior memory 61
resize-file ud wfileid -- wior file 109
restore-input x1 .. xn n -- flag core-ext 97
restrict -- gforth . 86
roll x0 x1 .. xn n -- x1 .. xn x0 core-ext 57
Root -- gforth . 103
rot w1 w2 w3 -- w2 w3 w1 core 57
rp! a-addr -- gforth. 59
rp@ -- a-addr gforth. 59
rp0 -- a-addr gforth. 59
rshift u1 n -- u2 core . 53

S
S" compilation ’ccc"’ -- ; run-time -- c-addr u

core,file . 119
s>d n -- d core . 52
s\" compilation ’ccc"’ -- ; run-time -- c-addr u

gforth . 119
save-buffer buffer -- gforth 113
save-buffers -- block. 113
save-input -- x1 .. xn n core-ext 96
savesystem "name" -- gforth 189
scope compilation -- scope ; run-time -- gforth

. 123
scr -- a-addr block-ext 112
seal -- gforth . 103

search c-addr1 u1 c-addr2 u2 -- c-addr3 u3 flag
string . 65

search-wordlist c-addr count wid -- 0 | xt +-1
search . 103

see "<spaces>name" -- tools. 153

selector "name" -- objects 144

self -- o oof. 147

set-current wid -- search. 102

set-order widn .. wid1 n -- search 102

set-precision u -- float-ext 56

sf! r sf-addr -- float-ext 62

sf@ sf-addr -- r float-ext 62

sfalign -- float-ext . 61

sfaligned c-addr -- sf-addr float-ext 63

sfloat% -- align size gforth 133

sfloat+ sf-addr1 -- sf-addr2 float-ext 63

sfloats n1 -- n2 float-ext 63

sh "..." -- gforth . 164

sign n -- core . 116

simple-see "name" -- gforth 153

simple-see-range addr1 addr2 -- gforth . . . 153

SLiteral Compilation c-addr1 u ; run-time --
c-addr2 u string . 92

slurp-fid unknown . 109

slurp-file c-addr1 u1 -- c-addr2 u2 unknown

. 109

sm/rem d1 n1 -- n2 n3 core 54

source -- addr u core-ext,file 96

source-id -- 0 | -1 | fileid core-ext,file . . . 96

sourcefilename -- c-addr u gforth 108

sourceline# -- u gforth 108

sp! a-addr -- gforth. 59

sp@ -- a-addr gforth. 59

sp0 -- a-addr gforth. 59

space -- core . 118

spaces u -- core . 118

span -- c-addr core-ext 121

static -- oof . 148

stderr -- wfileid gforth 109

stdin -- wfileid gforth . 109

stdout -- wfileid gforth 109

str< c-addr1 u1 c-addr2 u2 -- f gforth 65

str= c-addr1 u1 c-addr2 u2 -- f gforth 65

string-prefix? c-addr1 u1 c-addr2 u2 -- f
gforth . 65

struct -- align size gforth 133

sub-list? list1 list2 -- f gforth-internal . . 128

super "name" -- oof . 147

swap w1 w2 -- w2 w1 core 57

system c-addr u -- gforth 164

Word Index 230

T
table -- wid gforth . 102
THEN compilation orig -- ; run-time -- core . . . 69
this -- object objects . 145
threading-method -- n gforth 162
throw y1 .. ym nerror -- y1 .. ym / z1 .. zn error

exception . 71
thru i*x n1 n2 -- j*x block-ext 113
tib unknown . 96
time&date -- nsec nmin nhour nday nmonth nyear

facility-ext . 164
TO w "name" -- core-ext 76
to-this object -- objects 145
toupper c1 -- c2 gforth 118
true -- f core-ext . 51
try compilation -- orig ; run-time -- gforth . . 72
tuck w1 w2 -- w2 w1 w2 core-ext. 57
type c-addr u -- core . 119
typewhite addr n -- gforth 119

U
U+DO compilation -- do-sys ; run-time u1 u2 -- |

loop-sys gforth . 69
U-DO compilation -- do-sys ; run-time u1 u2 -- |

loop-sys gforth . 69
u. u -- core. 114
u.r u n -- core-ext . 114
u< u1 u2 -- f core . 53
u<= u1 u2 -- f gforth . 53
u> u1 u2 -- f core-ext . 53
u>= u1 u2 -- f gforth . 53
ud. ud -- gforth . 114
ud.r ud n -- gforth . 114
um* u1 u2 -- ud core . 54
um/mod ud u1 -- u2 u3 core 54
unloop R:w1 R:w2 -- core 70
UNREACHABLE -- gforth. 123

UNTIL compilation dest -- ; run-time f -- core

. 69
unused -- u core-ext . 60
update -- block . 113
updated? n -- f gforth. 113
use "file" -- gforth . 112
User "name" -- gforth . 75
utime -- dtime gforth . 164

V
Value w "name" -- core-ext 76
var m v size "name" -- m v’ mini-oof 148
var size -- oof . 147
Variable "name" -- core 74
vlist -- gforth . 103
Vocabulary "name" -- gforth 103
vocs -- gforth . 104

W
w/o -- fam file . 108
What’s interpretation "name" -- xt; compilation

"name" -- ; run-time -- xt gforth 85
WHILE compilation dest -- orig dest ; run-time f --

core . 69
with o -- oof. 147
within u1 u2 u3 -- f core-ext 53
word char "<chars>ccc<char>-- c-addr core . . 101
wordlist -- wid search . 102
words -- tools . 103
write-file c-addr u1 wfileid -- wior file . . . 108
write-line c-addr u fileid -- ior file 109

X
xor w1 w2 -- w core. 53
xt-new ... class xt -- object objects 145
xt-see xt -- gforth . 153

Concept and Word Index 231

Concept and Word Index

Not all entries listed in this index are present verbatim in the text. This index also
duplicates, in abbreviated form, all of the words listed in the Word Index (only the names
are listed for the words here).

!
! . 61

"
", stack item type. 50

#
. 116
#! . 192
#> . 116
#>> . 116
#s . 116
#tib . 96

$
$-prefix for hexadecimal numbers 98
$? . 164

%
%-prefix for binary numbers 98
%align . 133
%alignment . 133
%alloc . 133
%allocate . 133
%allot . 133
%size . 133

&
&-prefix for decimal numbers 98

’
’ . 88, 147
’-prefix for character strings 98
’cold . 192

(
(. 51
(local). 129

)
) . 155

*
* . 52
*/ . 54
*/mod . 54

+
+ . 52
+! . 61
+DO . 69
+load . 113
+LOOP . 69
+thru . 113

,
, . 60

-
- . 52
–, tutorial . 14
--> . 113
–appl-image, command-line option 3
–application, gforthmi option 190
–clear-dictionary, command-line option 4
–data-stack-size, command-line option 3
–debug, command-line option 4
–dictionary-size, command-line option 3
–die-on-signal, command-line-option 4
–dynamic command-line option 197
–dynamic, command-line option. 4
–enable-force-reg, configuration flag 193
–fp-stack-size, command-line option 4
–help, command-line option. 4
–image file, invoke image file 191
–image-file, command-line option. 3
–locals-stack-size, command-line option 4
–no-dynamic command-line option 197
–no-dynamic, command-line option 4
–no-offset-im, command-line option. 4
–no-super command-line option 197
–no-super, command-line option 4
–offset-image, command-line option 4
–path, command-line option 3
–print-metrics, command-line option 5
–return-stack-size, command-line option 4
–ss-greedy, command-line option 5
–ss-min-..., command-line options 5
–ss-number, command-line option 4

Concept and Word Index 232

–version, command-line option 4

-d, command-line option. 3

-DFORCE REG . 193

-DO . 69

-DUSE FTOS . 199

-DUSE NO FTOS . 199

-DUSE NO TOS. 199

-DUSE TOS . 199

-f, command-line option . 4

-h, command-line option. 4

-i, command-line option . 3

-i, invoke image file . 191

-l, command-line option . 4

-LOOP . 69

-m, command-line option . 3

-p, command-line option. 3

-r, command-line option . 4

-rot . 57

-trailing . 65

-v, command-line option . 4

.

. 114

." . 118

.", how it works . 46

.(. 118

.\" . 119

.debugline . 154

‘.emacs’ . 185

‘.fi’ files . 188

‘.gforth-history’ . 6

.id . 90

.name . 90

.path . 110

.r . 114

.s . 152

/
/ . 52

/does-handler . 163

/mod . 52

/string . 65

:
: . 76, 147

:, passing data across . 92

:: . 147, 149

:m . 144

:noname . 76

;
; . 76
;code . 157
;CODE ending sequence . 180
;CODE, name not defined via CREATE 180
;CODE, processing input . 180
;m . 144
;m usage . 138
;s . 71

<
< . 53
<# . 115
<<# . 115
<= . 53
<> . 53
<bind> . 142
<compilation . 88
<interpretation . 88
<IS> . 85
<to-inst> . 145

=
= . 53

>
> . 53
>= . 53
>body . 81
>BODY of non-CREATEd words 173
>code-address . 162
>definer . 163
>does-code . 163
>float . 121
>in . 96
>IN greater than input buffer 172
>l . 127
>name . 90
>number. 121
>order . 102
>r . 58

?
? . 153
?DO . 69
?dup . 57
?DUP-0=-IF . 69
?DUP-IF . 69
?LEAVE . 70

@
@ . 61
@local#. 127

Concept and Word Index 233

[
[. 91

[’] . 88

[+LOOP]. 100

[?DO] . 100

[] . 147

[AGAIN]. 100

[BEGIN]. 100

[bind] . 142

[bind] usage . 137

[Char] . 119

[COMP’] . 89

[compile] . 92

[current] . 143

[DO] . 100

[ELSE] . 100

[ENDIF]. 100

[FOR] . 100

[IF] . 99

[IF] and POSTPONE . 180

[IF], end of the input source before matching
[ELSE] or [THEN] . 180

[IFDEF]. 100

[IFUNDEF] . 100

[IS] . 85

[LOOP] . 100

[NEXT] . 100

[parent] . 144

[parent] usage . 137

[REPEAT] . 100

[THEN] . 100

[to-inst] . 145

[UNTIL]. 100

[WHILE]. 100

]
] . 91

]L . 91

\
\ . 51

\"-parse . 101

\, editing with Emacs . 185

\, line length in blocks . 174

\G . 51

~
~~ . 154

~~, removal with Emacs . 185

0
0< . 53
0<= . 53
0<> . 53
0= . 53
0> . 53
0>= . 53

1
1+ . 52
1- . 52
1/f . 56

2
2! . 62
2* . 53
2, . 60
2/ . 53
2>r . 58
2@ . 62
2Constant . 75
2drop . 57
2dup . 58
2Literal. 91
2nip . 57
2over . 58
2r> . 58
2r@ . 58
2rdrop . 58
2rot . 58
2swap . 58
2tuck . 58
2Variable . 74

A
a_, stack item type . 50
abort . 73
ABORT" . 73
ABORT", exception abort sequence 169
abs . 52
abstract class . 136, 146
accept . 121
ACCEPT, display after end of input 169
ACCEPT, editing . 168
address alignment exception 173
address alignment exception, stack overflow . . . 171
address arithmetic for structures 129
address arithmetic restrictions, ANS vs. Gforth

. 59
address arithmetic words . 62
address of counted string . 118
address unit . 62
address unit, size in bits . 169
ADDRESS-UNIT-BITS . 64
AGAIN . 69

Concept and Word Index 234

AHEAD . 69
Alias . 85
aliases . 85
align . 60
aligned . 63
aligned addresses . 168
alignment faults . 173
alignment of addresses for types. 63
alignment tutorial . 26
allocate. 61
allot . 60
also . 103
also, too many word lists in search order 181
also-path . 110
ambiguous conditions, block words 174
ambiguous conditions, core words 171
ambiguous conditions, double words 175
ambiguous conditions, facility words. 176
ambiguous conditions, file words 177
ambiguous conditions, floating-point words . . . 178
ambiguous conditions, locals words 179
ambiguous conditions, programming-tools words

. 180
ambiguous conditions, search-order words 181
and . 53
angles in trigonometric operations 56
ANS conformance of Gforth 167
‘ans-report.fs’ . 166
arg . 192
argc . 192
argument input source different than current input

source for RESTORE-INPUT 172
argument type mismatch . 171
argument type mismatch, RESTORE-INPUT 172
arguments on the command line, access 192
argv . 192
arithmetic words . 51
arithmetics tutorial . 11
arrays. 74
arrays tutorial . 33
asptr . 147, 148
assembler . 157
ASSEMBLER, search order capability 180
assert(. 155
assert-level . 155
assert0(. 155
assert1(. 155
assert2(. 155
assert3(. 155
assertions . 154
ASSUME-LIVE . 125
at-xy . 119
AT-XY can’t be performed on user output device

. 176
Attempt to use zero-length string as a name . . 172
au (address unit) . 62
authors of Gforth . 206
auto-indentation of Forth code in Emacs. 186

B

backtrace . 165

backtraces with gforth-fast 165

base . 98

base is not decimal (REPRESENT, F., FE., FS.)
. 178

basic objects usage. 135

batch processing with Gforth 5

BEGIN . 69

benchmarking Forth systems. 200

‘Benchres’ . 201

bin . 108

bind . 142, 147

bind usage . 137

bind’ . 142

bitwise operation words . 53

bl . 118

blank . 64

blk . 96

BLK, altering BLK . 175

block . 112

block buffers . 111

block number invalid . 174

block read not possible . 174

block transfer, I/O exception 174

block words, ambiguous conditions 174

block words, implementation-defined options . . 174

block words, other system documentation 175

block words, system documentation 174

block-included . 113

block-offset . 112

block-position . 112

blocks . 110

blocks file . 110

blocks files, use with Emacs 187

blocks in files . 177

‘blocks.fb’ . 111

Boolean flags . 51

bound . 147

bounds . 65

break" . 156

break: . 156

broken-pipe-error . 122

buffer . 113

bug reporting . 205

bye . 6

bye during ‘gforthmi’ . 190

Concept and Word Index 235

C
c! . 62
C" . 119
c, . 60
c, stack item type. 49
C, using C for the engine . 193
c@ . 62
c_, stack item type . 50
calling a definition . 71
case . 70
CASE control structure . 66
case sensitivity . 50
case-sensitivity characteristics 170
case-sensitivity for name lookup 168
catch . 72
catch and backtraces . 165
catch and this . 141
catch in m: ... ;m. 138
cell . 63
cell size . 170
cell% . 133
cell+ . 63
cell-aligned addresses . 168
cells . 63
CFA . 89
cfalign . 61
cfaligned . 64
changing the compilation word list (during

compilation) . 181
char . 119
char size . 170
char% . 133
char+ . 63
character editing of ACCEPT and EXPECT 168
character set . 168
character strings - compiling and displaying . . . 118
character strings - formats 118
character strings - moving and copying 64
character-aligned address requirements 168
character-set extensions and matching of names

. 168
characters - compiling and displaying 118
characters tutorial . 25
chars . 63
child class . 134
child words . 78
class . 134
class . 142, 146, 149
class binding . 137
class binding as optimization 137
class binding, alternative to 137
class binding, implementation. 141
class declaration . 147
class definition, restrictions 136, 146
class implementation . 148
class implementation and representation 141
class scoping implementation 141
class usage . 135, 145

class->map . 142
class-inst-size . 143
class-inst-size discussion 136
class-override! . 143
class-previous . 143
class; . 148
class; usage . 145
class>order . 143
class? . 147
classes and scoping . 139
clear-path . 110
clearstack . 153
clock tick duration . 175
close-file . 108
close-pipe . 121
cmove . 64
cmove> . 64
code . 157
code address . 162
CODE ending sequence . 180
code examination . 152
code field address . 89, 162
code words . 157
code words, portable . 158
CODE, processing input . 180
code-address! . 162
colon definitions . 76
colon definitions, tutorial . 14
colon-sys, passing data across : 92
combined words . 86
command-line arguments, access 192
command-line editing . 6
command-line options . 3
comment editing commands 185
comments . 51
comments tutorial . 13
common-list . 128
COMP’ . 89
‘comp-i.fs’ . 190
comp.lang.forth . 207
compare . 64
comparison of object models 151
comparison tutorial . 19
compilation semantics . 45, 86
compilation semantics tutorial 28
compilation token . 89
compilation tokens, tutorial. 36
compilation word list. 102
compilation word list, change before definition ends

. 181
compilation> . 88
compile state . 94
compile,. 93
compile-lp+! . 127
compile-only . 86
compile-only words . 86
compiling compilation semantics 92
compiling words . 91

Concept and Word Index 236

conditional compilation . 99
conditionals, tutorial . 18
Constant. 75
constants. 75
construct . 143
construct discussion. 136
context. 104
context-sensitive help . 185
contiguous regions and address arithmetic 62
contiguous regions and heap allocation 61
contiguous regions in dictionary allocation 60
contiguous regions, ANS vs. Gforth 59
contributors to Gforth . 206
control characters as delimiters 168
control structures . 65
control structures for selection 65
control structures programming style 70
control structures, user-defined. 69
control-flow stack . 69
control-flow stack items, locals information . . . 128
control-flow stack underflow 180
control-flow stack, format 168
convert. 121
core words, ambiguous conditions 171
core words, implementation-defined options . . . 168
core words, other system documentation 174
core words, system documentation 168
count . 118
counted loops . 67
counted loops with negative increment. 68
counted string . 118
counted string, maximum size 169
counted strings . 118
cputime. 164
cr . 119
Create . 73
CREATE ... DOES> . 78
CREATE ... DOES>, applications. 80
CREATE ... DOES>, details . 81
CREATE and alignment . 63
create-file . 108
create-interpret/compile 88
create...does> tutorial . 31
creating objects . 136
cross-compiler . 191, 202
‘cross.fs’ . 191, 202
CS-PICK . 69
CS-PICK, fewer than u+1 items on the control

flow-stack . 180
CS-ROLL . 69
CS-ROLL, fewer than u+1 items on the control

flow-stack . 180
CT (compilation token) . 89
CT, tutorial . 36
current. 104
current’ . 143
current-interface . 143
current-interface discussion 141

currying . 80
cursor control . 119

D
d+ . 52
d, stack item type. 50
d- . 52
d. 114
d.r . 114
d< . 54
d<= . 54
d<> . 54
d= . 54
d> . 54
d>= . 54
d>f . 55
D>F, d cannot be presented precisely as a float

. 178
d>s . 52
D>S, d out of range of n . 175
d0< . 54
d0<= . 54
d0<> . 54
d0= . 54
d0> . 54
d0>= . 54
d2* . 53
d2/ . 53
dabs . 52
data examination . 152
data space - reserving some 60
data space available . 174
data space containing definitions gets de-allocated

. 172
data space pointer not properly aligned, ,, C,

. 173
data space read/write with incorrect alignment

. 173
data stack . 57
data stack manipulation words 57
data-relocatable image files 189
data-space, read-only regions 170
dbg . 156
debug tracer editing commands 185
debugging . 154
debugging output, finding the source location in

Emacs . 185
debugging Singlestep . 156
dec. 114
decimal . 98
decompilation tutorial . 14
default type of locals . 123
defer . 148
Defer . 85
deferred words . 83
defers . 85
definer . 163

Concept and Word Index 237

definer! . 163
defines. 149
defining defining words . 78
defining words . 73
defining words tutorial . 31
defining words with arbitrary semantics

combinations . 87
defining words without name 76
defining words, name given in a string 77
defining words, simple . 73
defining words, user-defined 77
definition . 39
definitions . 102, 147
definitions, tutorial . 14
delete-file . 108
depth . 153
design of stack effects, tutorial 17
dest, control-flow stack item. 69
df! . 62
df@ . 62
df@ or df! used with an address that is not

double-float aligned . 178
df_, stack item type . 50
dfalign . 61
dfaligned . 64
dfloat%. 133
dfloat+ . 64
dfloats . 63
dict-new . 143
dict-new discussion. 136
dictionary . 94
dictionary in persistent form 188
dictionary overflow. 171
dictionary size default . 191
digits > 35 . 169
direct threaded inner interpreter 194
dispose. 147
dividing by zero . 171
dividing by zero, floating-point. 178
Dividing classes . 139
division rounding . 170
division with potentially negative operands 51
dmax . 52
dmin . 52
dnegate . 52
DO . 69
DO loops. 67
docol: . 163
docon: . 163
dodefer: . 163
dodoes routine . 197
does-code! . 163
does-handler! . 163
DOES> . 81
DOES> implementation . 197
DOES> in a separate definition 81
DOES> in interpretation state 81
DOES> of non-CREATEd words 173

does> tutorial . 31
DOES>, visibility of current definition 170
does>-code . 162
DOES>-code . 197
does>-handler . 162
DOES>-parts, stack effect . 80
dofield: . 163
DONE . 70
double precision arithmetic words 52
double words, ambiguous conditions 175
double words, system documentation 175
double%. 133
double-cell numbers, input format 97
doubly indirect threaded code 190
douser:. 163
dovar: . 163
dpl . 98
drop . 57
du< . 54
du<= . 54
du> . 54
du>= . 54
dump . 153
dup . 57
duration of a system clock tick 175
dynamic allocation of memory 61
Dynamic superinstructions with replication . . . 195

E
early . 148
early binding . 137
edit-line . 121
editing in ACCEPT and EXPECT 168
eforth performance. 200
ekey . 120
EKEY, encoding of keyboard events 175
ekey>char . 120
ekey? . 120
elements of a Forth system 47
ELSE . 69
Emacs and Gforth . 185
emit . 118
EMIT and non-graphic characters 168
emit-file . 109
empty-buffer . 113
empty-buffers . 113
end-class . 143, 149
end-class usage . 135
end-class-noname . 143
end-code . 157
end-interface . 143
end-interface usage . 140
end-interface-noname. 143
end-methods . 143
end-struct . 133
end-struct usage. 131
endcase . 70

Concept and Word Index 238

ENDIF . 69
endless loop . 67
endof . 70
endscope . 123
endtry . 73
endwith. 147
engine . 193
engine performance . 200
engine portability . 193
‘engine.s’ . 199
engines, gforth vs. gforth-fast vs. gforth-itc . . . 195
environment variables. 7, 190
environment wordset . 49
environment-wordlist. 106
environment? . 106
ENVIRONMENT? string length, maximum 169
environmental queries . 105
environmental restrictions 167
equality of floats . 56
erase . 64
error messages . 165
error output, finding the source location in Emacs

. 185
‘etags.fs’ . 185
evaluate. 97
examining data and code . 152
exception . 72
exception abort sequence of ABORT" 169
exception when including source 176
exception words, implementation-defined options

. 175
exception words, system documentation 175
exceptions . 71
exceptions tutorial . 30
executable image file . 191
execute . 89
execute-parsing . 101
execute-parsing-file. 101
executing code on startup . 5
execution semantics . 86
execution token . 39, 88
execution token of last defined word 77
execution token of words with undefined execution

semantics . 171
execution tokens tutorial . 29
exercises . 48
EXIT . 71
exit in m: ... ;m . 138
exitm . 143
exitm discussion . 138
expect . 121
EXPECT, display after end of input 169
EXPECT, editing . 168
explicit register declarations 193
exponent too big for conversion (DF!, DF@, SF!,

SF@) . 178
extended records. 131

F
f! . 62
f! used with an address that is not float aligned

. 178
f* . 55
f** . 55
f+ . 55
f, . 60
f, stack item type. 49
f- . 55
f. 114
f.rdp . 115
f.s . 153
f/ . 55
f< . 57
f<= . 57
f<> . 57
f= . 57
f> . 57
f>= . 57
f>d . 55
F>D, integer part of float cannot be represented by

d . 179
f>l . 127
f>str-rdp . 116
f@ . 62
f@ used with an address that is not float aligned

. 178
f@local# . 127
f_, stack item type . 50
f~ . 56
f~abs . 56
f~rel . 56
f0< . 57
f0<= . 57
f0<> . 57
f0= . 57
f0> . 57
f0>= . 57
f2* . 56
f2/ . 56
f83name, stack item type . 50
fabs . 55
facility words, ambiguous conditions. 176
facility words, implementation-defined options

. 175
facility words, system documentation 175
facos . 56
FACOS, |float|>1 . 179
facosh . 56
FACOSH, float<1 . 179
factoring . 38
factoring similar colon definitions 80
factoring tutorial . 16
falign . 61
faligned. 63
falog . 55
false . 51

Concept and Word Index 239

fam (file access method) . 108
fasin . 56
FASIN, |float|>1 . 179
fasinh . 56
FASINH, float<0 . 179
fatan . 56
fatan2 . 56
FATAN2, both arguments are equal to zero 178
fatanh . 56
FATANH, |float|>1 . 179
fconstant . 75
fcos . 56
fcosh . 56
fdepth . 153
FDL, GNU Free Documentation License 208
fdrop . 58
fdup . 58
fe. 114
fexp . 55
fexpm1 . 55
field . 133
field naming convention . 132
field usage . 131
field usage in class definition 136
file access methods used . 176
file exceptions . 176
file input nesting, maximum depth 176
file line terminator . 176
file name format . 176
file search path . 109
file words, ambiguous conditions 177
file words, implementation-defined options 176
file words, system documentation 176
file-handling . 108
file-position . 109
file-size . 109
file-status . 109
FILE-STATUS, returned information 176
filenames in ~~ output . 154
filenames in assertion output 155
files . 107
files containing blocks . 177
files containing Forth code, tutorial 13
files tutorial . 26
fill . 64
find . 103
find-name . 90
first definition . 43
first field optimization. 132
first field optimization, implementation 132
flags on the command line . 3
flags tutorial . 19
flavours of locals . 122
FLiteral. 91
fln . 55
FLN, float=<0 . 179
flnp1 . 55
FLNP1, float=<-1 . 179

float . 63
float% . 133
float+ . 63
floating point arithmetic words 55
floating point numbers, format and range 177
floating point unidentified fault, integer division

. 171
floating-point arithmetic, pitfalls 55
floating-point comparisons . 56
floating-point dividing by zero 178
floating-point numbers, input format 97
floating-point numbers, rounding or truncation

. 178
floating-point result out of range 178
floating-point stack . 57
floating-point stack in the standard 57
floating-point stack manipulation words 58
floating-point stack size . 178
floating-point stack width 178
floating-point unidentified fault, F>D. 179
floating-point unidentified fault, FACOS, FASIN or

FATANH . 179
floating-point unidentified fault, FACOSH 179
floating-point unidentified fault, FASINH or FSQRT

. 179
floating-point unidentified fault, FLN or FLOG . . 179
floating-point unidentified fault, FLNP1 179
floating-point unidentified fault, FP divide-by-zero

. 178
floating-point words, ambiguous conditions . . . 178
floating-point words, implementation-defined

options . 177
floating-point words, system documentation. . . 177
floating-stack . 58
floats . 63
flog . 55
FLOG, float=<0. 179
floor . 55
FLOORED . 52
flush . 113
flush-file . 109
flush-icache . 157
fm/mod . 54
fmax . 55
fmin . 55
fnegate . 55
fnip . 58
FOR . 69
FOR loops . 68
FORGET, deleting the compilation word list 180
FORGET, name can’t be found 180
FORGET, removing a needed definition 180
forgeting words . 153
format and range of floating point numbers . . . 177
format of glossary entries . 49
formatted numeric output 115
Forth . 103
Forth - an introduction . 38

Concept and Word Index 240

Forth mode in Emacs . 185
Forth source files . 107
Forth Tutorial . 10
Forth-related information. 207
forth-wordlist . 102
‘forth.el’ . 185
fover . 58
fp! . 59
fp@ . 59
fp0 . 59
fpath . 109
fpick . 58
free . 61
frequently asked questions 207
frot . 58
fround . 55
fs. 115
fsin . 56
fsincos . 56
fsinh . 56
fsqrt . 55
FSQRT, float<0 . 179
fswap . 58
ftan . 56
FTAN on an argument r1 where cos(r1) is zero

. 178
ftanh . 56
ftuck . 58
fully relocatable image files 190
functions, tutorial. 14
fvariable . 75

G
general files . 108
get-block-fid . 112
get-current . 102
get-order . 102
getenv . 164
gforth . 106
Gforth - leaving . 6
GFORTH – environment variable 7, 190
gforth engine . 195
Gforth environment . 3
Gforth extensions . 182
Gforth files . 7
Gforth locals . 122
Gforth performance . 200
gforth-ditc . 190
gforth-fast and backtraces 165
gforth-fast engine . 195
gforth-fast, difference from gforth 165
gforth-itc engine . 195
‘gforth.el’ . 185
‘gforth.el’, installation . 185
‘gforth.fi’, relocatability 190
GFORTHD – environment variable 7, 190
GFORTHHIST – environment variable. 7

‘gforthmi’ . 190
GFORTHPATH – environment variable. 7
glossary notation format . 49
GNU C for the engine . 193
goals of the Gforth project . 2

H
header space . 102
heap allocation . 61
heap-new . 143
heap-new discussion. 136
heap-new usage . 136
here . 60
hex . 98
hex. 114
highlighting Forth code in Emacs 186
hilighting Forth code in Emacs. 186
history file . 6
hold . 116
how: . 148
hybrid direct/indirect threaded code 195

I
i . 67
I/O - blocks . 110
I/O - file-handling . 107
I/O - keyboard and display 114
I/O - see character strings 118
I/O - see input . 120
I/O exception in block transfer 174
id. 90
IF . 69
IF control structure . 65
if, tutorial . 18
image file . 188
image file background . 188
image file initialization sequence 192
image file invocation . 191
image file loader . 188
image file, data-relocatable 189
image file, executable . 191
image file, fully relocatable 190
image file, non-relocatable 189
image file, stack and dictionary sizes 191
image file, turnkey applications 192
image license . 188
immediate . 86
immediate words . 45, 86
immediate, tutorial . 28
implementation . 143
implementation of locals . 127
implementation of structures 132
implementation usage . 140
implementation-defined options, block words . . 174
implementation-defined options, core words . . . 168

Concept and Word Index 241

implementation-defined options, exception words
. 175

implementation-defined options, facility words
. 175

implementation-defined options, file words 176
implementation-defined options, floating-point

words. 177
implementation-defined options, locals words . . 179
implementation-defined options, memory-allocation

words. 180
implementation-defined options,

programming-tools words 180
implementation-defined options, search-order

words. 181
in-lining of constants . 75
include. 108
include search path . 109
include, placement in files 185
include-file . 107
INCLUDE-FILE, file-id is invalid. 177
INCLUDE-FILE, I/O exception reading or closing

file-id . 177
included . 107
INCLUDED, I/O exception reading or closing file-id

. 177
INCLUDED, named file cannot be opened 177
included? . 107
including files . 107
including files, stack effect 107
indentation of Forth code in Emacs 186
indirect threaded inner interpreter 194
inheritance . 134
init . 147
init-asm . 157
init-object . 144
init-object discussion . 136
initialization sequence of image file 192
inner interpreter implementation 194
inner interpreter optimization. 194
inner interpreter, direct threaded 194
inner interpreter, indirect threaded 194
input . 120
input buffer . 94
input format for double-cell numbers 97
input format for floating-point numbers 97
input format for single-cell numbers 97
input from pipes . 7
input line size, maximum . 177
input line terminator . 169
input sources . 96
input stream . 100
inst-value . 144
inst-value usage. 138
inst-value visibility . 139
inst-var . 144
inst-var implementation 141
inst-var usage . 138
inst-var visibility . 139

instance variables . 134

instruction pointer . 194

insufficient data stack or return stack space . . . 171

insufficient space for loop control parameters . . 171

insufficient space in the dictionary 171

integer types, ranges . 169

interface . 144

interface implementation . 141

interface usage . 140

interfaces for objects . 140

interpret state . 94

Interpret/Compile states . 99

interpret/compile: . 86

interpretation semantics 45, 86

interpretation semantics tutorial 28

interpretation> . 88

interpreter - outer . 94

interpreter directives . 99

Interpreting a compile-only word 171

Interpreting a compile-only word, for ’ etc. . . . 171

Interpreting a compile-only word, for a local . . 179

interpreting a word with undefined interpretation
semantics . 171

invalid block number . 174

Invalid memory address . 171

Invalid memory address, stack overflow 171

Invalid name argument, TO 173, 179

invert . 53

invoking a selector . 134

invoking Gforth . 3

invoking image files . 191

ior type description . 50

ior values and meaning 176, 180

is . 147

IS . 85

J

j . 67

K

k . 67

‘kern*.fi’, relocatability . 190

key . 120

key? . 120

keyboard events, encoding in EKEY 175

Kuehling, David . 185

Concept and Word Index 242

L
labels as values . 194
laddr# . 127
last word was headerless. 173
late binding . 137
latest . 90
latestxt. 77
LEAVE . 70
leaving definitions, tutorial 22
leaving Gforth . 6
leaving loops, tutorial . 22
length of a line affected by \ 174
license for images . 188
lifetime of locals . 125
line terminator on input . 169
link . 147
list . 112
LIST display format . 174
list-size . 128
Literal . 91
literal tutorial . 34
Literals . 91
load . 113
loader for image files . 188
loading files at startup . 5
loading Forth code, tutorial 13
local in interpretation state 179
local variables, tutorial . 17
locale and case-sensitivity 168
locals . 122
locals and return stack . 58
locals flavours . 122
locals implementation . 127
locals information on the control-flow stack . . . 128
locals lifetime . 125
locals programming style . 125
locals stack . 57, 127
locals types . 122
locals visibility . 123
locals words, ambiguous conditions 179
locals words, implementation-defined options . . 179
locals words, system documentation 179
locals, ANS Forth style . 128
locals, default type. 123
locals, Gforth style. 122
locals, maximum number in a definition 179
long long . 193
LOOP . 69
loop control parameters not available 173
loops without count . 66
loops, counted . 67
loops, counted, tutorial . 21
loops, endless . 67
loops, indefinite, tutorial . 20
lp! . 59, 127
lp+!# . 127
lp@ . 59
lp0 . 59

lshift . 53
LSHIFT, large shift counts 173

M
m* . 54
m*/ . 54
m+ . 54
m: . 144
m: usage . 138
macros . 91
Macros. 92
macros, advanced tutorial . 35
mapping block ranges to files 177
marker . 153
max . 52
maxalign. 61
maxaligned . 64
maximum depth of file input nesting 176
maximum number of locals in a definition 179
maximum number of word lists in search order

. 181
maximum size of a counted string 169
maximum size of a definition name, in characters

. 169
maximum size of a parsed string 169
maximum size of input line 177
maximum string length for ENVIRONMENT?, in

characters. 169
memory access words . 61
memory access/allocation tutorial 24
memory alignment tutorial 26
memory block words . 64
memory words . 59
memory-allocation word set 61
memory-allocation words, implementation-defined

options . 180
memory-allocation words, system documentation

. 179
message send . 134
metacompiler . 191, 202
method . 134
method . 144, 148
method conveniences . 138
method map . 141
method selector . 134
method usage . 145
methods. 144
methods...end-methods . 139
min . 52
mini-oof . 148
mini-oof example . 149
mini-oof usage . 148
‘mini-oof.fs’, differences to other models 152
minimum search order . 181
miscellaneous words. 164
mixed precision arithmetic words 54
mod . 52

Concept and Word Index 243

modifying >IN . 44
modifying the contents of the input buffer or a

string literal . 171
most recent definition does not have a name

(IMMEDIATE). 173
motivation for object-oriented programming . . 134
move . 64
ms . 164
MS, repeatability to be expected 176

N
n, stack item type. 49
naligned . 133
name . 101
name dictionary . 39
name field address . 90
name lookup, case-sensitivity 168
name not defined by VALUE or (LOCAL) used by TO

. 179
name not defined by VALUE used by TO 173
name not found . 171
name not found (’, POSTPONE, [’], [COMPILE])

. 173
name token . 90
name, maximum length . 169
name>comp . 90
name>int. 90
name>string . 90
name?int. 90
names for defined words . 77
needs . 108
negate . 52
negative increment for counted loops 68
Neon model . 151
new . 147, 149
new[] . 147
newline character on input 169
NEXT . 70
NEXT, direct threaded . 194
NEXT, indirect threaded . 194
nextname. 77
NFA . 90
nip . 57
non-graphic characters and EMIT 168
non-relocatable image files 189
noname . 77
notation of glossary entries 49
NT Forth performance . 200
number conversion . 97
number conversion - traps for the unwary 98
number of bits in one address unit 169
number representation and arithmetic 169
numeric comparison words . 53
numeric output - formatted 115
numeric output - simple/free-format. 114

O

object . 134

object . 144, 148

object allocation options . 136

object class . 136

object creation . 136

object interfaces . 140

object models, comparison. 151

object-map discussion . 141

object-oriented programming 135, 145

object-oriented programming motivation. 134

object-oriented programming style 137

object-oriented terminology. 134

objects . 135

objects, basic usage . 135

‘objects.fs’ . 135, 145

‘objects.fs’ Glossary . 142

‘objects.fs’ implementation 141

‘objects.fs’ properties . 135

of . 70

off . 51

on . 51

Only . 103

oof . 145

‘oof.fs’ . 135, 145

‘oof.fs’ base class . 146

‘oof.fs’ properties. 145

‘oof.fs’ usage . 145

‘oof.fs’, differences to other models 152

open-blocks . 112

open-file . 108

open-path-file . 110

open-pipe . 121

operating system - passing commands 164

operator’s terminal facilities available 174

options on the command line 3

or . 53

order . 103

orig, control-flow stack item. 69

os-class . 106

other system documentation, block words 175

other system documentation, core words 174

outer interpreter . 38, 40, 94

output in pipes . 7

over . 57

overflow of the pictured numeric output string
. 172

overrides . 144

overrides usage . 136

Concept and Word Index 244

P
pad . 121
PAD size . 170
PAD use by nonstandard words 174
page . 119
parameter stack . 57
parameters are not of the same type (DO, ?DO,

WITHIN) . 173
parent class . 134
parent class binding . 137
parse . 101
parse area . 95
parse-word . 101
parsed string overflow . 172
parsed string, maximum size 169
parsing a string . 120
parsing words . 44, 95
patching threaded code. 197
path for included . 109
path+ . 110
path-allot . 110
path= . 110
pedigree of Gforth . 206
perform . 89
performance of some Forth interpreters 200
persistent form of dictionary 188
PFE performance . 200
pi . 56
pick . 57
pictured numeric output . 115
pictured numeric output buffer, size 170
pictured numeric output string, overflow 172
pipes, creating your own . 121
pipes, Gforth as part of . 7
postpone . 92, 147
POSTPONE applied to [IF] 180
POSTPONE or [COMPILE] applied to TO 173
postpone tutorial . 33
postpone, . 89
Pountain’s object-oriented model 152
precision . 56
precompiled Forth code . 188
Preface . 1
previous . 102
previous, search order empty 181
primitive source format . 197
primitive-centric threaded code 195
primitives, assembly code listing 199
primitives, automatic generation 197
primitives, implementation 197
primitives, keeping the TOS in a register 199
‘prims2x.fs’ . 197
print . 144
printdebugdata . 154
private discussion . 139
procedures, tutorial . 14
program data space available 174

programming style, arbitrary control structures
. 70

programming style, locals 125
programming style, object-oriented 137
programming tools . 152
programming-tools words, ambiguous conditions

. 180
programming-tools words, implementation-defined

options . 180
programming-tools words, system documentation

. 180
prompt . 170
pronounciation of words . 49
protected . 144
protected discussion. 139
ptr . 147, 148
public . 144

Q
query . 97
quit . 164

R
r, stack item type. 50
r/o . 108
r/w . 108
r> . 58
r@ . 58
ranges for integer types . 169
rdrop . 58
read-file . 108
read-line . 108
read-only data space regions 170
reading from file positions not yet written 177
receiving object. 134
records. 129
records tutorial . 33
recover . 73
recurse . 71
RECURSE appears after DOES> 172
recursion tutorial . 22
recursive . 71
recursive definitions . 71
refill . 101
registers of the inner interpreter 157
relocating loader . 188
relocation at load-time . 188
relocation at run-time . 188
rename-file . 108
REPEAT . 69
repeatability to be expected from the execution of

MS . 176
Replication . 195
report the words used in your program 166
reposition-file . 109

Concept and Word Index 245

REPOSITION-FILE, outside the file’s boundaries
. 177

represent . 116
REPRESENT, results when float is out of range . . 177
require. 108
require, placement in files 185
required . 108
reserving data space . 60
resize . 61
resize-file . 109
restore-input . 97
RESTORE-INPUT, Argument type mismatch 172
restrict. 86
result out of range . 172
return stack . 57
return stack and locals . 58
return stack dump with gforth-fast. 165
return stack manipulation words 58
return stack space available 174
return stack tutorial . 23
return stack underflow . 172
returning from a definition 71
roll . 57
Root . 103
rot . 57
rounding of floating-point numbers 178
rp! . 59
rp@ . 59
rp0 . 59
rshift . 53
RSHIFT, large shift counts 173
run-time code generation, tutorial 35
running Gforth . 3
running image files . 191
Rydqvist, Goran . 185

S
S" . 119
S", number of string buffers 177
S", size of string buffer . 177
s>d . 52
s\" . 119
save-buffer . 113
save-buffers . 113
save-input . 96
savesystem . 189
savesystem during ‘gforthmi’ 190
scope . 123
scope of locals . 123
scoping and classes . 139
scr . 112
seal . 103
search . 65
search order stack . 102
search order, maximum depth 181
search order, minimum . 181
search order, tutorial . 36

search path control, source files 109, 110
search path for files . 109
search-order words, ambiguous conditions 181
search-order words, implementation-defined

options . 181
search-order words, system documentation 181
search-wordlist . 103
see . 153
see tutorial . 14
SEE, source and format of output 180
selection control structures 65
selector . 134
selector . 144
selector implementation, class 141
selector invocation . 134
selector invocation, restrictions 136, 146
selector usage . 135
selectors and stack effects 137
selectors common to hardly-related classes 140
self . 147
semantics tutorial . 28
semantics, interpretation and compilation 86
set-current . 102
set-order . 102
set-precision . 56
sf! . 62
sf@ . 62
sf@ or sf! used with an address that is not

single-float aligned . 178
sf_, stack item type . 50
sfalign . 61
sfaligned . 63
sfloat%. 133
sfloat+ . 63
sfloats . 63
sh . 164
shell commands. 164
sign . 116
silent exiting from Gforth . 8
simple defining words . 73
simple loops . 66
simple-see . 153
simple-see-range . 153
single precision arithmetic words 52
single-assignment style for locals 126
single-cell numbers, input format 97
singlestep Debugger . 156
size of buffer at WORD . 170
size of the dictionary and the stacks 3
size of the keyboard terminal buffer 170
size of the pictured numeric output buffer 170
size of the scratch area returned by PAD 170
size parameters for command-line options. 3
SLiteral. 92
slurp-fid . 109
slurp-file . 109
sm/rem . 54
source . 96

Concept and Word Index 246

source location of error or debugging output in
Emacs . 185

source-id . 96
SOURCE-ID, behaviour when BLK is non-zero . . . 177
sourcefilename . 108
sourceline# . 108
sp! . 59
sp@ . 59
sp0 . 59
space . 118
space delimiters . 168
spaces . 118
span . 121
speed, startup . 8
stack effect . 49
Stack effect design, tutorial 17
stack effect of DOES>-parts . 80
stack effect of included files 107
stack effects of selectors . 137
stack empty . 172
stack item types . 49
stack manipulation tutorial 12
stack manipulation words . 57
stack manipulation words, floating-point stack . . 58
stack manipulation words, return stack 58
stack manipulations words, data stack 57
stack overflow . 171
stack pointer manipulation words 59
stack size default . 191
stack size, cache-friendly . 191
stack space available . 174
stack tutorial . 11
stack underflow . 172
stack-effect comments, tutorial 14
starting Gforth tutorial . 10
startup sequence for image file 192
Startup speed . 8
state - effect on the text interpreter 44
STATE values . 170
state-smart words (are a bad idea) 87
static . 148
stderr . 109
stderr and pipes . 8
stdin . 109
stdout . 109
str< . 65
str= . 65
string larger than pictured numeric output area

(f., fe., fs.) . 179
string longer than a counted string returned by

WORD. 173
string-prefix? . 65
strings - see character strings 118
strings tutorial . 25
struct . 133
struct usage . 131
structs tutorial . 33
structure extension . 131

structure glossary . 133
structure implementation . 132
structure naming convention 132
structure of Forth programs 46
structure usage . 131
structures . 129
structures containing arrays 132
structures containing structures 131
structures using address arithmetic 129
sub-list? . 128
super . 147
superclass binding . 137
Superinstructions . 195
swap . 57
syntax tutorial . 10
system . 164
system dictionary space required, in address units

. 174
system documentation . 167
system documentation, block words 174
system documentation, core words 168
system documentation, double words 175
system documentation, exception words 175
system documentation, facility words 175
system documentation, file words 176
system documentation, floating-point words. . . 177
system documentation, locals words 179
system documentation, memory-allocation words

. 179
system documentation, programming-tools words

. 180
system documentation, search-order words 181
system prompt . 170

T
table . 102
‘TAGS’ file . 185
target compiler. 191, 202
terminal buffer, size . 170
terminal input buffer . 94
terminology for object-oriented programming . . 134
text interpreter . 38, 40, 94
text interpreter - effect of state 44
text interpreter - input sources 96
THEN . 69
this . 145
this and catch . 141
this implementation . 141
this usage . 138
ThisForth performance . 200
threaded code implementation 194
threading words . 162
threading, direct or indirect? 195
threading-method . 162
throw . 71
THROW-codes used in the system 175
thru . 113

Concept and Word Index 247

tib . 96
tick (’) . 88
TILE performance . 200
time&date . 164
time-related words . 164
TMP, TEMP - environment variable 7
TO . 76
TO on non-VALUEs . 173
TO on non-VALUEs and non-locals 179
to-this. 145
tokens for words . 88
TOS definition . 40
TOS optimization for primitives 199
toupper. 118
trigonometric operations . 56
true . 51
truncation of floating-point numbers 178
try . 72
tuck . 57
turnkey image files . 192
Tutorial . 10
type . 119
types of locals . 122
types of stack items . 49
types tutorial . 16
typewhite . 119

U
U+DO . 69
u, stack item type. 50
U-DO . 69
u. 114
u.r . 114
u< . 53
u<= . 53
u> . 53
u>= . 53
ud, stack item type . 50
ud. 114
ud.r . 114
um* . 54
um/mod . 54
undefined word . 171
undefined word, ’, POSTPONE, [’], [COMPILE]

. 173
unexpected end of the input buffer 172
unloop . 70
unmapped block numbers 177
UNREACHABLE . 123
UNTIL . 69
UNTIL loop . 66
unused . 60
update . 113
UPDATE, no current block buffer 175
updated? . 113
upper and lower case . 50
use . 112

User . 75
user input device, method of selecting 169
user output device, method of selecting 169
user space . 75
user variables . 75
user-defined defining words 77
utime . 164

V
Value . 76
value-flavoured locals . 122
values . 76
var . 147, 148
Variable. 74
variable-flavoured locals . 122
variables . 74
versions, invoking other versions of Gforth 5
viewing the documentation of a word in Emacs

. 185
viewing the source of a word in Emacs 185
virtual function . 134
virtual function table . 141
virtual machine . 193
virtual machine instructions, implementation . . 197
visibility of locals . 123
vlist . 103
Vocabularies, detailed explanation 104
Vocabulary . 103
vocs . 104
vocstack empty, previous 181
vocstack full, also . 181

W
w, stack item type. 49
w/o . 108
What’s . 85
where to go next . 47
WHILE . 69
WHILE loop . 66
wid . 102
wid, stack item type . 50
Win32Forth performance . 200
wior type description . 50
wior values and meaning . 176
with . 147
within . 53
word . 39
word . 101
WORD buffer size . 170
word glossary entry format 49
word list for defining locals 127
word lists . 102
word lists - example. 105
word lists - why use them? 104
word name too long . 171
WORD, string overflow . 173

Concept and Word Index 248

wordlist . 102
wordlists tutorial . 36
words . 49
words . 103
words used in your program 166
words, forgetting . 153
wordset . 49
write-file . 108
write-line . 109

X

xor . 53
xt . 39, 88
XT tutorial . 29
xt, stack item type . 50
xt-new . 145
xt-see . 153

Z
zero-length string as a name 172
Zsoter’s object-oriented model 152

