
WCET Squeezing: On-demand Feasibility Refinement for
Proven Precise WCET-bounds∗

Jens Knoop
TU Vienna

Vienna, Austria
knoop@complang.tuwien.ac.at

Laura Kovács
Chalmers

Gothenburg, Sweden
laura.kovacs@chalmers.se

Jakob Zwirchmayr
TU Vienna

Vienna, Austria
jakob@complang.tuwien.ac.at

ABSTRACT
The Worst-Case Execution Time (WCET) computed by a WCET
analyzer is usually not tight, leaving a gap between the actual and
the computed WCET of a program. In this article we present a
novel on-demand WCET feasibility refinement technique, called
WCET Squeezing, for minimizing this gap.

WCET Squeezing provides conceptually new means for address-
ing the classical problem of WCET computation, by deriving a
WCET bound that comes as close as possible to the actual one.
WCET Squeezing is an anytime algorithm, that is, it can be stopped
at any time without violating the soundness of its results. This
anytime property allows to apply WCET Squeezing not only for
deriving precise WCET bounds but to also prove additional tim-
ing constraints over the program. Namely, WCET Squeezing can
be used to guarantee that a program is fast enough by ensuring
that the WCET of the program is below some required limit. If
the initially computed WCET of the program is above this limit,
WCET Squeezing can be stopped as soon as the squeezed WCET
of the program is below the limit (proving the program meets the
required timing constraint), or if the squeezed WCET is tight but
above the given limit (proving the program cannot meet the timing
constraint). WCET Squeezing can also be used until a given time
budget is exhausted to compute a tight(er) WCET bound for a pro-
gram. These new applications of WCET Squeezing are out of the
scope of traditional WCET analyzers.

WCET Squeezing combines symbolic program execution with
the Implicit Path Enumeration Technique (IPET) for computing a
precise WCET bound. WCET Squeezing is applicable as a post-
process to any WCET analyzer which encodes the IPET problem
as an Integer Linear Program (ILP). We implemented our method
in the r-TuBound toolchain and evaluated our implementation on a
set examples taken from the Mälardalen WCET benchmark suite.
Our experiments demonstrate that WCET Squeezing can signifi-
cantly tighten the WCET bounds of programs. Moreover, the de-
rived WCET bounds are proven to be precise at a moderate compu-
tational cost.

Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstract-
ing with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
RTNS 2013 , October 16 - 18 2013, Sophia Antipolis, France
Copyright is held by the owner/author(s). Publication rights licensed to
ACM.
Copyright 2013 ACM 978-1-4503-2058-0/13/10 ...$15.00.
http://dx.doi.org/10.1145/2516821.2516847.

Categories and Subject Descriptors
C.3 [Special-Purpose and Application-Based Systems]: Real-
time systems and embedded systems

1. MOTIVATION
In order to ensure soundness of safety-critical real-time systems

it is crucial to verify their temporal properties. Such systems are
composed of tasks which must finish within a given time period. A
task scheduling analysis is therefore performed to guarantee safety
of the system. Task scheduling requires an a-priori known Worst-
Case Execution Time (WCET) for each of the involved tasks, which
is usually obtained by an architecture-dependent timing analysis
and an architecture-independent flow fact analysis.

In this article we present a new method, called WCET Squeezing,
for tightening the WCET provided by some off-the-shelve WCET
analyzer. WCET Squeezing applies on-demand WCET feasibility
refinement. It takes as input the result of an a-priori WCET analysis
of the program and tightens, that is squeezes, this WCET estimate,
by refining the program model. To this end, WCET Squeezing ap-
plies a new kind of symbolic execution, called selective symbolic
execution [6, 5], in combination with the Implicit Path Enumera-
tion Technique (IPET) of [26]. To squeeze the computed WCET
bound for a program, we map the result of the IPET analysis to a
trace in the program and symbolically execute this trace to decide
whether it is feasible or not. If it is feasible, the computed WCET
bound is tight and WCET Squeezing terminates by reporting a pre-
cise WCET bound: any remaining WCET overestimation is due to
a conservative hardware model. If it is infeasible, the original IPET
problem, encoded as an Integer Linear Program (ILP), is extended
by a new constraint excluding the infeasible trace. The new IPET
problem is then solved, resulting in a tighter WCET bound. The
new ILP problem yields a new trace that is used in the next itera-
tion of WCET Squeezing. By iteratively applying these steps until
termination, WCET Squeezing refines the initial WCET bound de-
rived by a static WCET analyzer. Moreover, upon termination of
WCET Squeezing, a precise WCET bound is obtained. Precision
of a WCET bound guarantees that the bound is computed for an
actual execution trace of the program.

This brief description of WCET Squeezing has many similari-
ties with the Counter-example Guided Abstraction Refinement (Ce-
GAR) approach of [12]. In the CeGAR method, an initial abstrac-
∗This research is partly supported by the FP7-ICT Project 288008
Time-predictable Multi-Core Architecture for Embedded Systems
(T-CREST), the EU FP7 Cost Action no. IC1202 Timing Analy-
sis on Code-Level (TACLe), the FWF National Research Network
RiSE (S11410-N23), the FWF Hertha Firnberg Research grant
(T425-N23), the WWTF PROSEED grant (ICT C-050), and the
CeTAT project of the TU Vienna.

tion of the program is analyzed for reachability of error states. If
an error state is spurious, that is reachable in the abstraction but not
in the program, the abstraction is refined to exclude reachability of
the error state. The refined abstraction is used in the next iteration
of CeGAR. Similarly, in WCET Squeezing, we start with an initial
abstraction of the program, where the abstraction is encoded as an
ILP problem. A solution of the ILP problem represents a WCET
execution trace of the program. This trace might however only be
feasible in the considered abstraction and not in the concrete pro-
gram. Therefore, we next symbolically execute the trace and, if
found infeasible, the abstraction is refined to exclude the trace. This
refined abstraction is used in the next iteration of WCET Squeez-
ing. Note that the used program abstraction gets more precise in
each iteration of our WCET Squeezing algorithm, yielding a more
precise WCET estimate for the program. Let us however empha-
size that WCET Squeezing avoids the short-comings of IPET and
symbolic execution, namely the lack of program knowledge beyond
flow facts for IPET and the non-scalability of symbolic execution
for a fast growing number of paths. This is illustrated in Figure 1:
infeasible executions with a high WCET (i.e. the crossed long-
waved arrows) are ruled out by symbolic execution until the esti-
mate is below a required threshold (i.e. the short-waved arrows) or
the time budget is exhausted or until a feasible execution is found.

As solving the classical WCET problem means to minimize the
gap between the actual and the estimated WCET bound of a pro-
gram, we therefore conclude that WCET Squeezing solves the clas-
sical WCET problem. However, WCET Squeezing can be also used
to prove or disprove the so-called pragmatic WCET problem, where
we define the pragmatic WCET problem as the problem of proving
that a program meets some given timing constraint. When using
WCET Squeezing for solving the pragmatic WCET problem, we
summarize the following three applications.

1. Precision-controlled WCET Squeezing runs until a feasible
trace is found. Since the feasible trace exhibits the actual
WCET of the program, in this mode WCET Squeezing pro-
ves the precision of the derived WCET bound.

2. Budget-controlled WCET Squeezing tightens the WCET
bounds until an a-priori specified running time budget is ex-
hausted. While the WCET bound computed in this case is
derived to be tight within the given running time, the pro-
gram trace exhibiting the WCET bound might still be proven
infeasible when a bigger running time budget is used.

3. Limit-controlled WCET Squeezing aims at proving that the
program is fast enough, that is, its WCET below is below
some a-priori given limit. In this case, one of the two scenar-
ios might happen. If WCET Squeezing computes a WCET
bound below the specified limit, it proves that the program
is fast enough. Otherwise, WCET Squeezing derives a pre-
cise WCET bound which is greater than the required; in this
case, WCET Squeezing proves that the program fails to meet
its required timing constraint.

We implemented our WCET Squeezing algorithm in the r-Tu-
Bound tool chain [22], by integrating and adjusting the symbolic
execution engine of [5] in r-TuBound. When evaluated our imple-
mentation on examples coming from the Mälardalen benchmark
suite [17], our experimental results show that WCET Squeezing is
both effective and efficient. For instance, it is not unusual that the
precision of WCET bounds were improved by up to 9% after only
two iterations of WCET Squeezing; in some cases these bounds
were also proven precise after two WCET Squeezing iterations.

Figure 1: Straight arrows represent concrete executions, assuming some
hardware-model. Long waved arrows are infeasible executions with over-
estimated WCET.

By running WCET Squeezing until termination, we observed that
for some examples the precise WCET bounds improved the initial
WCET bound by up to 90%.

Our WCET Squeezing approach is, by design, out-of-scope of
any current WCET analyzer. The proof of precision of WCET
bounds makes WCET Squeezing unique and empowers the strength
of other WCET tools as well. WCET Squeezing can nicely be in-
tegrated with other WCET methods, where tighter initial WCET
bounds yield better performances of WCET Squeezing. If a static
WCET analyzer supplies tight initial bounds, a proof of precision
can be obtained fast and hence the computational effort for WCET
Squeezing is reduced. WCET Squeezing can therefore be used as
an additional tool to improve the quality of WCET analyzers: in-
stead of replacing current WCET methods, WCET Squeezing can
be used in conjunction with other approaches to minimized the
over-estimation of WCET bounds.
Contributions. The main contributions of this paper are as follows.

• We present the first method to automatically tighten and
prove precise the WCET bound computed by a state-of-the-
art WCET analyzer, called WCET Squeezing. To this end,
it combines in a unique novel fashion traditional IPET-based
WCET analysis techniques with (selective) symbolic execu-
tion.

• WCET Squeezing works on-demand and can be used in three
different modes that are all out of the scope of traditional
WCET analyzers. (1) Precision-controlled: Computing a
WCET that comes as close as possible to or even coincides
with the actual WCET of a program (classical WCET prob-
lem). (2) Limit-controlled: Squeezing the WCET as much as
necessary in order to prove or disprove that a program meets
a pre-defined required WCET limit (pragmatic WCET prob-
lem). (3) Budget-controlled: Tightening a WCET estimate
within a pre-defined time budget allowed for WCET Squeez-
ing (pragmatic WCET problem).

• WCET Squeezing is the first technique that systematically
addresses limit-controlled and budget-controlled WCET
analysis. We consider these two variants instances of a new
WCET problem that we denote as the pragmatic WCET prob-
lem in distinction to the classical WCET problem. It is worth
noting that WCET Squeezing addresses the classical WCET
problem in a fashion that is out of the scope of traditional
WCET analyzers, namely by tightening and proving precise
some initially computed WCET bound.

• The WCET refinement constraints are fully automatically
derived by WCET Squeezing, without using or relying on

a-priori specified WCET templates and predicates. The ap-
proach is implemented as an extension of the r-TuBound tool-
chain and evaluated on a set of the Mälardalen benchmarks
suite [17]. These experiments indicate that WCET Squeez-
ing is most effective in practice at moderate costs.

The rest of the paper is structures as follows. Section 2 illustrates
our approach on an example. Section 3 overviews relevant termi-
nology from WCET analysis and symbolic execution. Section 4
presents WCET Squeezing and Section 5 summarizes our exper-
imental findings. Section 6 discusses related work and Section 7
concludes.

2. OVERVIEW OF THE APPROACH
We illustrate WCET Squeezing on the example given in Figure

2, taken from the lcdnum.c benchmark of the Mälardalen WCET
suite [17].

This example consists of a for- ...
for(i = 0; i < 10; i++) {
if(i < 5) {

a = a & 0x0F;
OUT = num_to_lcd(a);

}
}

...

Figure 2: lcdnum.c, simplified.

loop with a conditional statement
calling the function num_to_
lcd. An initial WCET analy-
sis of this program infers a loop
bound of 10, and yields a WCET
estimate of 24320 cycles with
the execution frequency of 10 for
the then-branch (true-block) of the conditional inside the loop.
By mapping back this WCET result to a WCET program trace can-
didate, we only obtain the program execution trace calling num_to
_lcd in each iteration. WCET Squeezing uses this initial WCET
trace candidate as a starting point for the first symbolic execu-
tion and concludes the infeasibility of this trace. In the next step
of WCET Squeezing, an IPET constraint excluding this infeasible
trace is derived and added to the IPET-based WCET analysis. This
yields a new WCET estimate of 23420 cycles with an execution
frequency of 9 for the true-block in the loop, which constitutes a
tightening of 3.7%.

In the second iteration of WCET Squeezing, this new WCET
estimate is used and feasibility of the WCET trace candidates is
checked again. This time, there are multiple WCET trace can-
didates since the else-branch (false-block) of the conditional
can be also taken in a loop iteration. By using symbolic execu-
tion, none of these WCET trace candidates are found feasible. A
third iteration of WCET Squeezing is therefore taken, ruling out all
WCET trace candidates with a true-block frequency of 8. This
way, the WCET estimate of the program is tightened to 22520 cy-
cles. Note that, compared to the initial WCET estimate, an accu-
mulated WCET improvement of 7.4% is obtained, after excluding
11 WCET trace candidates.

The number of WCET trace candidates that require symbolic ex-
ecution increases in the following iterations until WCET Squeez-
ing terminates in the sixth iteration, when it finds a feasible WCET
trace candidate with execution frequency of 5 for the true-block.
This feasible trace results in a WCET estimate of 19820 cycles.
Compared to the original WCET estimate this is a tightening of
18.5% and the new bound is proven precise.

3. PRELIMINARIES
Our work combines techniques from symbolic execution, WCET

analysis and program verification in a unique fashion. In this sec-
tion we present the necessary ingredients of our method.
Programming model. As usual, we represent programs as control
flow graphs (CFG), CFG := ((V,E), S,X), where V is the set of
nodes, E is the set of directed edges representing program blocks,

S ∈ V is the start-node, andX ∈ V is the end-node [25]. For each
edge e ∈ E an edge weight w(e) is assigned denoting the execution
time of e, and we hence have w : E → N. To ease readability, we
will omit edge weights wherever possible. Every node n, different
than S and X , has incoming inc(n) and outgoing edges out(n);
the node S has only outgoing edges out(S) and no incoming ones;
whereas the node X has only incoming edges inc(X) but no out-
going ones. Conditional nodes C split the flow depending on the
runtime evaluation of a boolean condition c(C), where we refer to
c(C) as the path-condition. For simplicity, we sometimes write C
instead of c(C). Execution times for c(C) are assumed to be added
to the successor edge weights. Edges taken when the condition C
evaluates to true are called true-edges (true-blocks) and
are denoted by t. Similarly, edges taken when the condition evalu-
ates to false are called false-edges (false-blocks) and
are denoted by f . To make explicit that t and f result from the eval-
uation of C, we write tC and fC to mean that these are the true-,
respectively false-edges of C. Further, tC and fC are called the
conditional-edges of C.

A path in the CFG is a sequence of nodes and edges and a pro-
gram execution trace is a path from S to X . A path condition in
a trace is the evaluation of a condition at a branching point that
forces execution along the trace. If a branching point is guarded by
a condition c, then the path condition for the trace that follows the
true-branch of the conditional is eval(c) = true. The evaluation
of all path conditions in an execution trace defines the branching
behavior of the trace, i.e. the evaluation of all conditions along the
trace. It is thus a sequence of branching decisions that can be en-
coded as a sequence of bits, where each bit bi represents the result
of evaluating the ith branch condition in the trace (1 if the condi-
tion holds, when executing the true-edge, 0, when executing the
false-edge). A program loop in the CFG is modeled by a loop
header lh, a loop condition lc and body lb and a loop exit le node,
with an edge from lb to lc. Each loop is annotated in the CFG with
a loop bound `. A valid path including a loop therefore contains lb
at most lh∗ ` times, each time lh is contained. The number of times
an edge e is taken in a path is given by its frequency freq(e), where
freq : E → N and freq(e) gives the sum of executions of the edge
e in an execution trace.
Implicit Path Enumeration Technique - IPET. The IPET method
of [26] first translates the CFG of a program into an ILP prob-
lem. Next, it computes an ILP solution corresponding to the path
with the highest edge-weight. For doing so, the following con-
straints on the CFG are used: (i) the program is entered and ex-
ited once, that is

∑
out(S) =

∑
inc(X) = 1; (ii) the execution

frequency of incoming edges is equal to the execution frequency
of outgoing edges, that is

∑
in(n) =

∑
out(n); (iii) for each

loop, the loop body is executed ` times the loop header, that is∑
out(lb) = ` ∗

∑
in(lh). The maximum solution to the above

system of ILP constraints corresponds to the WCET estimate for
the program. In the following, for simplicity, we will omit edge-
weights when listing ILP problems. Note that the ILP solution
fixes the execution frequencies of program blocks, resulting in an
ILP branching behavior, induced by the ILP, that encodes one or
more execution traces in the CFG. The execution traces resulting
from the ILP branching behavior are called WCET candidates and
if they are feasible, they exhibit the calculated WCET.

A single ILP branching behavior can result in one or more exe-
cution traces in the CFG, as information about the exact sequence
of edge executions for edges in loops is not available. Note that
without additional constraints, IPET will always select the max-
imum execution frequency for those edges of conditional nodes
with higher edge-weight. Thus, the solution of IPET in absence

of additional constraints always encodes a single execution trace.
Consider now an execution path containing a loop with a condi-

tional in the loop body, such that the loop is executed ` times. As-
sume that the frequency of the false-edge f is m, for some m ∈ N.
Therefore, the frequency of the corresponding true-edge t is con-
strained to `−m. The ILP branching behavior then encodes multi-
ple execution paths. For conditional-edges e, e′ ∈ {t, f}, we write
ee′ to mean that the execution of edge e is followed by the execu-
tion of e′. Then, the set of branching behaviors form = 1 (omitting
branching decisions outside the loop body) is {(f1t2t3 . . . t`−1),
(t1f1t2 . . . t`−1), . . . , (t1t2t3...t`−1f1)}, where ti (respectively,
f i) denotes that the true-edge t (respectively, false-edge f)
was taken in the ith iteration of the loop. Note that paths given
above are valid execution paths in the CFG. They are however not
necessarily valid execution paths in the original program, where
each condition is evaluated at runtime. In the sequel, we will refer
to the branching behavior describing a single execution trace as a
path-expression. A single element in a path-expression is a branch-
ing decision for a conditional-node C.
Symbolic Execution. A symbolic execution engine, e.g. [5], mod-
els program executions by using symbolic values instead of con-
crete values. This allows one to execute a program on symbolic
data instead of concrete values. Executing a path condition con-
strains the set of concrete values for a symbolic value. Therefore,
runtime evaluation of conditions can be simulated on the symbolic
representation. The same notions of path, execution trace, branch-
ing behavior and path expression defined for CFGs also apply for
path-wise symbolic execution: a sequence of CFG branching deci-
sions at the same time encodes a symbolic execution trace. Note,
that a symbolic execution trace usually encodes multiple concrete
execution traces.

4. WCET SQUEEZING
The WCET Squeezing algorithm, presented in Algorithm 1, it-

eratively refines the WCET estimate of programs with reducible
control flow.

It takes as input the result of an a-priori WCET analysis of the
program. That is, Algorithm 1 takes as input the ILP problem
ilp_problem resulting from applying IPET on the CFG of the
program under study. Remember that a maximum solution of the
ilp_problem gives an (initial) WCET estimate of the problem.
In addition to the ILP problem, an optional parameter can be sup-
plied to guarantee termination within a certain time-limit time: if
during that time a WCET candidate is excluded, the WCET es-
timate is improved, unless the next candidate exhibits the same
estimate (Cost-controlled). Alternatively, when running WCET
Squeezing with a pre-defined threshold-value, our method allows
to solve the pragmatic WCET problem, that is to answer whether a
pre-defined required WCET limit can be met by a program: WCET
Squeezing is run until the improvement in the WCET estimate re-
aches the required value, reporting yes, or until it terminates due to
a feasible candidate, reporting no (Threshold-controlled).

Note that WCET Squeezing is guaranteed to terminate, even
without using a pre-defined budget- and/or limit. This is so be-
cause the ILP problems during WCET Squeezing encode only a fi-
nite number of WCET trace candidates. In the worst-case scenario,
WCET Squeezing terminates after symbolically executing all pro-
gram traces. It is worth noting that the WCET estimate is improved
at every iteration of Algorithm 1 (with the exception when differ-
ent paths exhibit a similar WCET bound), and hence the WCET
estimate reported upon the termination of Algorithm 1 will be im-
proved.

ALGORITHM 1. WCET Squeezing Algorithm
Input: ILP problem ilp_problem
Output: ILP solution ilp_solution
Optional Input Parameter: budget or limit BL_value

1 begin
2 do
3 ilp_solution := ILPsolve(ilp_problem)
4 wcet_candidates := extractCandidates(ilp_problem,

ilp_solution)
5 counter_ex := symbolicExecution(wcet_candidates)
6 if no counter_ex then return ilp_solution
7 ilp_problem := encodeConstraint(ilp_problem,

counter_ex)
8 forever or [optional] until BL_value is reached
9 return ilp_solution
10 end

The main steps of Algorithm 1 are as follows. First, a solution
ilp_solution of the ILP problem ilp_problem is computed
(line 3), by using an off-the-shelve ILP solver [4]. Based on the
computed ILP solution, the corresponding ILP branching behav-
ior is mapped back to the CFG of the program and WCET trace
candidates are extracted (line 4), as detailed in Section 4.1. These
WCET trace candidates are next symbolically executed (line 5),
as presented in Section 4.2. The result of symbolic execution on
WCET trace candidates is stored in counter_ex: if a candidate
is feasible, the ilp_solution corresponding to this trace is re-
turned (line 6) as WCET estimate of the program under study. If
all WCET trace candidates are infeasible, the ILP branching be-
havior is infeasible as well. The WCET estimate corresponding
to the ilp_solution is exhibited by the program and the infeasible
ILP branching behavior is excluded by adding a constraint to the
ILP problem (line 7), as discussed in Section 4.3. A next iteration
of WCET Squeezing is further applied on the new ILP problem,
yielding tighter WCET estimates of the program (line 3). Algo-
rithm 1 for WCET Squeezing terminates when a feasible and re-
fined WCET estimate is derived (line 6).

Next we consider the ingredients of Algorithm 1 in more detail
and describe the approach to extract WCET trace candidates (Sec-
tion 4.1), symbolic execution (Section 4.2), and encoding of ILP
constraints (Section 4.3).

4.1 WCET Trace Candidates
To construct WCET trace candidates, a mapping from the ILP

branching behavior to program execution traces is needed. WCET
trace candidates can be specified by a branching behavior, i.e. a se-
quence of branching decisions. The ILP branching behavior, de-
noted by ilp_bb, is initially generated by mapping all executed
edges, that is edges with an execution frequency greater than 0,
from the first ILP solution to a trace in the CFG of the program and
selecting all conditions executed in the trace. The ILP branching
behavior is represented as a sequence of executed conditions Ci,
where Ci is the ith condition of the trace, and it has the execution
frequencies freq(tCi) and freq(fCi) of its conditional-edges asso-
ciated with it. The values of freq(tCi) and freq(fCi) are as given
in the first ILP solution.

From the ILP branching behavior ilp_bb, WCET trace candi-
dates are constructed by specifying their branching behavior bb. A
branching behavior bb forms an execution trace, where the ith ele-
ment of bb, denoted by bb[i], stores the evaluation of the executed
path-conditionCi. We refer to bb[i] as the ith branch decision of bb.
Depending on the execution frequencies of the conditional-edges
e ∈ {tCi , fCi} of Ci in ilp_bb, multiple branching behaviors bb
can be constructed from ilp_bb, as follows.

Case 1. One conditional-edge of Ci is executed once. If only one
of the conditional-edges e of Ci is executed with freq(e), no inter-
leaving among branch-conditions is possible. Therefore, a single
WCET trace candidate is constructed whose freq(e) positions are
set either to t or f results. Assuming that the execution frequency
of tCi (respectively, fCi) is 1, the path-condition Ci is assumed to
evaluate to true (respectively, false), hence the branching be-
havior at position i is set to t (respectively, f). Using our previous
notation, in this case we have:

bb[i] =

{
t , if freq(tCi) = 1
f , if freq(fCi) = 1

Case 2. One conditional-edge of Ci is executed repeatedly. If
the conditional-edge e of Ci is executed with a frequency higher
than 1, we need to encode the multiple executions of e. To this end,
multiple positions in bb are set to either t or f, as follows:

bb[i+ j] = t with 0 ≤ j ≤ freq(tCi),

if freq(tCi) > 0 and freq(fCi) = 0

bb[i+ j] = f with 0 ≤ j ≤ freq(fCi),
if freq(fCi) > 0 and freq(tCi) = 0

That is, a sequence of t (respectively, f) of length freq(tCi) (re-
spectively, freq(fCi)) is set starting from ilp_bb[i]. Note that for
multiple conditionals inside a loop, the values of bb must be set
such that their index coincides with the corresponding branching-
decision in the trace.
Case 3. Both conditional-edges of Ci are executed repeatedly.
If the ILP branching behavior specifies the execution of both cond-
itional-edges ofCi inside a loop, the branching-decisions can inter-
leave, and hence ilp_bb encodes multiple WCET trace candidates.

The number of WCET trace candidates constructed from ilp_bb
is given by the number of all possible permutations over the set of
edges S = { t . . . t︸ ︷︷ ︸

freq(tCi
) times

, f . . . f︸ ︷︷ ︸
freq(fCi

) times

}. Using the results of [27],

the number of permutations over S, and thus the number of loop

branching behaviors is: p =

(
freq(tCi

)+freq(fCi
)
)
!

(freq(tCi
)!) ∗ (freq(fCi

)!)
.

In this case, we take care of the multiple branching behavior as
follows. We construct p copies of the current bb, that is we take
bb1, . . . , bbp branching behaviors where each bbx is a copy of bb.
Next, each bbx is continued by one loop branching behavior, as
given below:

bbx [i+ j] = permutationx{ t, . . . , t︸ ︷︷ ︸
freq(tCl

) times

, f, . . . , f︸ ︷︷ ︸
freq(fCl

) times

}

with 0 ≤ j ≤ freq(tCi) + freq(fCi) and 0 ≤ x ≤ l,

where permutationx{S} gives the xth permutation over S.
Note that for bb the correspondence between index i and executed
condition Ci is not one-to-one; previous conditions Ck with k < i
might have already set multiple positions, including bb[i], in bb.

4.2 Selective Symbolic Execution
Selective symbolic execution supports the analysis of a comput-

able or measurable property (i.e. WCET) of a program under study,
while exploring only the relevant parts (i.e. trace candidate) for an-
alyzing the property. The goal is to minimize the number of sym-
bolic executions required in order to improve on analysis results.
The WCET Squeezing approach combines a symbolic execution
engine with a WCET analysis toolchain and use WCET estimates
to guide selective symbolic execution, by symbolically executing
only those traces that might exhibit the WCET estimate.

Using the branching behavior bb of the WCET trace candidates,
the symbolic execution engine of Algorithm 1 directs the program
execution along these traces and, for each trace, checks the feasi-
bility of the conditions on each branching point. A symbolically
evaluated execution trace is feasible if the conjunction of all path
conditions is satisfiable, meaning that the execution trace is a fea-
sible program execution trace. As the symbolic execution engine is
precise, it serves as an oracle to decide whether the ILP branching
behavior is a feasible branching behavior in the concrete program.

For doing so, our symbolic execution step in line 5 of Algo-
rithm 1 proceeds as follows. It takes as input the source code of
the program and the branching behavior bb of one of the WCET
trace candidates.

The symbolic execution engine then constructs a satisfiability
module theory (SMT) representation [3] of the program execution,
according to the branching behavior together with the source. A
branching behavior bb of length n specifies the evaluations of n
path-conditions, which can be analyzed for satisfiability in the SMT
representation provided by the symbolic execution engine. That is,
if the specified evaluation of the path-condition is unsatisfiable at
some point, the trace π(bb) is infeasible. Using our previous nota-
tions, we conclude that π(bb) is infeasible iff the boolean expres-
sion:

symbolicEval(C0, bb[0]) ∧ symbolicEval(C1, bb[1]) ∧
. . . ∧ symbolicEval(Ci, bb[i]))

(1)
is unsatisfiable, for i ≤ n.

If the branching behavior bb gives a satisfiable evaluation of (1),
the WCET trace candidate corresponding to bb yields a successful
symbolic execution. Hence, the WCET trace candidate is feasi-
ble and exhibits the current WCET estimate. Therefore, no further
WCET refinement is possible (line 6 of Algorithm 1).

Otherwise, if the symbolic execution of a trace candidate fails,
some path-condition Ci in (1) is unsatisfiable for some i. This con-
dition Ci can be mapped to its conditional nodes, resulting in an
ILP encoding of an infeasible WCET trace candidate. Hence, the
encoding yields a counter-example that needs to be excluded from
the ILP branching behavior in the next iteration of WCET Squeez-
ing (line 7 of Algorithm 1). The constraint constructed from this
counter-example involves all symbolically executed conditions, as
detailed in Section 4.3.

4.3 ILP Constraint Encoding
If a WCET trace candidate induced by an ILP branching behav-

ior is infeasible, it is excluded from further WCET computations
by adding a derived ILP constraint to the new ILP problem.

void f () {
if (C1) ...
if (C2) ...

}

Figure 3: Conditions C1 and C2
are mutually exclusive.

The construction of the
ILP constraint is such that
it decreases the total sum of
execution frequencies of all
conditional-edges that were
symbolically executed until
infeasibility was inferred (in-
cluding the unsatisfiable one).
That is, for an infeasible
WCET trace candidate π, the
ILP constraint constructed involves all conditional-edges corre-
sponding to Ci from Equation (1). Using the notation from Sec-
tion 4.2, recall that bb[i] gives the conditional-edge (t or f) from
the ith position of bb. bb[i]Ci is the conditional edge of Ci, de-
noted ti or fi in the ILP. Then, the conditional-edges of (1) over
which a new ILP constraint is constructed are given by bb[0]C0 ,
bb[1]C1 , . . . , bb[i]Ci . To ensure that the execution frequencies of

these conditional-edges is decreased, the new ILP constraint we
add to the ILP problem is:

bb[0]C0 + bb[1]C1 + · · ·+ bb[i]Ci ≤
freq(bb[0]C0) + freq(bb[1]C1) + · · ·+ freq(bb[i]Ci)− 1.

EXAMPLE 1. Consider Figure 3, where conditions C1 and C2

are mutually exclusive. The (abstracted) CFG representation of
Figure 3 is given in Figure 4(a). The initial ILP solution yields a
WCET trace candidate with branching behaviour tt, i.e. an exe-
cution frequency that enables the execution of both t1 and t2 (both
with execution frequency 1). However, as conditionsC1 andC2 are
mutually exclusive, only one of the conditions can be true. There-
fore, symbolic execution will set C1 to true, execute t1, and infer
that the evaluation ofC2 = true is unsatisfiable, hence execution of
t2 is infeasible. The constraint constructed from the result of sym-
bolic execution will specify in the resulting ILP problem that either
C1 or C2 (but not both) is valid, by decreasing the combined exe-
cution frequency of all conditionals edges executed, i.e. of t1 and
t2.

In more detail, the derived ILP problem that includes the new
constraint specifies the following properties: (i) the entry-edge n
and the exit-edge x of the CFG of Figure 4(a) is executed at most
once, that is n ≤ 1 and x ≤ 1; (ii) the conditional-edges of
Figure 4(a) are executed at most once, that is t1 + f1 ≤ n and
t2 + f2 ≤ n; (iii) due to the new constraint, the combined exe-
cution frequency of the true-edges of C1 and C2 is restricted to
1, that is t1 + t2 ≤ 1. Therefore, (iii) enforces that any ILP solu-
tion will assign a frequency of at most 1 for the combined execution
frequency of the two true-edges. Thus, either true-edge t1 or
true-edge t2 is executed, but not both – executing both edges re-
quires a combined execution frequency of at least 2.

As illustrated in the example above, the ILP constraints con-
structed from infeasible WCET trace candidates restrict the com-
bined sum of execution frequencies of all conditional-edges in-
volved in the trace. Therefore, any valid solution of the new ILP
problem must deviate in at least one conditional edge from the so-
lution of the previous ILP problem.

Alternatively, the syntactic-based encoding introduces additional
ILP variables and corresponds to a CFG transformation (Figure 4)
that removes only the infeasible trace from the CFG. On the graph
representation of the CFG, the following two transformations are
applied: (i) the branching decision is made explicit in the CFG by
copying and pulling up the unsatisfiable condition into the prede-
cessor conditional node; (ii) the unsatisfiable edge for the prefix of
the infeasible WCET trace candidate is removed.

EXAMPLE 2. Consider again the program code given in Fig-
ure 3 and the CFG representation in Figure 4(a). Let t1 and t2
respectively denote the true-edge of C1 and C2. Assume that
the ILP branching behavior for Figure 3 is initially tt, that is a
WCET trace candidate executing t1 followed by t2. This WCET
trace candidate is inferred infeasible by symbolic execution be-
cause the evaluation of condition C2 to true (i.e. executing con-
ditional edge t2) is unsatisfiable. Therefore, the trace is removed
from the CFG of the program: the conditional node of the unsatisfi-
able edge is copied and pulled up into the last conditional node and
the true-decision edge is removed for the prefix of the candidate.

Implementation Pragmatics in the Presence of Loops. The dif-
ference between the syntactic- and the semantic-based encoding in
the above examples only effects the number of ILP variables and
constraints. In the presence of loops, using the syntactic-based en-
coding also increases the number of ILP variables and constraints,

'

n = 1
c1= n
c1= t1 + f1
c2= c1
c2= t2 + f2
x = c2

n = 1
c1 = n
c1 = t1 + f1
c2’= t1
f2’= c2’
c2 = f1
c2 = t2 + f2
x = c2’ + c2

ack(a) (b) (c) (d)

Figure 4: (a) CFG representation of Figure 3; (b) Infeasible WCET trace
candidate (bold) with an unsatisfiable conditional edge (dotted); (c) Trans-
formed CFG, excluding the infeasible trace of (b); (d) top, the original ILP
of (a) and the modified ILP of (c), bottom.

while using the semantic-based encoding increases the number of
WCET trace candidates.

Note that the execution frequencies of edges inside loops are
constrained to their execution frequency times the loop bound. That
is, for an edge that is executed m times inside a loop, the following
constraint is generated: freq(e) ≤ ` ∗ m, This needs to be taken
into account for both encodings when computing the combined ex-
ecution frequency for edges inside loops, as the following example
illustrates:

void main () {
int i;
bool exec = false;
if (*)
exec = true; // t1

for (i = 0; i < 5; i++)
if (exec == false) {
expensive(); // t2
exec = false;

} else
exec = true; // f2

}

Figure 5: Executing the true-edge of
the first conditional restricts the execu-
tion of the true-edge inside the loop.
* denotes non-deterministic choice, f1
is not executing t1

n <= 1;
c1 <= n;

t1 + f1 <= c1;
loopHead <= 1;
loopBody <= loopHead * 5;
loopBody <= t2 + f2;
loopExit <= loopHead;

x <= loopExit;

Figure 6: ILP problem after
WCET analysis of the example
in Figure 5. The branching be-
havior imposed by the ILP so-
lution is tttttt.

EXAMPLE 3. Assume that the first true-block of Figure 5 (edge
t1, marked as t1) has an execution time of 1 and the second true-
block (edge t2, marked as t2) has 10. All other costs are ignored.
The initial ILP solution selects all true-blocks to be executed, the t1
with frequency 1 and the t2 with frequency 5. The reported WCET
estimate amounts to 1 ∗ 1 + 5 ∗ 10 = 51, the branching behavior
for the trace is tttttt (i.e. t1t12 . . . t

5
2).

Symbolically executing this trace yields the unsatisfiability of the
second condition (exec == false), in the first iteration of the
loop. Thus, if the first branching decision is t, the execution fre-
quency of the true-edge in the loop is only 4. Just reducing the fre-
quency in the ILP problem to 4 yields an invalid result. The WCET
estimate would be restricted to 1 ∗ 1 + 4 ∗ 10 = 41, even though
there exists a path exposing a higher WCET: Executing the false-
branch of the first conditional (branching behavior fttttt) leads to
a WCET of 0 ∗ 1 + 5 ∗ 10 = 50 and is allowed in the original

problem.

We denote the situation illustrated in Example 3 as candidate-
flip. If the prefix to a loop flips, the constraints about loop iterations
need to be inferred again, i.e. it increases the number of symboli-
cally executed WCET trace candidates. Both the syntactic- and the
semantic-based encoding can handle candidate-flips, but based on
our experience, a combination of the two encodings handles them
best.

On CFG level, the syntactic-based approach peels-off a loop it-
eration [24] and introduces a new conditional for the loop condi-
tion in the first iteration and children for the loop body. Similar to
Example 2, the last conditional is split, introducing copies for all
following edges, and then the infeasible trace is removed. On the
ILP level, the same technique is applied: additional variables for
the copies of the condition and the loop-peel are introduced in the
ILP problem. At the same time, the number of WCET trace can-
didates is smaller, as branching in different iterations is explicitly
encoded.

The semantic-based encoding constructs, as before, a constraint
that decrements the combined execution frequency of all cond-
itional-edges up to the loop and the execution frequency of the
conditional-edge in the loop. Additionally to the original ILP (Fig-
ure 6), the constraint restricts the combined execution frequency
of the true-edge (t1) of condition c1 and the true-edge (t2)
of the condition in the loop body, i.e. t1 + t2 <= 5. (Figure
7). This constraint introduces no new ILP variables, but the ILP
branching behavior of encodes more WCET trace candidates.

The combined encoding uses the syntactic-based encoding to
peel one loop iteration and decrements the execution frequency of
edges inside the loop. It does not split conditional nodes, instead a
semantic-based encoding is used to restrict the combined execution
frequency of the loop prefix and the peeled condition, such that the
branching decision in the first iteration of the loop is explicit for
the loop prefix. The branching decision in the first iteration of the
is not restricted for other executions. Figure 8 depicts the resulting
ILP problem where the solver will return the correct WCET esti-
mate, i.e. branching behavior fttttt, exhibiting a WCET of 50. The
advantage of the combined encoding is that it only introduces ILP
variables and constraints for the peeled loop iteration and at the
same time makes explicit the branching behavior, therefore reduc-
ing the number of symbolically executed WCET candidates.

The derived ILP problem in Figure 8 uses a combined constraint.
Additional ILP variables are introduced to model peeling off the
first loop iteration (syntactic), an additional constraint (semantic)
restricts the combined execution frequency of the true-edge of
the first conditional and the true-edge of the peeled loop itera-
tion. Thus, any solution that selects the first true-edge t1 is then
restricted to pick the false-edge peelF in the peeled (1st) itera-
tion of the loop. If a solution picks the false-edge of the first
conditional, the restriction of the semantic constraint does not ap-
ply and any valid interleaving of true and false-edges in the loop
can be picked (including the true-edge in the peeled iteration).

5. EXPERIMENTAL RESULTS
In this section we describe our implementation and report on

our experimental findings on the Mälardalen WCET benchmark
suite [17].
Implementation. Our WCET analysis toolchain r-TuBound [22]
uses CalcWCETC167 as the low-level WCET analyzer [21], which
applies IPET using the ILP solver lp_solve [4]. In order to support
WCET Squeezing in r-TuBound, we made the following modifica-
tions and extensions. We changed the CalcWCETC167 engine of

n <= 1;
c1 <= n;

t1 + f1 <= c1;
loopHead <= c1;
loopBody <= loopHead * 5;
loopBody <= t2 + f2;
loopExit <= loopHead;
t1 + t2 <= 5;

x <= loopExit;

Figure 7: Semantic constraint.

n <= 1;
c1 <= n;

t1 + f1 <= c1;
peelCond <= c1;

peelT + peelF<= peelCond;
t1 + peelT <= 1;
loopEntry <= peelCond;
loopBody <= loopEntry * 4;
loopBody <= t2 + f2;
loopExit <= loopEntry;

x <= loopExit;

Figure 8: Combined constraint.

r-TuBound such that it extracts a WCET trace candidate and its ILP
branching behavior, by relying on the ILP solution of lp_solve and
the assembly. Further, we extended r-TuBound with a symbolic
execution engine. To this end, we made use of the symbolic exe-
cution tool SmacC [5] and modified SmacC such that a symbolic
execution of the program can be selected based on branching be-
haviors. If the ILP branching behavior encodes multiple concrete
executions, we take all possible path permutations for a specific
conditional block frequency in a loop and symbolically execute the
resulting traces. The construction of additional ILP constraints can
be fully automated but for this work we relied on a manual mapping
between blocks in the assembly and the source: we constructed
WCET trace candidates from ILP problems and solutions using this
mapping. Both r-TuBound and SmacC perform intra-procedural
analysis.
Results. All experiments were performed on an Intel Core i5 CPU
M540@2.53GHz with 4GB of main memory. In our experiments,
we restricted the running time of symbolic execution to 20 minutes,
in some cases this limit was reached. We note that our symbolic
execution engine does currently not perform additional optimiza-
tions for improving symbolic execution. Additionally, the calls to
the symbolic execution engine are not yet done in an incremental
manner, meaning that our symbolic execution approach now re-
executes even those paths that were already shown infeasible.

We evaluated WCET Squeezing on 10 examples taken from the
Mälardalen WCET benchmark suite. We summarize our results in
Table 1. Column 1 of Table 1 reports the benchmark’s name and
Column 2 lists the relevant functions in the benchmark. Column 3
gives the initial WCET estimate as reported after WCET analysis
by r-TuBound. Column 4 describes the WCET estimate obtained
after running WCET Squeezing. Column 5 lists how many itera-
tions of WCET Squeezing were executed and Column 6 gives the
number of execution traces that were excluded. Columns 7 and 8
report on the obtained WCET improvements, as follows: Column 7
describes the achieved improvement (i.e. the new WCET bound),
whereas Column 8 denotes the maximum improvement (i.e. the ac-
tual WCET bound of a feasible path derived by WCET Squeezing).

For the functions prime, cl_block, and icrc1 the initial
WCET candidate is feasible, hence the initial bound is proved to
be precise. Proving this is out of scope of state-of-the-art WCET
tools. For the functions adpcm, duff, expint, and fibcall
continuous improvement is achieved until WCET Squeezing ter-
minates, this time proving precision of the squeezed WCET. Func-
tions expint and janne_complex can both be tightened by
more than 90%. In Table 1 we only report the impact of a sin-
gle iteration of WCET Squeezing to demonstrate the different ef-
fect of excluding a single WCET trace candidate: while the impact
amounts to roughly 1% for the first program, it amounts to almost
6% for the second. This reflects the fact of how much the excluded
conditional block contributes to the WCET estimate of the func-
tion. Similarly, this holds for lcdnum and nsichneu: executing

1:benchmark 2:function 3:WCET 4:SQZ 5:#iters 6:#π 7:%imp 8:%prec 9:note
prime prime 784860 784860 1 0 0 0 precision proved w/o refinement
compress cl_block 8440 8440 1 0 0 0 precision proved w/o refinement
crc icrc1 18060 18060 1 0 0 0 precision proved w/o refinement
adpcm logsch 5560 5380 1 1 3.24 3.24 precision proved w/ refinement

uppol2 12260 12040 2 2 9.87 9.87 precision proved w/ refinement
duff duffcopy 85940 79949 5 5 7.5 7.5 precision proved w/ refinement
fibcall fib 79840 75040 2 2 6.39 6.39 precision proved w/ refinement
expint expint 1.24E7 1.22E7 1 1 0.94 93 imprecise
janne-complex complex 694980 653380 1 1 5.9 93.3 imprecise
lcdnum main 24320 22520 2 11 7.4 18.5 imprecise
nsichneu main 4.95E6 4.94E6 2 2 0.28 - imprecise, actual WCET unknown

Table 1: Proving precision of WCET estimates by running WCET Squeezing until termination. The lower part focuses on the impact of only a few iterations.

two iterations of WCET Squeezing results in an improvement of
more than 7% for lcdnum and less than 0.5% for nsichneu.
For expint, the high over-estimation of the WCET is due to the
fact that the WCET toolchain initially assumes the inner loop to be
executed in every iteration. Squeezing reveals that the inner loop is
only executed in the last iteration. Similarly, in janne_complex
over-estimation is due to a complex interleaving of nested loops,
ultimately inferred by WCET Squeezing. We evaluated WCET
Squeezing on 10 examples taken from the Mälardalen WCET bench-
mark suite in detail.

6. RELATED WORK
To the best of our knowledge, WCET Squeezing is the first ap-

proach which tightens and proves precise the WCET bound of a
program after an initial WCET analysis in the presented anytime-
manner. WCET Squeezing is also the first method that applies sym-
bolic execution in conjunction with a WCET analysis toolchain in
order to improve the WCET estimates for a real processor.

As WCET Squeezing makes use of both symbolic execution and
WCET analysis, in the sequel we describe the works that are the
most related ones to our approach.
WCET analysis. Static WCET analysis is performed using timing
analysis tools which need flow- fact information about the program
under analysis. Such information may be given manually by the
developer or inferred automatically by a flow fact analyzer and in-
cludes information about execution frequencies of blocks and loop
bounds for program loops. Modern static WCET analyzers, see
e.g. [22, 1, 16], usually rely on the IPET technique [26] to calcu-
late a WCET estimate. IPET usually over-estimates the WCET,
as the constructed ILP problem encodes numerous spurious pro-
gram executions that are infeasible in the concrete program. WCET
Squeezing can be used in addition to IPET-based WCET analysis,
overcoming this deficiency.

The main difference between WCET Squeezing and other ap-
proaches that eliminate infeasible paths in the WCET computa-
tion model is that WCET Squeezing is applied as a post-process
to WCET analysis and that it yields a proof of precision. The proof
is found fast if the initial WCET bound is tight. Therefore, WCET
Squeezing profits from tight initial bounds and can be used in con-
junction with other approaches.

In [23] the authors use the WCET estimate for program opti-
mizations improving the WCET of the program: the WCET esti-
mate is used to effectively bound the number of loop unrollings dur-
ing WCET analysis. Since the size of the program to be analyzed
changes during loop unrollings, constraints on available memory
and cache must be considered to guarantee improvements of the

WCET bound. To this end, during a loop unrolling additional in-
formation about the hardware is used in [23]. Combining and inter-
twining IPET with a cache and pipeline analysis is also discussed
in [14]. Similarly to [23, 14], in WCET Squeezing we also use the
WCET estimates to guide program analysis, in particular to iden-
tify the relevant program parts for symbolic execution. However,
our approach is not platform dependent. Nevertheless, extending
WCET Squeezing with hardware-aware information is an interest-
ing task to be investigated, especially for applying symbolic execu-
tion on the binary model and refining the low-level WCET compu-
tation model.

In [28] a method to incorporate static path exclusions into a static
WCET analyzer is described. This approach is similar to the def-
use refinement of [7]. To this end, conditionals are inspected and a
formula that characterizes the condition is encoded in Pressburger
arithmetic. Then, an off-the-shelve solver is used to check whether
the evaluation of one conditional enforces a specific evaluation of
a different conditional. This way, additional ILP flow facts are in-
ferred and can be added to the ILP, excluding paths that are infeasi-
ble due to the static evaluation of the conditionals. When compared
to WCET Squeezing, we note that the constraints derived by [28]
can also be derived by our method: the information about the eval-
uation of conditionals is implicitly carried in our symbolic execu-
tion. Similarly to [28], WCET Squeezing also profits from a precise
a-priori path-feasibility analysis. However, the proof of precision
obtained during WCET Squeezing cannot be derived using [28].

WCET Squeezing relies on symbolically executing worst-case
candidates. A traditional application of symbolic execution is test-
case generation, where path constraints are solved in order to infer
input data that leads to program executions along this path. To
this end, our symbolic execution engine could be replaced by other
techniques, for example by the method of [19], for deriving input
values for executed paths. With such an extension, WCET Squeez-
ing could also compute the input that leads execution along the
worst- case candidates.

A somewhat similar approach to WCET Squeezing is also de-
scribed in [15], where worst-case input values are obtained by par-
titioning the input space as follows. A WCET analysis is performed
and a WCET estimate is calculated. The domain of possible input
values is tracked and separated into smaller ranges in each iteration
of the approach. For each partition, a WCET estimate is then in-
ferred. Finally, when there is only one input combination in a parti-
tion, the WCET is returned. The approach of [15] can infer precise
WCET estimates by shrinking input ranges, while keeping (possi-
bly over-estimated) results for larger partitions. Similarly to WCET
Squeezing, the algorithm of [15] is also an anytime algorithm by
improving the WCET estimate at every iteration of the algorithm.

Upon termination of [15], all input values are partitioned according
to their WCET bound. Thus, the partition that exhibits the highest
WCET bound is the input range leading a program execution to-
wards the WCET path. When compared to WCET Squeezing, we
however note that the method of [15] re-analyzes the entire pro-
gram for smaller input domains as well, while in WCET Squeezing
we only re-calculate the ILP solution at every iteration of Squeez-
ing. A drawback of [15] comes therefore from the fact it might still
consider spurious traces for WCET calculation, because the anal-
ysis does not infer additional results about infeasible paths. Our
notion of precision is hence out-of-scope of [15].

In contrast to the approaches presented above, the work described
in [2] addresses the classical problem of WCET computation by us-
ing ILP in conjunction with model checking. Similarly to WCET
Squeezing, the approach of [2] maps the ILP encoding of a pro-
gram to a program trace and then checks feasibility of this trace.
However, unlike our method, the feasibility constraints of program
paths are encoded in [2] as program assertions in the original pro-
gram, which are then verified by using a software model checker.
Contrarily to our path-wise selective symbolic execution approach,
the advantage of path-local reasoning is hence not explored in [2].

Related, though conceptually different is the approach of [8].
Here, irrelevant program parts are identified via the criticality of
basic blocks, which denotes the relation between the longest path
through the basic block and the WCET of the program. Eliminating
the irrelevant parts from the program allows usage of a more pre-
cise but computationally more expensive WCET analyzer which
then might come up with a more precise WCET bound.

A different approach to WCET analysis is given in [11], where
a formal framework for quantitative abstraction refinement is pre-
sented using abstract interpretation [13]. The method relies on
segment- and state-based abstract interpretation. The state-based
approach [11] has some similarities with our syntactic-based ab-
straction refinement technique, i.e. counter-example encoding that
makes control-flow decisions explicit in loop iterations. We are
currently investigating whether a combination of [11] with WCET
Squeezing would yield tighter WCET estimates and a faster termi-
nation of our algorithm.
Symbolic Execution. In contrast to techniques that analyze the
program as a whole (e.g. model-checking), symbolic execution rea-
sons in a path-local manner. Symbolic execution is especially suited
for automated testing but also found applications in program veri-
fication and bug-hunting [10, 5]. It allows for precise analysis of
programs but the number of program paths that need to be analyzed
increases exponentially with the number of conditionals. There-
fore, applications of symbolic execution often target only partial
symbolic coverage of the program, e.g. generating test-cases that
achieve high line coverage [9].

One of the major advantages of symbolic execution engines is
the amount of information they can infer about a program, as they
implicitly carry all this information along when they explore a pro-
gram. Applications of symbolic execution for loop bound refine-
ment in WCET analysis is briefly addressed in [22]. There, sym-
bolic execution is used to infer and validate arithmetic properties
about program loops, in some cases allowing to refine the com-
puted loop bound.

Unlike the above mentioned works, our technique relies on the
tight interaction between a traditional static WCET analysis tool-
chain applying IPET in combination with a symbolic execution en-
gine that allows to select symbolic execution traces and to precisely
reason about path-conditions. We exploit the fact that loop bounds
are implicitly supplied by the initial WCET analysis. Compared to
traditional flow-fact analysis, the symbolic execution component

of WCET Squeezing infers precise constraints for paths that con-
stitute to the WCET estimate. In each iteration of WCET Squeez-
ing, solving the new ILP problem allows to refine the WCET esti-
mate. Compared to traditional symbolic execution engines, WCET
Squeezing offers a way to identify precisely which paths need to be
symbolically executed in order to improve the analysis.

Symbolic execution is also exploited and adjusted in [20, 18],
as follows. The method of [20] avoids unfolding program loops,
and hence omits multiple executions of the same block. While [20]
analyses each program block separately, in the selective symbolic
execution approach of WCET Squeezing we analyse only the rele-
vant program blocks and paths. The abstract execution framework
of [18] can be seen as a specialized form of symbolic execution,
combining the abstract interpretation framework with symbolic ex-
ecution. While the symbolic execution engine in WCET Squeezing
analyzes each trace in isolation of others, abstract execution is a
whole-program analysis that applies abstract state merging, which
might lead to information loss. Compared to WCET Squeezing,
both approaches aim at computing a tight WCET bound, but nei-
ther of them can improve nor prove precise the computed bounds.
WCET Squeezing is designed as a post-process to an initial WCET
analysis and benefits from its focus on single candidate traces.

7. CONCLUSION
WCET Squeezing brings a new and powerful approach for com-

puting precise WCET bounds for safety-critical real-time systems.
It is an on-demand anytime algorithm that is applicable as a post-
process to any state-of-the-art IPET-based WCET analyzer. WCET
Squeezing handles the classical WCET problem by proving WCET
bound precise, yielding an automated approach that is out of scope
of traditional WCET analyzers. WCET Squeezing is also the first
technique to handle the pragmatic WCET problem.

Conceptually, WCET Squeezing iteratively refines the program
model by continuously excluding more and more infeasible execu-
tion traces from the program model. Technically, WCET Squeezing
is put on top and combines a traditional WCET analysis toolchain
with a symbolic execution engine that selectively analyzes only
WCET-relevant parts of the program. This way, WCET Squeezing
adds WCET-relevant information to the coarse program abstraction
of an initial IPET analysis, but avoids the expensive computational
costs of full symbolic program execution.

Our experimental data on a set examples taken from the Mälar-
dalen WCET suite show significant improvements of WCET pre-
cisions already after a few iterations of WCET Squeezing. For ex-
ample, it is not unusual that WCET bounds are improved up to 9%
after only two iterations of WCET Squeezing. Even more, WCET
Squeezing is often able to compute a proven tight bound, i.e., the
actual WCET of the program. Note that this is out-of-the-scope of
traditional WCET analyzers as they do not have means to checking
the feasibility of a computed WCET path.

Currently, we are working on fully automatizing WCET Squeez-
ing, i.e. automatizing the construction of the mapping from ILP to
source as well and on porting WCET Squeezing to other WCET
toolchains. Further work also includes the integration of a cache
and pipeline analysis into WCET Squeezing, and hence making
WCET Squeezing architecture dependent.

8. REFERENCES
[1] C. Ballabriga, H. Cassé, C. Rochange, and P. Sainrat.

OTAWA: an Open Toolbox for Adaptive WCET Analysis. In
Proc. of IFIP Workshop – SEUS, 2010.

[2] H. J. Bang, T. H. Kim, and S. D. Cha. An Iterative
Refinement Framework for Tighter Worst-Case Execution
Time Calculation. In Proc. of ISORC, pages 365–372, 2007.

[3] C. Barrett, A. Stump, C. Tinelli, S. Boehme, D. Cok,
D. Deharbe, B. Dutertre, P. Fontaine, V. Ganesh, A. Griggio,
J. Grundy, P. Jackson, A. Oliveras, S. Krstić, M. Moskal,
L. D. Moura, R. Sebastiani, T. D. Cok, and J. Hoenicke. C.:
The SMT-LIB Standard: Version 2.0. Technical report, 2010.

[4] M. Berkelaar, K. Eikland, and P. Notebaert. lp_solve P.
Software, 2004. Available at
http://lpsolve.sourceforge.net/5.5/.

[5] A. Biere, J. Knoop, L. Kovács, and J. Zwirchmayr. SmacC:
A Retargetable Symbolic Execution Engine. In Proc. of
ATVA, pages 482–486, 2013.

[6] A. Biere, J. Knoop, L. Kovács, and J. Zwirchmayr. The
Auspicious Couple: Symbolic Execution and WCET
Analysis. In Proc. of WCET, pages 53–63, 2013.

[7] R. Bodík, R. Gupta, and M. L. Soffa. Refining Data Flow
Information Using Infeasible Paths. SIGSOFT Softw. Eng.
Notes, 22(6):361–377, 1997.

[8] F. Brandner and A. Jordan. Refinement of Worst-Case
Execution Time Bounds by Graph Pruning. 2013. Under
submission.

[9] C. Cadar, D. Dunbar, and D. R. Engler. KLEE: Unassisted
and Automatic Generation of High-Coverage Tests for
Complex Systems Programs. In Proc. of OSDI, pages
209–224, 2008.

[10] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R.
Engler. EXE: Automatically Generating Inputs of Death.
ACM Trans. Inf. Syst. Secur., 12(2):10:1–10:38, 2008.

[11] P. Cerny, T. Henzinger, and A. Radhakrishna. Quantitative
Abstraction Refinement. In Proc. of POPL, pages 115–128,
2013.

[12] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith.
Counterexample-Guided Abstraction Refinement. In Proc. of
CAV, pages 154–169, 2000.

[13] P. Cousot and R. Cousot. Abstract Interpretation: A Unified
Lattice Model for Static Analysis of Programs by
Construction or Approximation of Fixpoints. In In Proc.of
POPL, pages 238–252, 1977.

[14] C. Cullmann and F. Martin. Data-flow based detection of
loop bounds. In Proc. of WCET, 2007.

[15] A. Ermedahl, J. Fredriksson, J. Gustafsson, and
P. Altenbernd. Deriving the worst-case execution time input
values. In Proc. of ECRTS, pages 45–54, 2009.

[16] J. Gustafsson. SWEET: SWEdish Execution Time tool.
http://www.mrtc.mdh.se/projects/wcet/
sweet.html, 2001.

[17] J. Gustafsson, A. Betts, A. Ermedahl, and B. Lisper. The
Mälardalen WCET Benchmarks: Past, Present And Future.
In Proc. of WCET, pages 136–146, 2010.

[18] J. Gustafsson, A. Ermedahl, C. Sandberg, and B. Lisper.
Automatic Derivation of Loop Bounds and Infeasible Paths
for WCET Analysis Using Abstract Execution. In Proc. of
RTSS, pages 57–66, 2006.

[19] A. Holzer, C. Schallhart, M. Tautschnig, and H. Veith.
FShell: Systematic Test Case Generation for Dynamic
Analysis and Measurement. In Proc. of CAV, pages 209–213,
2008.

[20] D. Kebbal and P. Sainrat. Combining Symbolic Execution
and Path Enumeration in Worst-Case Execution Time
Analysis. In Proc. of WCET, 2006.

[21] R. Kirner. The WCET Analysis Tool CalcWcet167. In Proc.
of ISoLA, pages 158–172, 2012.

[22] J. Knoop, L. Kovács, and J. Zwirchmayr. r-TuBound: Loop
Bounds for WCET Analysis. In Proc. of LPAR, pages 435 –
444, 2012.

[23] P. Lokuciejewski and P. Marwedel. Combining Worst-Case
Timing Models, Loop Unrolling, and Static Loop Analysis
for WCET Minimization. In Proc. of ECRTS, pages 35–44,
2009.

[24] S. S. Muchnick. Advanced Compiler Design and
Implementation. Morgan Kaufmann Publishers Inc., 1997.

[25] F. Nielson, H. R. Nielson, and C. Hankin. Principles of
Program Analysis. Springer-Verlag New York Inc., 1999.

[26] P. P. Puschner and A. V. Schedl. Computing Maximum Task
Execution Times – A Graph-Based Approach. Real-Time
Systems, 13(1):67–91, 1997.

[27] S. S. Skiena. The Algorithm Design Manual. Springer Inc.,
2nd edition, 2008.

[28] I. Stein and F. Martin. Analysis of Path Exclusion at the
Machine Code Level. In Proc. of WCET, 2007.

http://lpsolve.sourceforge.net/5.5/
http://www.mrtc.mdh.se/projects/wcet/sweet.html
http://www.mrtc.mdh.se/projects/wcet/sweet.html

	Motivation
	Overview of the Approach
	Preliminaries
	WCET Squeezing
	WCET Trace Candidates
	Selective Symbolic Execution
	ILP Constraint Encoding

	Experimental Results
	Related Work
	Conclusion
	References

