Optimizing Compilers Data Flow Analysis Frameworks and Algorithms Markus Schordan Institut für Computersprachen Technische Universität Wien

Towards a General Framework

- The analyses operate over a property space representing the analysis information
 - for bit vector frameworks: $\mathcal{P}(D)$ for finite set D
 - more generally: complete lattice (L,\sqsubseteq)
- The analyses of programs are defined in terms of transfer functions
 - for bit vector frameworks: $f_\ell(X) = (X \setminus kill_\ell) \cup gen_\ell$
 - more generally: monotone functions $f_\ell:L\to L$

Property Space

The property space, L, is used to represent the data flow inform and the combination operator, $\sqcup : \mathcal{P}(L) \to L$, is used to combin information from different paths.

- L is a complete lattice
 - meaning that it is a partially ordered set, (L, \sqsubseteq) , such that e subset, Y, has a least upper bound, $\bigsqcup Y$.
- L satisfies the Ascending Chain Condition meaning that ascending chain eventually statbilises: if (l_n). that l₁ ⊆ l₂ ⊆ l₃ ⊆ ..., then there exists n such that l_n = l_n.

Markus Schordan

October 2, 2007

Markus Schordan

October 2, 2007

Markus Schordar

October 2, 2007

Complete Lattice

Let Y be a subset of L. Then

- l is an upper bound if $\forall l' \in Y : l' \sqsubseteq l$ and
- l is a lower bound if $\forall l' \in Y : l \sqsubseteq l'$.
- l is a least upper bound of Y if it is an upper bound of Y that satisfies $l \subseteq l_0$ whenever l_0 is another upper bound of Y.
- l is a greatest lower bound of Y if it is a lower bound of Y that satisfies $l_0 \sqsubseteq l$ whenever l_0 is another lower bound of Y.

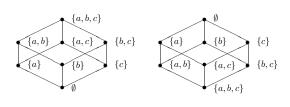
A complete lattice $L = (L, \sqsubseteq)$ is partially ordered set (L, \sqsubseteq) such that all subsets have least upper bounds as well as greatest lower bounds.

October 2, 2007

Notation: $\top = \prod \emptyset = \bigsqcup L$ is the greatest element of L

 $\perp = \bigsqcup \emptyset = \bigsqcup L$ is the least element of L

Example



lattice	$(\mathcal{P}(\{a,b,c\}),\subseteq)$	$(\mathcal{P}(\{a,b,c\}),\supseteq)$	
\Box	U	\cap	
\perp	Ø	$\{a, b, c\}$	

Chain

A subset $Y \subseteq L$ of a partially ordered set $L = (L, \sqsubseteq)$ is a chain if

$\forall l_1, l_2 \in Y : (l_1 \sqsubseteq l_2) \lor (l_2 \sqsubseteq l_1)$

It is a finite chain if it is a finite subset of L. A sequence $(l_n)_n=(l_n)_{n\in\mathbb{N}}$ of elements in L is an

• ascending chain if $n \leq m \rightarrow l_n \sqsubseteq l_m$

• descending chain if $n \leq m \rightarrow l_m \sqsubseteq l_n$

We shall say that a sequence $(l_n)_n$ eventually stabilizes if and o

 $\exists n_0 \in \mathbb{N} : \forall n \in \mathbb{N} : n \ge n_0 \to l_n = l_{n_0}$

Ascending and Descending Chain Conditions

A partially ordered set $L = (L, \sqsubseteq)$ has finite height if and only if all chains are finite.

The partially ordered set L satisfies the

- Ascending Chain Condition if and only if all ascending chains eventually stabilies.
- Descending Chain Condition if and only if all descending chains eventually stabilies.

Lemma: A partially ordered set $L = (L, \sqsubseteq)$ has finite height if and only if it satisfies both the Ascending and Descending Chain Conditions.

A lattice $L = (L, \sqsubseteq)$ satisfies the ascending chain condition if all ascending chains eventually stabilize; it satisfies the descending chain condition if all descending chains eventually stabilize.

October 2, 2007

Markus Schordan

М

Markus Schordan

Transfer Functions

 $L = (L, \sqsubseteq)$, meaning that

 $\ell \in Lab_{+}$)

October 2, 2007

The set of transfer functions, \mathcal{F} , is a set of monotone functions over

for all $l, l' \in L$ and furthermore they fulfill the following conditions

• \mathcal{F} contains all the transfer functions $f_{\ell}: L \to L$ in question (for

 $l \sqsubseteq l' \to f_{\ell}(l) \sqsubseteq f_{\ell}(l')$

• \mathcal{F} contains the identity function

• *F* is closed under composition of functions

October 2, 2007

Frameworks

Markus Schordar

A Monotone Framework consists of:

- a complete lattice, L, that satisfies the Ascending Chain Condition; we write || for the least upper bound operator
- a set F of monotone functions from L to L that contains the identity function and that is closed under function composi

A Distributive Framework is a monotone framework where addit all functions f of \mathcal{F} are required to be distributive:

 $f(l_1 \sqcup l_2) = f(l_1) \sqcup f(l_2)$

A Bit Vector Framework is a Monotone Framework where additi is a powerset of a finite set and all functions f of $\mathcal F$ have the for

 $f(l) = (l \backslash kill) \cup gen$

October 2, 2007

. . . .

Instances of a Framework

An instance of a Framework consists of

- the complete lattice, L, of the framework
- the space of functions, \mathcal{F} , of the framework
- a finite flow, F (typically flow (S_*) or flow $^R(S_*)$)
- a finite set of extremal labels, E (typically {init(S_{\star})} or final(S_{\star}))
- an extremal value, $\iota \in L$, for the extremal labels
- a mapping, f_{\cdot} , from the labels Lab_{*} to transfer functions in \mathcal{F}_{\cdot}

October 2, 2007

Equations of the Instance

$$\begin{aligned} Analysis_{\bullet}(\ell) &= \bigsqcup \{Analysis_{\bullet}(\ell') | (\ell', \ell) \in F \} \sqcup \iota_{E}^{\ell} \\ & \text{where } \iota_{E}^{\ell} = \begin{cases} \iota &: \text{ if } \ell \in E \\ \bot &: \text{ if } \ell \notin E \end{cases} \\ Analysis_{\bullet}(\ell) &= f_{\ell}(Analysis_{\bullet}(\ell)) \end{aligned}$$

On Bit Vector Frameworks (1)

- A Bit Vector Framework is a Monotone Framework
- $\mathcal{P}(D)$ is a complete lattice satisfying the Ascending Chain Condition (because *D* is finite)
- the transfer functions $f_{\ell}(l) = (l \setminus kill_{\ell}) \cup gen_{\ell}$
 - are monotone: $l_1 \subseteq l_2 \ o \ l_1 \setminus \mathsf{kill}_\ell \subseteq l_2 \setminus \mathsf{kill}_\ell$
 - $\rightarrow \quad (l_1 \backslash \mathsf{kill}_\ell) \cup \mathsf{gen}_\ell \subseteq (l_2 \backslash \mathsf{kill}_\ell) \cup \mathsf{g}$
 - $\rightarrow f_{\ell}(l_1) \subseteq f_{\ell}(l_2)$
 - contain the identity function: $id(l) = (l \setminus \emptyset) \cup \emptyset$
 - are closed under function composition:

 $\begin{aligned} f_2 \circ f_1 &= f_2(f_1(l)) &= (((l \mid \mathsf{kill}_l^1) \cup \mathsf{gen}_l^1) \mid \mathsf{kill}_l^2) \cup \mathsf{gen}_l^2 \\ &= (l \mid \mathsf{kill}_l^1 \cup \mathsf{kill}_l^2) \cup ((\mathsf{gen}_l^1 \mid \mathsf{kill}_l^2) \cup \mathsf{gen}_l^2) \end{aligned}$

Markus	Schordan

10

October 2, 2007

11

Markus Schordan

October 2, 2007

On Bit Vector Frameworks (2)

A Bit Vector Framework is a Distributive Framework

- a Bit Vector Framework is a Monotone Framework
- the transfer functions of a Bit Vector Framework are distributive

 $f(l_1 \sqcup l_2) = f(l_1 \cup l_2)$

- $= ((l_1 \cup l_2) \backslash \mathsf{kill}_l) \cup \mathsf{gen}_l$
- $= ((l_1 \backslash \mathsf{kill}_l) \cup (l_2 \backslash \mathsf{kill}_l)) \cup \mathsf{gen}_l$
- $= ((l_1 \setminus \mathsf{kill}_l) \cup \mathsf{gen}_l) \cup ((l_2 \setminus \mathsf{kill}_l) \cup \mathsf{gen}_l)$
- $= f(l_1) \cup f(l_2) = f_{\ell}(l_1) \sqcup f_{\ell}(l_2)$

Analogous for the case with \sqcup being \cap .

Note, a Bit Vector Framework is (a special case of) a Distributive Framework. And a Distributive Framework is (a special case of) a Monotone Framework.

Markus Schordan	October 2, 2007

Input: an instance $(L,\mathcal{F},F,E,\iota,f.)$ of a Monotone Framework

Output: the MFP Solution: $\mathsf{MFP}_\circ, \mathsf{MFP}_\bullet$

 $\mathsf{MFP}_\circ(\ell) := \mathsf{A}(\ell)$

 $MFP_{\bullet}(\ell) := f_{\ell}(A(\ell))$

Markus Schordan

13

Data Structures: to represent a work list and the analysis result

- The result A: the current analysis result for block entries
- The workliks W: a list of pairs (l, l') indicating that the current analysis result has changed at the entry to the block l and hence the information must be recomputed for l'.

October 2, 2007

Lemma: The worklist algorithm always terminates and computes the least (or MFP $^{\rm o}$) solution to the instance given as input.

^afor historical reasons MFP is also called maximal fixed point in the literature

14

Markus Schordan

October 2, 2007

Complexity

Assume that

- E and F contain at most $b \ge 1$ distinct labels
- F contains at most $e \ge b$ pairs, and
- L has finite height of at most $h \ge 1$.

Count as basic operations the application of $f_\ell,$ applications of $\sqcup,$ or updates of A.

Then there will be at most $O(e \cdot h)$ basic operations.

Meet Over All Paths Solution (MOP)

Idea: Propagate analysis information along paths to determine the information available at the different program points.

- The paths up to but not including ℓ : $path_{\circ}(\ell) = \{ [\ell_1, \dots, \ell_{n-1}] \mid n \ge 1 \land \forall i < n : (\ell, \ell') \in F \land \ell_1 \in E \land \ell_n = \ell \}$
- The paths up to and including ℓ : $path_{\bullet}(\ell) = \{ [\ell_1, \dots, \ell_n] \mid n \ge 1 \land \forall i < n : (\ell, \ell') \in F \land \ell_1 \in E \land \ell_n = \ell \}$

With each path $\vec{\ell} = [\ell_1, \dots, \ell_n]$ we associate a transfer function:

$f_{\vec{\ell}} = f_{\ell_n} \circ \cdots \circ f_{\ell_1} \circ id$

Markus Schordan

October 2, 2007

17

Markus Schordar

MOP Solution

• The solution up to but not including ℓ :

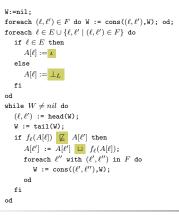
• The solution up to and including ℓ :

October 2, 2007

 $MOP_{\circ}(\ell) = \left| \{ f_{\vec{\ell}}(\iota) | \vec{\ell} \in path_{\circ}(\ell) \} \right|$

 $MOP_{\bullet}(\ell) = \left| \{ f_{\vec{\ell}}(\iota) | \vec{\ell} \in path_{\bullet}(\ell) \} \right|$

Generic Worklist Algorithm



MOP vs MFP Solution

The MFP solution safely approximates the MOP solution:

 $MFP \sqsupseteq MOP$

("because" $f(x \sqcup y) \sqsupseteq f(x) \sqcup f(y)$ when f is monotone

For Distributive Frameworks the MFP and MOP solutions are equal:

MFP = MOP

("because" $f(x \sqcup y) = f(x) \sqcup f(y)$ when f is distributive).

Decidability of MOP and MFP solution

The MFP solution is always computable (meaning that it is decidable):

• because of the Ascending Chain Condition

The MOP solution is often uncomputable (meaning that it is undecidable):

- the existence of a general algorithm for the MOP solution would imply the decidability of the Modified Post Correspondence Problem, which is known to be undecidable.
- See "Principles of Program Analysis" for more details.

References

- Material for this 4th lecture (part 1) www.complang.tuwien.ac.at/markus/optub.html
- Book

Flemming Nielson, Hanne Riis Nielson, Chris Hankin: Principles of Program Analysis.

Springer, (450 pages, ISBN 3-540-65410-0), 1999.

- Chapter 2 (Data Flow Analysis)
- and transparencies available at www.imm.dtu.dk/~riis/ppa.htm

Markus Schordan

October 2, 2007

Markus Schordan

19

October 2, 2007

Markus Schordan

20

October 2, 2007