
Optimizing Compilers
Inter-Procedural Dataflow Analysis

Markus Schordan

Institut für Computersprachen

Technische Universität Wien

Markus Schordan October 2, 2007 1

Syntax

P⋆ ::= begin D⋆ S⋆ end

D ::= D; D | proc p(val x; res y) isℓn S end
ℓx

S ::= ... | [call p(a, z)]ℓc

ℓr

Labeling scheme

• procedure declarations

ℓn: for entering the body

ℓx: for exiting the body

• procedure calls

ℓc: for the call

ℓr: for the return

Markus Schordan October 2, 2007 2

Analysing Procedures

We consider procedures with call-by-value and call-by-result

parameters.

Example:

begin

proc fib(val z,u; res v) is

if z<3 then

(v:=u+1; r:=r+1)

else (

call fib (z-1,u,v);

call fib (z-2,v,v)

)

end;

r:=0;

call fib(x,0,y)

end

Markus Schordan October 2, 2007

Example Flow Graph

main proc fib(val z, u; res v)

[is]1

?
[z < 3]2

? ?
[v := u+1]3

?
[r := r+1]4

??
[end]9

[call fib(z-1,u, v)]5
6

?
[call fib(z-2, v, v)]7

8

��

�

�

?
[r := 0]10

?
[call fib(x, 0, y)]11

12

?

-

6

Markus Schordan October 2, 2007 4

Flow Graph for Procedures

[call p(a, z)]ℓc

ℓr

proc p(val x; res y) isℓn S end
ℓx

init ℓc ℓn

final {ℓr} {ℓx}

blocks {[call p(a, z)]ℓc

ℓr

} {isℓn} ∪ blocks(S) ∪ {endℓx}

labels {ℓc, ℓr} {ℓc, ℓr} ∪ labels(S)

flow {(ℓc; ℓn), (ℓx; ℓr)} {(ℓn, init(S))} ∪ flow(S) ∪ {ℓ, ℓx) | ℓ ∈ final(S))}

• (ℓc; ℓn) is the flow corresponding to calling a procedure at ℓc and

entering the procedure body at ℓn and

• (ℓx; ℓr) is the flow corresponding to exiting a procedure body at ℓx

and returning to the call at ℓr.

Markus Schordan October 2, 2007 5

Naive Formulation

Treat the three kinds of flow, (ℓ1, ℓ2), (ℓc; ℓn), (ℓx; ℓr) in the same w

Equation system:

A◦(ℓ) =
⊔
{A•(ℓ

′) | (ℓ′, ℓ) ∈ F ∨ (ℓ′; ℓ) ∈ F} ⊔ ιℓE

A•(ℓ) = fA
ℓ (A◦(ℓ))

• both procedure calls (ℓc; ℓn) and procedure returns (ℓx; ℓr) ar

treated like “goto’s”.

• there is no mechanism for ensuring that information flowing along

(ℓc; ℓn) flows back along (ℓx; ℓr) to the same call

• intuitively, the equation system considers a much too large set

“paths” through the program and hence will be grossly impr

(although formally on the safe side)

Markus Schordan October 2, 2007



Matching Procedure Entries and Exits

main proc fib(val z, u; res v)

[is]1

?
[z < 3]2

? ?
[v := u+1]3

?
[r := r+1]4

??
[end]9

[call fib(z-1,u, v)]5
6

?
[call fib(z-2, v, v)]7

8

��

�

�

?
[r := 0]10

?
[call fib(x, 0, y)]11

12

?

-

6

We want to overcome the shortcoming of the naive formulation by

restricting attention to paths that have the proper nesting of

procedure calls and exits.

Markus Schordan October 2, 2007 7

General Formulation: Calls and Returns

proc p(val x; res y)

[is]ℓn

?
[end]ℓx

����������1

PPPPPPPPPPi
[call p(a, z)]ℓc

ℓr

'

&

$

%

?

?

?

-�
�

X

X

fℓc,ℓr
(X, Y )

fℓc
(X)

Y

body

Markus Schordan October 2, 2007 8

“Meet” over Valid Paths (MVP)

A complete path from ℓ1 to ℓ2 in P⋆ has proper nesting of procedur

entries and exits; and a procedure returns to the point where it w

called:

CP ℓ1,ℓ2 −→ ℓ1 whenever ℓ1 = ℓ2

CP ℓ1,ℓ3 −→ ℓ1,CPℓ2,ℓ3 whenever (ℓ1, ℓ2) ∈ flow⋆

CP ℓc,ℓ −→ ℓc,CPℓn,ℓx
,CPℓr,ℓ wheneverP⋆ contains [call p(a, z)]

andproc p(val x; res y) isℓn S end

Definition: (ℓc, ℓn, ℓr, ℓx) ∈ interflow⋆ if P⋆ contains [call p(a, z)]ℓc

ℓr

as

as proc p(val x; res y) isℓn S end
ℓx

Markus Schordan October 2, 2007

Example

[is]1

?
[z < 3]2

? ?
[v := u+1]3

?
[r := r+1]4

??
[end]9

[call fib(z-1,u, v)]5
6

?
[call fib(z-2, v, v)]7

8

��

�

�

?
[r := 0]10

?
[call fib(x, 0, y)]11

12

?

-

6

CP10,12 → 10, CP11,12

CP11,12 → 11, CP1,9,CP12,12

CP1,9 → 1, CP2,9

CP2,9 → 2, CP3,9

CP2,9 → 2, CP5,9

CP3,9 → 3,CP4,9

CP4,9 → 4,CP9,9

CP5,9 → 5,CP1,9,CP6,9

CP6,9 → 6,CP7,9

CP7,9 → 7,CP1,9,CP8,9

CP8,9 → 8,CP9,9

CP12,12 → 12

CP9,9 → 9

Some valid paths: [10,11,1,2,3,4,9,12] and [10,11,1,2,5,1,2,3,4,9,6,7,1,2,3,4,9,8,9,12]

A non-valid path: [10,11,1,2,5,1,2,3,4,9,12]

Markus Schordan October 2, 2007 10

Valid Paths

A valid path starts at the entry node init⋆ of P⋆, all the procedure exits

match the procedure entries but some procedures might be entered

but not yet exited:

VP⋆ −→ VP init⋆,ℓ
whenever ℓ ∈ Lab⋆

VP ℓ1,ℓ2 −→ ℓ1 whenever ℓ1 = ℓ2

VP ℓ1,ℓ3 −→ ℓ1,VP ℓ2,ℓ3 whenever (ℓ1, ℓ2) ∈ flow⋆

VP ℓc,ℓ −→ ℓc,CPℓn,ℓx
,VP ℓr,ℓ wheneverP⋆ contains [call p(a, z)]ℓc

ℓr

andproc p(val x; res y) isℓn S end
ℓx

VP ℓc,ℓ −→ ℓc,VP ℓn,ℓ wheneverP⋆ contains [call p(a, z)]ℓc

ℓr

andproc p(val x; res y) isℓn S end
ℓx

Markus Schordan October 2, 2007 11

MVP Solution

MVP◦(ℓ) =
⊔

{f~ℓ
(ι)|~ℓ ∈ vpath◦(ℓ)}

MVP•(ℓ) =
⊔

{f~ℓ
(ι)|~ℓ ∈ vpath•(ℓ)}

where

vpath◦(ℓ) = {[ℓ1, . . . , ℓn−1] | n ≥ 1 ∧ ℓn = ℓ ∧ [ℓ1, . . . , ℓn] is valid path}

vpath•(ℓ) = {[ℓ1, . . . , ℓn] | n ≥ 1 ∧ ℓn = ℓ ∧ [ℓ1, . . . , ℓn] is valid path}

TheMVP solutionmay be undecidable for lattices satisfying the Ascend-

ing Chain Condition, just as was the case for the MOP solution.

Markus Schordan October 2, 2007



Making Context Explicit

• The MVP solution may be undecidable for lattices of finite height

(as was the case for the MOP solution)

• We have to reconsider the MFP solution and avoid taking too

many invalid paths into account

• Encode information about the paths taken into data flow

properties themselves

• Introduce context information

Markus Schordan October 2, 2007 13

MFP Counterpart

Context sensitive analysis: add context information

• call strings:

– an abstraction of the sequences of procedure calls that have

been performed so far

– example: the program point where the call was initiated

• assumption sets:

– an abstraction of the states in which previous calls have been

performed

– example: an abstraction of the actual parameters of the call

Context insensitive analysis: take no context information into account.

Markus Schordan October 2, 2007 14

Call Strings as Context

• Encode the path taken

• Only record flows of the form (ℓc, ℓn) corresponding to a procedur

call

• we take as context
a

= Lab∗ where the most recent label ℓ

procedure call is at the right end

• Elements of
a
are called call strings

• The sequence of labels ℓ1c , ℓ
2

c , . . . , ℓ
n
c is the call string leading to

current call which happened at ℓ1c ; the previous calls where

ℓ2c . . . ℓn
c . If n = 0 then no calls have been performed so far.

For the example program the following call strings are of interest:

Λ, [11], [11, 5], [11, 7], [11, 5, 5], [11, 5, 7].[11, 7, 5], [11, 7, 7], ...

Markus Schordan October 2, 2007

Abstracting Call Strings

Problem: call strings can be arbitrarily long (recursive calls)

Solution: truncate the call strings to have length of at most k for some

fixed number k

•
a

= Lab≤k

• k = 0: context insensitive analysis

– Λ (the call string is the empty string)

• k = 1: remember the last procedure call

– Λ, [11], [5], [7]

• k = 2: remember the last two procedure calls

– Λ, [11], [11, 5], [11, 7], [5, 5], [5, 7], [7, 5], [7, 7]

Markus Schordan October 2, 2007 16

References

• Material for this 4th lecture (part 2)

www.complang.tuwien.ac.at/markus/optub.html

• Book

Flemming Nielson, Hanne Riis Nielson, Chris Hankin:

Principles of Program Analysis.

Springer, (450 pages, ISBN 3-540-65410-0), 1999.

– Chapter 2 (Data Flow Analysis)

Markus Schordan October 2, 2007 17


	Syntax
	Analysing Procedures
	Example Flow Graph
	Flow Graph for Procedures
	Naive Formulation
	Matching Procedure Entries and Exits
	General Formulation: Calls and Returns
	 ``Meet'' over Valid Paths (MVP)
	Example
	Valid Paths
	MVP Solution
	Making Context Explicit
	MFP Counterpart
	Call Strings as Context
	Abstracting Call Strings
	References

