	Formalising the	Development		WHILE Langu	lage
	the programming lar	nguage of interest		Syntactic categories	
Intra-Procedural Dataflow Analysis Forward Analyses	– labelled program	0		$b \in BExp$ booled	netic expressions an expressions
Markus Schordan	 abstract flow graphs – control and data 	flow between labelled program fra	gments	$S \in Stmt$ statem	
Institut für Computersprachen Technische Universität Wien	 extract equations fro – specify the inform labeled fragment 	ation to be compuated at entry ar	nd exit of	$x,y \in ext{Var}$ varia $n \in ext{Num}$ num $\ell \in ext{Lab}$ label	erals
	 compute the solution work list algorithm compute entry ar fragments 	•	of labeled	$op_b \in Op_b$ boole	netic operators an operators onal operators
Markus Schordan October 2, 2007	1 Markus Schardan	October 2, 2007	2	Markus Schordan	October 2, 2007

Abstract	Syntax
----------	--------

a	::=	$x \mid n \mid a_1 \ op_a \ a_2$
b	::=	true false not $b \mid b_1 \ op_b \ b_2 \mid a_1 \ op_r \ a_2$
S	::=	$[x:=\alpha]^{\ell} \mid [skip]^{\ell}$

 $| \text{ if } [b]^{\ell} \text{ then } S_1 \text{ else } S_2$

 $| while[b]^{\ell} do S od$

 $|S_1; S_2|$

Assignments and tests are (uniquely) labelled to allow analyses to refer to these program fragments – the labels correspond to pointers into the syntax tree. We use abstract syntax and insert paranthesis to disambiguate syntax.

October 2, 2007

We will often refer to labelled fragments as elementary blocks.

Markus Schordan

4

labels(S)

init(S)

final(S)

flow(S)

flow^R(S)

analyses)

October 2, 2007

Auxiliary Functions for Flow Graphs

set of nodes of flow graphs of S

gram execution may terminate

blocks(S) set of elementary blocks in a flow graph

execution of program starts

initial node of flow graph of S; the unique node where

final nodes of flow graph for S; set of nodes where pro-

edges of flow graphs for *S* (used for forward analyses)

reverse edges of flow graphs for S (used for backward

5

Markus Schordan

October 2, 2007

Computing the Information (1)

S	labels(S)	init(S)	final(S)
$[x := a]^{\ell}$	$\{\ell\}$	l	$\{\ell\}$
$[skip]^\ell$	$\{\ell\}$	l	$\{\ell\}$
$S_1; S_2$	$labels(S_1) \cup$	$\operatorname{init}(S_1)$	$final(S_2)$
	$labels(S_2)$		
if $[b]^{\ell}$ then (S_1) else (S_2)	$\{\ell\}$ \cup	l	$final(S_1)$
	$labels(S_1) \cup$		$final(S_2)$
	$labels(S_2)$		
while $[b]^{\ell} \operatorname{do} S \operatorname{od}$	$\{\ell\} \cup labels(S)$	l	$\{\ell\}$
while $[b]^\ell \operatorname{do} S \operatorname{od}$	$\{\ell\} \cup labels(S)$	l	$\{\ell\}$

Computing the Information (2)

S	flow(S)	blocks(S)
$[x := a]^\ell$	Ø	$\{[x:=a]^\ell\}$
[skip]ℓ	Ø	$\{[skip]^\ell\}$
$S_1; S_2$	$ \begin{aligned} flow(S_1) &\cup &flow(S_2) &\cup \\ \{(\ell,init(S_2)) \mid \ell \in final(S_1)\} \end{aligned} $	$blocks(S_1) \cup blocks(S_2)$
if $[b]^\ell$ then (S_1) else (S_2)	$ \begin{array}{l} flow(S_1) \ \cup \ flow(S_2) \ \cup \\ \{(\ell, init(S_1)), (\ell, init(S_2))\} \end{array} $	$\begin{array}{ll} \{[b]^\ell\} & \cup \\ \mathrm{blocks}(S_1) & \cup \\ \mathrm{blocks}(S_2) \end{array}$
while $[b]^{\ell}$ do S od	$ \begin{array}{ll} \{(\ell, init(S))\} & \cup & flow(S) & \cup \\ \{(\ell', \ell) \mid \ell' \in final(S)\} \end{array} $	$\begin{array}{l} \{[b]^\ell\} & \cup \\ blocks(S) \end{array}$

$\mathsf{flow}^R(S) = \{(\ell,\ell') \mid (\ell',\ell) \in \mathsf{flow}(S)\}$

October 2, 2007

Markus Schordan

Program of Interest

We shall use the notation

- S_{\star} to represent the program being analyzed (the "top level" statement)
- Lab, to represent the labels (labels(S_{\star})) appearing in S_{\star}
- + Var_ to represent the variables (FV($S_{\star})$) appearing in S_{\star}
- Blocks_ to represent the elementary blocks (blocks($S_{\star}))$ occuring in S_{\star}
- AExp_{*} to represent the set of *non-trivial* arithmetic subexpressions in S_* ; an expression is trivial if it is a single variable or constant

October 2, 2007

 AExp(a), AExp(b) to refer to the set of non-trivial arithmetic subexpressions of a given arithmetic, respectively boolean, expression Example Flow Graphs

Example: $[y := x]^1; [z := 1]^2;$ while $[y > 1]^3$ do $[z := z * y]^4; [y := y - 1]^5$ od; $[y = y - 1]^5$ od; $[y := x]^1$ $[z := 1]^2$ $[z := 1]^2$ $[y > 1]^{\overline{3}}$ $[y > 1]^{3}$ $[z := z*y]^4$ $[z := z*y]^4$ $[y := y - 1]^{t}$ $[y := y - 1]^{t}$ $[y := 0]^6$ $[y := 0]^6$ $flow(S_{\star}) = \{(1,2), (2,3), (3,4), \}$ $flow^R(S_*) = \{(6,3), (3,5), (5,4), \}$ (4,3), (3,2), (2,1) $(4,5), (5,3), (3,6)\}$

Markus Schordan

8

October 2, 2007

Example

Example:

 $[y:=x]^1; [z:=1]^2; \text{while } [y>1]^3 \text{ do } [z:=z*y]^4; [y:=y-1]^5 \text{ od}; [y:=0]^6$

October 2, 2007

Simplifying Assumptions

 \cdot The program of interest S_{\star} is often assumed to satisfy:

• S_{\star} has isolated entries if there are no edges leading into $init(S_{\star})$:

 $\forall \ell: (\ell, \mathsf{init}(S_\star)) \notin \mathsf{flow}(S_\star)$

• S_{\star} has isolated exits if there are no edges leading out of labels in final(S_{\star}):

 $\forall \ell \in \mathsf{final}(S_\star), \forall \ell' : (\ell, \ell') \notin \mathsf{flow}(S_\star)$

• S_{\star} is label consistent if

 $\forall B_1^{\ell_1}, B_2^{\ell_2} \in \mathsf{blocks}(S_\star) : \ell_1 = \ell_2 \to B_1 = B_2$

This holds if S_{\star} is uniquely labelled.

Reaching Definitions Analysis

The aim of the Reaching Definitions Analysis is to determine

For each program point, which assignments *may* have been n and not overwritten, when program execution reaches this along some path.

Example:

Markus Schordar

 $[y:=x]^1; [z:=1]^2; \text{while } [y>1]^3 \text{ do } [z:=z*y]^4; [y:=y-1]^5 \text{ od}; [y=y-1]^3 \text{ do } [z:=z*y]^4; [y:=y-1]^5 \text{ od}; [y=y-1]^5 \text{ do } [z:=z*y]^4; [y:=y-1]^5 \text{ do } [z:=z*y]^4; [z:=z*y]^4;$

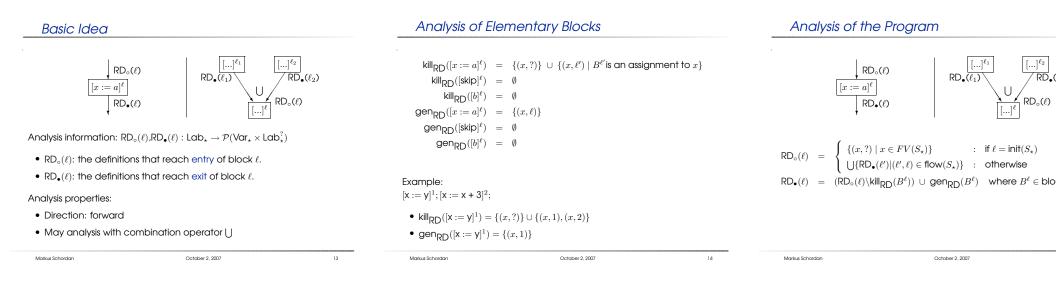
- The assignments labelled 1,2,4,5 reach the entry at 4.
- Only the assignments labelled 1,4,5 reach the entry at 5.

10

11

Markus Schordan

October 2, 2007



Example

Example:

 $[y := x]^1$; $[z := 1]^2$; while $[y > 1]^3$ do $[z := z * y]^4$; $[y := y - 1]^5$ od; $[y := 0]^6$ Equations: Let $S_1 = \{(y, ?), (y, 1), (y, 5), (y, 6)\}, S_2 = \{(z, ?), (z, 2), (z, 4)\}$ $\mathsf{RD}_{\circ}(1) = \{(x, ?), (y, ?), (z, ?)\}$ $\mathsf{RD}_{\bullet}(1) = \mathsf{RD}_{\circ}(1) \setminus S_1 \cup \{(y,1)\}$ $\mathsf{RD}_{\circ}(2) = \mathsf{RD}_{\bullet}(1)$ $\mathsf{RD}_{\bullet}(2) = \mathsf{RD}_{\circ}(2) \setminus S_2 \cup \{(z,2)\}$ $\mathsf{RD}_{\circ}(3) = \mathsf{RD}_{\bullet}(2) \cup \mathsf{RD}_{\bullet}(5)$ $\mathsf{RD}_{\bullet}(3) = \mathsf{RD}_{\circ}(3)$ $\mathsf{RD}_{\circ}(4) = \mathsf{RD}_{\bullet}(3)$ $\mathsf{RD}_{\bullet}(4) = \mathsf{RD}_{\circ}(4) \setminus S_2 \cup \{(z,4)\}$ $\mathsf{RD}_{\circ}(5) = \mathsf{RD}_{\bullet}(4)$ $\mathsf{RD}_{\bullet}(5) = \mathsf{RD}_{\circ}(5) \setminus S_1 \cup \{(y,5)\}$ $\mathsf{RD}_{\circ}(6) = \mathsf{RD}_{\bullet}(3)$ $\mathsf{RD}_{\bullet}(6) = \mathsf{RD}_{\circ}(6) \setminus S_1 \cup \{(y, 6)\}$ $RD_{\circ}(\ell)$ $RD_{\bullet}(\ell)$ $\{(x,?),(y,?),(z,?)\}$ {(x,?),(y,1),(z,?)} $\{(x,?),(y,1),(z,?)\}$ $\{(x,?),(z,2),(y,1)\}$ 2 $\{(x,?),(z,4),(z,2),(y,5),(y,1)\}$ {(x,?),(z,4),(z,2),(y,5),(y,1)} 3 $\{(x,?),(z,4),(z,2),(y,5),(y,1)\}$ {(z,4),(x,?),(y,5),(y,1)} 4 5 $\{(z,4),(x,?),(y,5),(y,1)\}$ {(z,4),(x,?),(y,5)} {(z,4),(x,?),(z,2),(y,6)} 6 {(x,?),(z,4),(z,2),(y,5),(y,1)} Markus Schordan October 2, 2007

Solving RD Equations

Input

• a set of reaching definitions equations

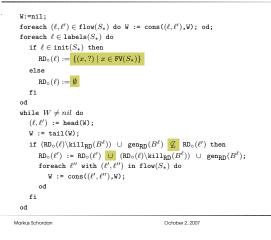
Output

• the least solution to the equations: RD.

Data structures

- The current analysis result for block entries: RD_\circ
- The worklist W: a list of pairs (ℓ, ℓ') indicating that the current analysis result has changed at the entry to the block ℓ and hence the information must be recomputed for ℓ'.

Solving RD Equations - Algorithm

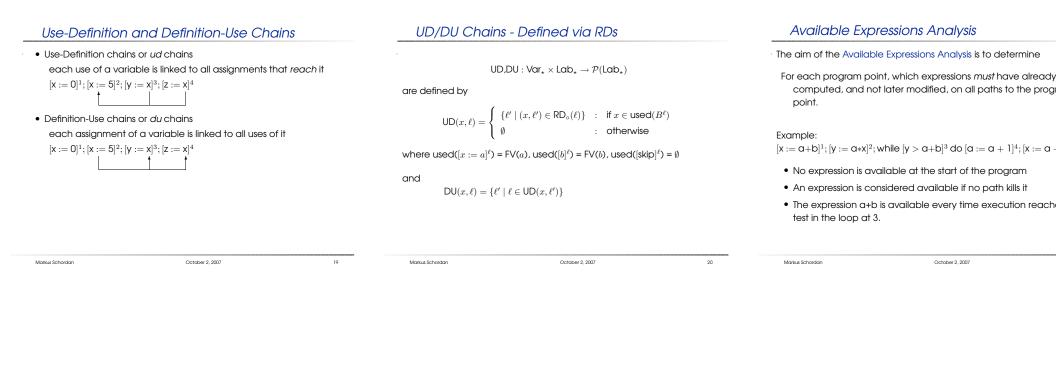


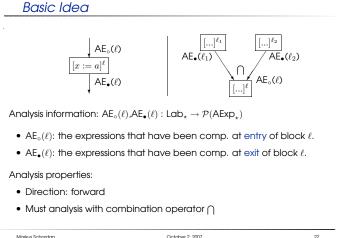
Markus Schordan

16

```
October 2, 2007
```

17

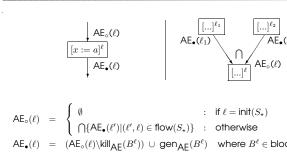




Analysis of Eler	nen	ta	ry Blocks	
$AE_{\circ}(\ell)$ $[x := a]^{\ell}$ $AE_{\bullet}(\ell)$	[b]ℓ	E₀(ℓ) E_(ℓ)	$AE_{\circ}(\ell)$ $[skip]^{\ell}$ $AE_{\bullet}(\ell)$
kill _{AE} ([ski kill _{AE} (gen _{AE} ([ski gen _{AE} ([ski	$p]^{\ell}) = \\ [b]^{\ell}) = \\ a]^{\ell}) = \\ p]^{\ell}) = $	=	$\emptyset \\ \{a' \in AExp(a) \mid$	

 $\mathsf{AE}_{\bullet}(\ell) = (\mathsf{AE}_{\circ}(\ell) \setminus \mathsf{kill}_{\mathsf{AE}}(B^{\ell})) \cup \mathsf{gen}_{\mathsf{AE}}(B^{\ell}) \quad \text{where } B^{\ell} \in \mathsf{blocks}(S_{\star})$

Analysis of the Program



Markus Schordan	October 2, 2007	22	Markus Schordan	October 2, 2007	23	Markus Schordan	October 2, 2007

Example

Example:

$[x:=a+b]^1; [y:=a*x]^2; \text{while } [y>a+b]^3 \text{ do } [a:=a+1]^4; [x:=a+b]^5 \text{ od } [a:=a+b]^5 \text{ od }$
--

Equat	tions:

lations:				
E ₀ (1) =	= Ø	$AE_{\bullet}(1)$	=	$AE_{\circ}(1) \setminus \{a * x\} \cup \{a + b\}$
$E_{\circ}(2) =$	= AE _• (1)	$AE_{\bullet}(2)$	=	$AE_{\circ}(2) \setminus \emptyset \cup \{a * x\}$
E ₀ (3) =	$= AE_{\bullet}(2) \cap AE_{\bullet}(5)$	$AE_{\bullet}(3)$	=	$AE_{\circ}(3) \setminus \emptyset \cup \{a+b\}$
$E_{o}(4) =$	= AE _• (3)	$AE_{\bullet}(4)$	=	$AE_{\circ}(4) \setminus \{a+b, a*x, a+1\} \ \cup \ \emptyset$
$E_{\circ}(5) =$	= AE _• (4)	$AE_{\bullet}(5)$	=	$AE_{\circ}(5) \setminus \{a * x\} \cup \{a + b\}$
$AE_{\circ}(\ell)$	$AE_{\bullet}(\ell)$			
Ø	{a+p}			
{a+p}	{a+b,a*x}			
{a+b}	{a+b }			
{a+p}	Ø			
	$\begin{array}{l} E_{\circ}(1) &= \\ E_{\circ}(2) &= \\ E_{\circ}(3) &= \\ E_{\circ}(4) &= \\ E_{\circ}(5) &= \\ \hline & \\ AE_{\circ}(\ell) \\ \\ \emptyset \\ \{a+b\} \\ \{a+b\} \end{array}$	{a+b} {a+b,a*x} {a+b} {a+b}	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{llllllllllllllllllllllllllllllllllll$

Solving AE Equations

Input

a set of available expressions equations

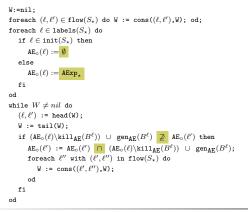
Output

• the largest solution to the equations: AE

Data structures

- The current analysis result for block entries: AE_o
- The worklist W: a list of pairs (ℓ, ℓ') indicating that the current analysis result has changed at the entry to the block ℓ and hence the information must be recomputed for ℓ' .

Solving AE Equations - Algorithm



Markus Schordar

5 Ø {a+b}

October 2, 2007

Markus Schordar

October 2, 2007

Markus Schordar

26

October 2, 2007

Common Subexpression Elimination (CSE)

The aim is to find computations that are always performed at least twice on a given execution path and to eliminate the second and later occurrences; it uses Available Expressions Analysis to determine the redundant computations.

Example:

 $[x := a+b]^1$; $[y := a*x]^2$; while $[y > a+b]^3$ do $[a := a+1]^4$; $[x := a+b]^5$ od

• Expression a+b is computed at 1 and 5 and recomputation can be eliminated at 3.

October 2, 2007

The Optimization - CSE

Let S^N_{\star} be the normalized form of S_{\star} such that there is at most one operator on the right hand side of an assignment.

For each $[...a..]^{\ell}$ in S^N_{\star} with $a \in AE_{\circ}(\ell)$ do

- determine the set $\{[y_1 := a]^{\ell_1}, \dots, [y_k := a]^{\ell_k}\}$ of elementary blocks in S^N_+ "defining" a that reaches $[...a...]^\ell$
- create a fresh variable *u* and
 - replace each occurrence of $[y_i := a]^{\ell_i}$ with $[u := a]^{\ell_i}; [y_i := u]^{\ell'_i}$ for $1 \leq i \leq k$
 - replace $[\dots a \dots]^{\ell}$ with $[\dots u \dots]^{\ell}$

 $[x := a]^{\ell'}$ reaches $[\dots a \dots]^{\ell}$ if there is a path in flow (S^N_{\star}) from ℓ' to ℓ that does not contain any assignments with expression a on the right hand side and no variable of a is modified.

Computing the "reaches" Information

 $[x := a]^{\ell'}$ reaches $[\dots a \dots]^{\ell}$ if there is a path in flow (S^N_{\star}) from ℓ' to ℓ does not contain *any* assignments with expression a on the right side and no variable of a is modified.

The set of elementary blocks that reaches $[...a...]^{\ell}$ can be comp as reaches_o (a, ℓ) where

reaches $_{\circ}(a, \ell)$	= {	Ø	: if $\ell = init(S_{\star})$
		\bigcup reaches _• (a, ℓ')	: otherwise
		$ R^{\ell} $.	if B^ℓ has the form $[x:=a]^\ell$ and $x \notin$
reaches (a, ℓ)	= {	Ø :	if B^ℓ has the form $[x:=\ldots]^\ell$ and x
	l	$reaches_{\circ}(a, \ell)$:	otherwise

28

29

r

r

Example - CSE

Example:

[x :=	= a+b] ¹ ;[$[y:=a*x]^2; \text{while} \ [y>a+b]^3 \ \text{do} \ [a:=a+1]^4; [x:=a+b]^5 \ \text{od}$
l	$\begin{array}{c} AE_{\circ}(\ell)\\ \emptyset\\ \{a+b\}\\ \{a+b\}\\ \{a+b\}\\ \emptyset\end{array}$	
1	Ø	
2	{a+b}	reaches(a+b,3)={ $[x := a + b]^1, [x := a + b]^5$ }
3	{a+b}	$\left[\left[x - u + 0 \right] , \left[x - u + 0 \right] \right] \right]$
4	{a+b}	
5	Ø	

Result of CSE optimization wrt. reaches(a+b,3)

 $[u:=a+b]^{1'}; [x:=u]^1; [y:=a*x]^2; \text{ while } [y>u]^3 \text{ do } [a:=a+1]^4; [u:=a+b]^{5'}; [x:=u]^5 \text{ od } [a:=a+1]^4; [u:=a+b]^{5'}; [x:=u]^5 \text{ od } [a:=a+1]^4; [u:=a+b]^{5'}; [x:=a]^5 \text{ od } [a:=a+b]^{5'}; [x:=a+b]^{5'}; [$

Markus Schordar

October 2, 2007

34

Markus Schordar

Copy Analysis

The aim of Copy Analysis is to determine for each program point ℓ' , which copy statements $[x := y]^{\ell}$ that still are relevant (i.e. neither x nor y have been redefined) when control reaches point ℓ' .

Example:

 $[a := b]^1$; if $[x > b]^2$ then $([y := a]^3)$ else $([b := b + 1]^4; [y := a]^5); [skip]^6$

October 2, 2007

ℓ	$C_\circ(\ell)$	$C_{\bullet}(\ell)$
1	Ø	{(a,b)}
2	{(a,b)}	{(a,b)}
3	{(a,b)}	{(y,a),(a,b)}
4	{(a,b)}	Ø
5	Ø	{(y,a)}
6	{(y,a)}	{(y,a)}

Copy Propagation (CP)

The aim is to find copy statements $[x := y]^{\ell_j}$ and eliminate them possible

If x is used in $B^{\ell'}$ then x can be replaced by y in $B^{\ell'}$ provided the

- $[x := y]^{\ell_j}$ is the only kind of definition of x that reaches $B^{\ell'}$ information can be obtained from the def-use chain.
- on every path from ℓ_i to ℓ' (including paths going through ℓ times but only once through ℓ_i) there are no redefinitions of can be detected by Copy Analysis.

Example 1

Markus Schordan

32

 $[u := a+b]^{1'}; [x := u]^1; [y := a*x]^2;$ while $[y > u]^3$ do $[a := a + 1]^4; [u := a + b]^{5'}$

becomes after CP

 $[u := a+b]^{1'}; [y := a*u]^2;$ while $[y > u]^3$ do $[a := a + 1]^4; [u := a + b]^{5'}; [x := u]^{t}$

October 2, 2007

The Optimization - CP

For each copy statement $[x := y]^{\ell_j}$ in S_* do

- determine the set $\{[...x...]^{\ell_1}, ..., [...x...]^{\ell_i}\}, 1 \le i \le k$, of elementary blocks in S_{\star} that uses $[x := y]^{\ell_j}$ – this can be computed from $DU(x, \ell_i)$
- for each $[...x..]^{\ell_i}$ in this set determine whether $\{(x', y') \in C_{\circ}(\ell_i) \mid x' = x\} = \{(x, y)\}; \text{ if so then } [x := y] \text{ is the only kind}$ of definition of x that reaches ℓ_i from all ℓ_j .

October 2, 2007

- if this holds for all $i (1 \le i \le k)$ then
- remove $[x := y]^{\ell_j}$
- replace $[...x..]^{\ell_i}$ with $[...y..]^{\ell_i}$ for 1 < i < k.

Examples - CP

Example 2

 $[a := 2]^1$; if $[y > u]^2$ then $([a := a + 1]^3; [x := a]^4;)$ else $([a := a * 2]^5; [x := a]^6;)[y := y * x]^7;$

becomes after CP

 $[a := 2]^1$; if $[y > u]^2$ then $([a := a + 1]^3;$;) else ($[a := a * 2]^5$; ;) $[y := y * a]^7$;

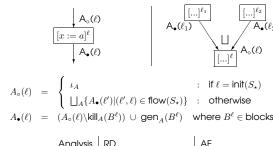
Example 3

 $[a := 10]^1$; $[b := a]^2$; while $[a > 1]^3$ do $[a := a - 1]^4$; $[b := a]^5$; od $[y := y*b]^6$;

becomes after CP

; while $[a > 1]^3$ do $[a := a - 1]^4$; $[a := 10]^1$: ; od $[y := y * a]^6;$

Summary: Forward Analyses



	Analysis	RD	AE
vhere	ι_A	$\{(x,?)\mid x\in FV(S_\star)\}$	Ø
	\bigsqcup_A	U	\cap

Markus Schordan

Markus Schordan

Markus Schordar

35

٧٨

October 2, 2007

References

Material for this 2nd lecture

www.complang.tuwien.ac.at/markus/optub.html

• Book

Flemming Nielson, Hanne Riis Nielson, Chris Hankin:

Principles of Program Analysis.

Springer, (2nd edition, 452 pages, ISBN 3-540-65410-0), 2005.

October 2, 2007

- Chapter 1 (Introduction)

- Chapter 2 (Data Flow Analysis)

Markus Schordan

37