
Comparison of Configuration File Parsers and Systems

Seminar aus Programmiersprachen WS2014

Roman Decker, B. Sc.
Göttweigersiedlung 5
3161 St. Veit/Gölsen

e0828572@student.tuwien.ac.at

ABSTRACT
In the configuration management field, various solutions ex-
ist to automatically configure a set of network nodes. Es-
pecially when it comes to editing existing configuration files
that are in a potentially unknown state, file editing capabil-
ities of these systems are in demand. This paper focuses on
these capabilities especially. The configuration file needs to
be parsed, possibly altered, and written back to disk. This
paper first goes into some popular configuration file formats,
then presents some parsers that are able to understand these
formats before it analyses three popular configuration man-
agement systems.

Categories and Subject Descriptors
D.2.9 [Software Engineering]: Management—Software con-
figuration management

General Terms
Management

Keywords
configuration file parsers, configuration management

1. INTRODUCTION
File editing is an important aspect of configuration man-

agement systems tightly coupled to file parsing. It is im-
portant to understand the connection these systems have
to configuration file parsers in order to reasonably evaluate
them.

In order to compare various configuration file parsers, we
must first select the file formats to parse. To do this, two
main criteria are chosen: To adhere to a practice-oriented
approach, file formats are selected according to their pop-
ularity within the software engineering/system administra-
tion community. To create a coherent link between the con-
figuration management systems described in the second part

Comparison of Configuration File Parsers and Systems
Seminar aus Programmiersprachen
185.307, SE, 2014W
Roman Decker, Matrikelnr.: 0828572
e0828572@student.tuwien.ac.at

of this report, file formats are further selected with regard
to them being supported by the chosen systems.

Particularly on windows systems, INI-Files are a promi-
nent choice for configuration storage. In the Java-community,
a popular format for storing configuration is the .proper-

ties-file [8]. While XML is not ideal for editable configura-
tion files [15], it is still a popular choice because its hierar-
chical structure makes it a good medium for configuration
exchange.

For the configuration management system section of this
paper, three popular systems were chosen: CFEngine, Pup-
pet and Chef. CFEngine is one of the first configuration
management systems [6]. Mark Burgess, most noted for his
work in policy-based configuration management and creator
of CFEngine, has produced a number of scientific papers
backing CFEngine’s practical use [4], [5] [3].

Alongside CFEngine, other configuration management sys-
tems such as Bcfg2, Puppet and Chef have arisen. Other
solutions exist, but these projects are considered to be the
”big four” of configuration managment [13]. Especially Pup-
pet is relevant in the context of this paper, as it provides
direct editing of various configuration file formats via the
configuration-management library ”Augeas”. Because of this,
Puppet is selected for further inspection in this paper.

2. CONFIGURATION FILE FORMATS
This section explains the file formats studied in this paper,

giving a detailed description of their syntax and use. Table
1 gives an overview of the studied configuration file formats.

2.1 Properties of configuration files
Configuration file formats may be categorized by a diverse

set of features, such as their ability to support comments
alongside the actual configuration data, case-sensitivity of
keys or their inherent structure.

The following criteria have been chosen to differentiate
the chosen configuration file formats:

• Structure (Tree-Like, simple Key-Value, etc.)

• Support for comments

– Placement of comments

• Conservation of formatting

– Case-sensitivity in keys

– Whitespace in and around values

2.2 INI-file format
The INI file format is a popular configuration file format

dating back as early as Windows 3.1 [12]. Probably due
to its simplicity, no standard exists for the file format. An
INI-file is basically a list of key-value pairs. These pairs
can (optionally) be organized into sections. In the actual
file, configuration entries are restricted to one line, the typ-
ically case-insensitive key and its value are separated by an
equal-sign, sections are marked by putting the respective
section-name in square brackets and are valid until the next
section-definition or end of file is reached. Comments may
be specified on separate lines by prefixing the line with a
semicolon or a number sign (”#”). A sample INI-file can be
seen in Listing 1.

Listing 1: A sample .ini-file
1 [foosection]
2 f oo=foova lue
3 bar=barvalue
4

5 ; Here goes the bar s e c t i o n
6 [barsection]
7 bla =4711

INI has spawned a number of dialects, that largely corre-
late with this format and only bear subtle differences. An
example for such a format would be Subversion’s configu-
ration file format which allows the number sign (”#”) as a
comment-starting symbol.

2.3 Properties-file format
.properties-files pose another very simple way for appli-

ations to store their configuration. They are essentially a
plain list of key-value pairs. Other than the aforementioned
INI-files, .properties-files do not support sectioning. Keys
and values can be separated in various ways, either by a
double-colon, an equal-sign or simply by one or more whites-
pace characters (other than a newline). By suffixing a line
with a backslash, values may span multiple lines. Comments
are also possible on a one-line basis by starting the line with
a number sign (”#”) or exclamation mark. Listing 2 shows a
sample properties file.

Listing 2: A sample .properties file
1 bar . foo = 22
2 # t h i s i s a comment
3 f oo . bar . another = 4711
4

5 m u l t i l i n e = t h i s i s a l onge r entry \
6 spanning mul t ip l e \
7 l i n e s

2.4 XML files as configuration storage
XML provides an inherent hierarchical structure to orga-

nize configuration entries. A wide variety of tools supports
XML, such as XPath to query and select elements and at-
tributes, Schema-Validation to easily validate configuration
files or XSLT 1 to transform data from one format to an-
other. As XML-Elements are typically case sensitive, this
property propagates to configuration files using this format.
Listing 3 depicts a sample XML-file.

1EXtensible Stylesheet Language

Table 1: Comparison of chosen file formats
Format Structure Comments Key case
INI Key-Value, sections Single line Insensitive
Properties strict Key-Value Single line Sensitive
XML Tree Arbitrary 3 Sensitive

2.4.1 XML-Comments
Comments in XML are denoted by the comment tag, which

starts with ”<!--” and ends with ”-->”. Any text in between
will be considered a comment. However, the string ”--”must
not occur within the comment.

The fact that XML-comments are just another XML-Element
gives them the advantage of simply being nodes in the DOM -
Tree2. That makes it easier for parsers to preserve them.

3. CONFIGURATION FILE PARSERS
This section compares chosen configuration file parsers

with each other. Detailed results can be found in Table
2 in Section 6.

A popular choice for parsing configuration files in Java
is the Apache Commons Configuration library, which is li-
censed under the Apache license4. It supports all of the
chosen configuration file formats natively and runs on Java
5 or greater.

Another viable tool for parsing configuration files of dif-
ferent forms is Augeas, a configuration management library
licensed under LGPL. In Augeas, configuration formats are
converted to an internal representation using Lenses. Augeas
supports all of the chosen formats natively through stock
lenses5 that come with Augeas.

The typical task of these libraries in the context of con-
figuration management systems is to read a configuration
file, eventually adapt its content and write it back to disk
(”Round-trip”). The aforementioned parser libraries are eval-
uated according to a list of the following criteria with regards
to their round-tripping properties:

• (C1) Preserve comments

• (C2) Preserve order

• (C3) Preserve case of case-insensitive keys

• (C4) Preserve formatting

For each criteria, a specialized test-case is crafted, along
with its desired outcome in case of passing the test. List-
ings 3 and 4 illustrate a testcase for whether an XML-Parser
preserves comments when updating keys paradigmatically.

Listing 3: Test case for preserving comments
1 <?xml version=”1 .0 ”?>
2 <root>
3 <someelements>
4 <element>
5 < !−− This i s a comment −−>
6 <f oo>f oova lue< !−− nested −−></ foo>
7 <bar>barvalue</bar>
8 </ element>

2Document Object Model
3Single- and multi-line comments, see Section 2.4.1
4http://www.apache.org/licenses/, 2015-01-13
5see Section 3.2 for an explanation on lenses

http://www.apache.org/licenses/

9 </ someelements>
10 </ root>

Listing 4: Desired outcome for Listing 3
1 <?xml version=”1 .0 ”?>
2 <root>
3 <someelements>
4 <element>
5 < !−− This i s a comment −−>
6 <f oo>changed< !−− nested −−></ foo>
7 <bar>barvalue</bar>
8 </ element>
9 </ someelements>

10 </ root>

3.1 Apache Commons Configuration
The Apache Commons Configuration library supports 9

configuration formats including the three formats examined
in this paper. As the library is a Java framework, it is
interfaced through Java classes. Each format has its own
class that extends from a base configuration class6. Custom
formats may be added by extending from that base class.
Apache Commons Configuration comes packaged as a .jar-
file, thus simple, minimalist Java-Applications were written
for each test case.

3.2 Augeas
The Augeas configuration management library is written

in C and comes with a variety of bindings for different lan-
guages.

Augeas’ powerhorses are its so-called ”lenses”: Little pro-
grams written in Augeas’ own language that transform a
file format from and to Augeas’ internal tree-representation
[14]. Lenses work bidirectionally, so that writing the in-
ternal tree-representation back to its file format becomes
possible. Augeas comes with a large number of stock-lenses
supporting various file-formats out of the box. However, it
is possible to create custom lenses for additional formats.

In order to evaluate Augeas, the augtool command line
tool is used that comes bundled with Augeas. The workflow
typically consists of loading a configuration file, applying
some changes and writing the changes back to the file.

A typical test run looks as depicted in Listing 5.

Listing 5: A sample testrun with augtool
$ augtoo l −−noload \

−−noautoload \
−−echo \
−−root .

> s e t / augeas / load /xml/ l e n s ”Xml . l n s ”
> s e t / augeas / load /xml/ i n c l ”comments .

xml ”
> load
> s e t / f i l e s /comments . xml/ root /

someelements / element / foo/#text ”
changed ”

> save
Saved 1 f i l e (s)

6The AbstractConfiguration class, see https:
//commons.apache.org/proper/commons-configuration/
apidocs/org/apache/commons/configuration2/
AbstractConfiguration.html

Augeas was able to perform most tasks to a satisfactory
degree. The best format to use in combination with Augeas
is arguably XML which bears big similarities to Augeas’ inter-
nal intermediate-representation due to its hierarchical struc-
ture. However, Augeas was also able to handle INI- and
Properties-files well, with the little exception of treating
all INI-sections and -keys case-sensitively. Augeas was not
able to handle multi-line values in Properties files. aug-

tool was able to read files with multiline-keys but wasn’t
able to write them.

3.2.1 Disparities
Another interesting difference between the two parsers is

the way they handle duplicate sections in INI-files. Consider
the following test case in Listing 6.

Listing 6: Section unification test case
1 [foosection]
2 f oo=foova lue
3 bar=barvalue
4

5 [barsection]
6 bla =4711
7

8 ; same s e c t i o n name here
9 [foosection]

10 bar = d u p l i c a t e
11 baz = bazvalue

While Augeas preserved the two foosection sections (with
a bar key in each section), Apache Commons Configuration
unified the two sections to one single section at the loca-
tion of the first occurence. The duplicate bar key then also
appeared twice in the merged section. Listing 7 shows the
output generated by Apache Commons Configuration.

Listing 7: Section unification test case output for
Apache Commons Configuration

1 [foosection]
2 f oo = foova lue
3 bar = barvalue
4 bar = d u p l i c a t e
5 baz = bazvalue
6

7 [barsection]
8 bla = 4711

4. CONFIGURATION MANAGEMENT SYS-
TEMS

This section will describe three widely used configuration
management systems, CFEngine, Puppet and Chef.

4.1 CFEngine
CFEngine is a rule-based configuration management sys-

tem first conceived in 1993 by Mark Burgess. It is written in
C and licensed under GPL. Its aim is to centralize configu-
ration of a large number of heterogenous client systems in a
network. Burgess summarizes its functionality as follows [6]:

• Testing and configuration of network files

• Simple automated text file editing

• Symbolic link management

https://commons.apache.org/proper/commons-configuration/apidocs/org/apache/commons/configuration2/AbstractConfiguration.html
https://commons.apache.org/proper/commons-configuration/apidocs/org/apache/commons/configuration2/AbstractConfiguration.html
https://commons.apache.org/proper/commons-configuration/apidocs/org/apache/commons/configuration2/AbstractConfiguration.html
https://commons.apache.org/proper/commons-configuration/apidocs/org/apache/commons/configuration2/AbstractConfiguration.html

• Testing and setting the permissions and ownership of
files

• Systematic deletion of garbage files

• Systematic automated mounting of NFS filesystems

• Other sanity checks

What differentiates CFEngine from most configuration
management systems is its stochastic philosophy of system
evolution [4]. CFEngine aims to make a system converge to
an ideal state, taking into account random entropy through
user interaction. This Process of healing a system towards
a healthy state is referred to as immunity model. CFEngine
tries to converge this fuzzy concept [5] of a state to the ideal
state given by a Policy. This policy (rule-)based evaluation
resembles logic programming languages such as Prolog [7], [5].

CFEngine’s declarative configuration language consists of
one or more statements each of which follow the same struc-
ture [6]. A sample configuration snippet is shown in listing 8.

Listing 8: Sample CFEngine configuration file
1 bundle bundle type name
2 {
3 promise type :
4

5 c l a s s e s : :
6

7 ”promiser ” −> { ”promisee1 ” , ”promisee2
” , . . . }

8

9 a t t r i b u t e 1 => value 1 ,
10 a t t r i b u t e 2 => value 2 ,
11 . . .
12 a t t r i b u t e n => value n ;
13 }

These files organize Promises into Bundles. A Promise
is a declarative statement about the desired state of the
system. A Promise’s use is restricted by Classes, boolean
classifiers that describe system context [16].

Relevance to configuration file parsers.
CFEngine provides good support for editing XML-documents

via its edit_xml bundle. Similarly, CFEngine also provides
some JSON-parsing functionality for editing JSON-Files via
an internal JSON parser. However, this is where custom file
format support ends. Except some helper functions for han-
dling INI-files, users have to resort to CFEngine’s (albeit
very powerful) Regular-Expression-based file editing tools.
As the *nix landscape mainly uses manifold, but simple,
line-based configuration formats, this appears to be a very
practical approach.

Documentation.
Older versions of CFEngine did not have very good doc-

umentation. However with more recent versions, CFEngine
has gotten a thorough documentation available at https:

//docs.cfengine.com/latest/.

4.2 Puppet
Puppet is another open source project dedicated to con-

figuration management. The Ruby-application is licensed
under an Apache License (older versions used to have GPL
licensing).

Puppet is interfaced through the puppet command-line
tool. It is used to manipulate a system’s resources, i.e. Pup-
pet’s concept of an atomic configuration unit [1]. Resources
can be manifold, for example:

• User accounts

• Files

• Directories

• Services

• etc.

Puppet then provides a Resource Abstraction Layer (re-
ferred to as RAL) which allows administrators to form declar-
ative statements about these resources (e.g. ”make sure a
user account with a specific name exists”). These statements
are written in Puppet’s configuration language or domain-
specific language and are saved to manifest files. Puppet
will then apply these manifests by executing the code within
them.

In order to configure a network of hosts with Puppet, one
must run a Puppet master server on a host within the net-
work. The hosts to be configured by Puppet then need to
run a Puppet agent, which will periodically fetch manifests
from the Puppet master and apply them.

Just like CFEngine, Puppet offers a declarative way of
specifying a configuration with its own JSON-like configu-
ration language. However, since Puppet Version 2.6, config-
urations may also be written in a domain-specific language,
a feature Ruby seems to be built for [11].

Puppet’s configuration language supports modules and
classes, which enables a very modular approach. This eases
maintenance considerably.

A sample puppet manifest is depicted in 97.

Listing 9: A sample puppet manifest
1 f i l e { ’/tmp/ tes t1 ’ :
2 ensure => present ,
3 content => ”Hi . ” ,
4 }
5

6 n o t i f y { ’/tmp/ t e s t 1 has a l r eady been
synced . ’ :

7 r e q u i r e => F i l e [’ / tmp/ tes t1 ’] ,
8 }

Similar to CFEngine, Puppet runs on most Unix variants
and Windows. However, a functional installation of Ruby
is required on the Puppet master as well as every Puppet
agent. Mac OS X is not explicitly stated as being supported
in the Puppet documentation, however it is listed in Pup-
pet’s installation guide under ”other Unix”. Furthermore,
there exists documentation on how to handle Mac OS X
peculiarities when rolling out a Puppet system.

Relevance to configuration file parsers.
Puppet uses the Augeas configuration management library

mentioned in 3.2 for editing configuration files. Due to its
tight coupling to the library, puppet has contributed to the
implementation of Augeas as well.

7Taken from https://docs.puppetlabs.com/learning/
ordering.html

https://docs.cfengine.com/latest/
https://docs.cfengine.com/latest/
https://docs.puppetlabs.com/learning/ordering.html
https://docs.puppetlabs.com/learning/ordering.html

4.3 Chef
Like Puppet, Chef is mainly written in Ruby and is li-

censed under an Apache License. Configuration instructions
are called ”recipes”, which are in turn collected in Cookbooks
on a chef server. Recipes are then delivered to hosts who
run a chef client that will take care to configure the node.

Chef also supports a mode of operation for single host
systems called chef-solo.

In contrast to Puppet, which provides its own configu-
ration language to implement manifests, chef recipes are
written in a Ruby domain-specific language only. This lan-
guage is not declarative but imperative, which changes the
viewpoint from which administrators create configuration
recipes. Chef’s domain-specific language acts more like a
library helping Ruby code interface with configuration arti-
facts.

Relevance to configuration file parsers.
Other than Puppet, which allows format-aware editing of

configuration files, Chef’s editing capabilities are restricted
to simple regular expression-based search-and-replace oper-
ations.

4.4 Comparison
While CFEngine’s viewpoint of configuration management

is strongly orientated towards a developer’s view, Chef and
Puppet are both more directed towards use by system ad-
ministrators [2].

CFEngine shines when it comes to memory and CPU foot-
print. As it is written in C, it does not require a runtime-
environment and thus has less dependencies than its coun-
terparts Puppet and Chef. Puppet and Chef are both writ-
ten in Ruby and thus require a Ruby environment to be
present on every network node.

5. NIXOS’ APPROACH TO CONFIGURA-
TION MANAGEMENT

A problem all of the systems detailed in Section 4 suffer
from is statefulness: When a local configuration file has to
be edited, its state is potentially unknown [10].

5.1 The nix package manager
Solving this dilemma requires an altogether different ap-

proach to configuration management. The nix package man-
ager is a tool that uses a purely functional approach to pack-
age management. In contrast to popular package managers
(like apt or dpkg), nix uses a purely functional language for
package configuration.

5.2 NixOS
NixOS is a Linux distribution further applying the con-

cept of functional configuration management across an entire
operating system consistently. Based on the nix package
manager, NixOS maintains a single configuration file that
is edited when the configuration needs to be changed [10].
NixOS then uses the nix-package-manager to build the con-
figuration from scratch. This approach has the following
advantages:

• Statelessness: Rebuilding the configuration with the
same base configuration file will always produce the
same result, regardless of currently installed packages.

Table 2: Comparison of configuration file parsers
Parser C1 C2 C3 C4

INI
Apache Commons Configuration No Partly8 Yes Yes
Augeas (Puppet lens9) Yes Yes No Yes

Properties
Apache Commons Configuration Yes Yes n/a Yes
Augeas Yes Yes n/a Yes

XML
Apache Commons Configuration Yes Yes n/a Yes
Augeas Yes Yes n/a Yes

• During upgrades, the system is not in an inconsistent
state, as upgrades are atomic.

• Because configuration files are never overwritten, the
system can easily be rolled back to a different config-
uration, even in constant time [9].

• Different versions of the same package can coexist.
This enables NixOS to allow non-root-users to install
packages without breaking other users’ system config-
uration.

5.2.1 Disadvantages
The fact that concurrent versions of the same package

will be kept until no other package depends on them (even
though dependants would work with different versions of the
package as well), leads to a bigger storage requirement. The
same reason can also cause build times to increase consider-
ably.

6. CONCLUSION
In terms of parsers, both Apache Commons Configuration

and Augeas were able to perform tasks to a satisfactory de-
gree. Apache Commons configuration lacked support when
it comes to preservation of INI-comments. Augeas on the
other hand was not able to write multi-line-values in .prop-

erties-files. Table 2 lists detailed evaluation results.

When it comes to configuration management systems, there
is no real ”winner”. CFEngine, Puppet and Chef all have
their advantages: While CFEngine clearly outperforms Pup-
pet and Chef in terms of Footprint and performance, its
counterparts are more intuitive when it comes to learning
the system.

Configuration management is evolving steadily in these
times, with multiple projects competing for market domi-
nance. CFEngine remains a viable option, having the best
theoretical background and a tiny footprint while being just
as powerful as its competitors.

Puppet provides very good documentation and is proba-
bly the easiest tool to learn. Its configuration language is
expressive and readable, which further increases productiv-
ity.

Chef has its similarities to puppet (language, license), the
most important difference is the fact that Chef’s recipes are

8see Section 3.2.1
9Due to the fact that INI-Files have various manifestations,
Augeas has multiple lenses for editing INI-files. The test-
cases here were run using the ”Puppet”-lens.

10see Section 4.2

Table 3: Comparison of configuration management systems
Configuration management system Configuration Language License Platforms
CFEngine Declarative GPL Linux, Mac OS X, Windows

Puppet Declarative Apache Linux, Mac OS X (partial10), Windows
Chef Imperative Apache Linux, Mac OS X, Windows

written in an imperative language. One thing to be consid-
ered for the usage of both Puppet and Chef is the need for
a Ruby environment.

On the other hand, NixOS sketches an entirely different
approach to configuration management. Whether this idea
will prevail is still to be determined.

References
[1] Learning puppet. https://docs.puppetlabs.com/

learning/ral.html, 2014.

[2] M. Baukes. Puppet vs. cfengine. http://www.

scriptrock.com/blog/puppet-vs-cfengine, 2014.

[3] M. Burgess. Evaluating cfengine’s immunity model of
site maintenance, 2000.

[4] M. Burgess. Recent developments in cfengine. In In
Proceedings of the 2nd Unix.nl conference, 2001.

[5] M. Burgess. A tiny overview of cfengine: Convergent
maintenance agent. In Proceedings of the 1st Interna-
tional Workshop on Multi-Agent and Robotic Systems,
MARS/ICINCO 2005, 2005.

[6] M. Burgess and O. College. Cfengine: a site config-
uration engine. In USENIX Computing systems, Vol,
1995.

[7] A. L. Couch, Dr. and M. Gilfix. It’s elementary, dear
watson: Applying logic programming to convergent sys-
tem management processes. In Proceedings of the 13th
USENIX Conference on System Administration, LISA
’99, pages 123–138, Berkeley, CA, USA, 1999. USENIX
Association.

[8] V. S. Desinov. Overview of java application configura-
tion frameworks. International Journal of Open Infor-
mation Technologies, 2013.

[9] E. Dolstra. The Purely Functional Software Deployment
Model. PhD thesis, Universiteit Utrecht, Jan. 2006.

[10] E. Dolstra, A. Löh, and N. Pierron. Nixos: A purely
functional linux distribution. J. Funct. Program., 20(5-
6):577–615, 2008.

[11] S. Günther. Engineering domain-specific languages
with ruby. 2009.

[12] M. Inc. Windows 3.1 resource kit win.ini section set-
tings. http://support.microsoft.com/KB/83386.

[13] C. Lueninghoener. Getting started with configuration
management. ;login:, 2011.

[14] D. Lutterkort. Augeas - a configuration api. Proceedings
of the Linux Symposium, 2008.

[15] M. Raab. A modular approach to configuration storage.
Master’s thesis, Technische Universität Wien, 2010.

[16] T. Zlatanov. Language concepts.
https://docs.cfengine.com/docs/3.5/

manuals-language-concepts.html, 2014.

https://docs.puppetlabs.com/learning/ral.html
https://docs.puppetlabs.com/learning/ral.html
http://www.scriptrock.com/blog/puppet-vs-cfengine
http://www.scriptrock.com/blog/puppet-vs-cfengine
http://support.microsoft.com/KB/83386
https://docs.cfengine.com/docs/3.5/manuals-language-concepts.html
https://docs.cfengine.com/docs/3.5/manuals-language-concepts.html

	Introduction
	Configuration file formats
	Properties of configuration files
	INI-file format
	Properties-file format
	XML files as configuration storage
	XML-Comments

	Configuration file parsers
	Apache Commons Configuration
	Augeas
	Disparities

	Configuration management systems
	CFEngine
	Puppet
	Chef
	Comparison

	NixOS' approach to configuration management
	The nix package manager
	NixOS
	Disadvantages

	Conclusion

