
Reconstructing Control Flow from
Predicated Assembly Code

Björn Decker, Saarland University
Daniel Kästner, AbsInt GmbH

Motivation
• Many contemporary microprocessors use instruction-level

parallelism to achieve high performance.
• Predicated instructions provide better performance due to

the elimination of branches and better utilization of
hardware resources: the issue slots of long instruction
words can be filled with (sub-) operations from different
control paths.

• However: predicated instructions make postpass
optimizations more difficult, since the control dependences
have been transformed to data dependences.

• Goal: Precise reconstruction of control flow from assembly
/ executable files for processors with predicated
instructions in a retargetable way.

The PROPAN System
• Retargetable framework for high-quality postpass

optimizations and machine-dependent program
analyses

Advantage of Postpass Approach
• Easy integration into existing tool chains.

• Appropriate format for doing processor-specific
optimizations. This is especially important for processors
with irregular hardware architectures, a feature typical for
embedded processors and DSPs.

• Enhanced optimization potential compared to standard
compiler techniques:
– cross-file optimizations
– optimizations across inline assembly

Control Flow Reconstruction
• Many postpass optimizations requires the control flow

graph of the input program to be known. Examples:
transformations based on dataflow analysis like postpass
instruction scheduling, register renaming, ...

• In order to enable high quality optimizations the CFG has
to be very precise.

• Control flow must be reconstructed from the assembly
code:
– Phase 1: Explicit control flow reconstruction: computing the call

graph, determining targets of direct and indirect jumps. In our
framework based on extended program slicing of
[Kästner,Wilhelm:LCTES02].

– Phase 2: Implicit control flow reconstruction: This article.

Control Flow Reconstruction

• This control flow graph has to be safe: all control paths
of the input program) must be represented in the
reconstructed graph.

• Due to information not statically computable, the
reconstructed control flow graph may contain too many
control flow edges: conservative approximation. (If the
target of a branch is unknown, edges to all potential
targets are inserted.)

• However, the reconstructed graph should be as precise
as possible, i.e. the number of control paths that actually
cannot occur in the input program should be minimized.

Predicated Instructions
Guarded (predicated) Code:
• Each assembly operation is associated with a guard

that determines whether the operation is executed or
not.

• Example: IF r39 iaddi(0x4) r5 -> r34
Adds the immediate value 0x4 to register r5 and stores
results in r34, but only if register r39 evaluates to
TRUE, otherwise, a nop is executed.

• Advantages:
– Improved code density by enabling to fill more issue slots of

the same instruction.
– Reduced number of conditional branch operations.

Predicated Instructions

i0
i1

if (e)

i2
i3

i4
i5

i0
i1

(e) i2 (!e) i4
(e) i3 (!e) i4

T F

CFG issue
slot 1

issue
slot 2

if-conversion +
optimizations

control flow
reconstruction

Precision of Control Flow
Reconstruction for Predicated Code
• Consider two successive long instructions:

(i1) IF r39 iaddi(0x4) r5 -> r34;
(i2) IF !r39 iaddi(0x4) r34 -> r37;

• If the predicates are ignored:
– A data dependence between i1 and i2 wrt r34 has to be assumed:

i1 and i2 cannot be parallelized.
– Assume r5=2, r34=7,r39=1,r37=9 immediately before i1. After i2,

constant propagation yields r34=unknown, r37=unknown.

• If the implicit control flow is reconstructed:
– The conditions r39 and !r39 are disjoint.
– No data dependence between i1 and i2.
– Assume r5=2, r34=7,r39=1,r37=9 immediately before i1. After i2,

constant propagation yields r34=6, r37=9.

Reconstructing Explicit Control Flow

• Input: Assembly code

• Program slicing and value analysis are used to
– reconstruct procedures
– reconstruct intraprocedural control flow via call, return, jump

and branch operations

• Output: roughly reconstructed CFG representing
procedures and explicit control flow

1. For each jump, call, and branch operation assembly
slices are computed containing exactly those operations
influencing the target operand of the jump operation.

2. Assembly slices are evaluated in an abstract manner
yielding an abstract value of the target address.

3. Abstract values of address targets represent sets of
addresses of possible successor operations. Thus, edges
in the CFG are introduced from the jump operation to all
operations residing at addresses of possible successor
operations.

Reconstructing Explicit Control Flow

Reconstructing Implicit Control Flow

• Input: Assembly code of basic blocks in
prereconstructed CFG.

• Examining boolean relations between guard registers.

• Refining control flow graph by arranging operations
according to the relation of their guard registers.

driverdriver

fork
reconstruction

fork
reconstruction

join
reconstruction

join
reconstruction

evaluation of
operation semantics

evaluation of
operation semantics

prereconstructed
CFG

prereconstructed
CFG

reconstructed
CFG

reconstructed
CFG

basic block b

tree representing forks

partial CFG for replacing b

operation +
environment

updated
environment

Reconstructing Implicit Control Flow

Fork Reconstruction (Input)

• Input: basic block.
• From now on: TriMedia TM1000 as

example processor.
• Instructions have five issue slots

filled with so-called operations.
• Registers r1 and r0 are hardwired

to 1 resp. 0.
• Processor implements the least-

significant-bit truth-value
representation, i.e. the least
significant bit of register contents
indicate whether it is interpreted as
true or false.

(r1) r9 := r8 > r0
(r1) r6 := r8 <= r0
(r1) r7 := r1 + r0
(r1) nop
(r1) nop

(r6) r8 := r7 + r0
(r9) r8 := r7 + r0
(r1) nop
(r1) nop
(r1) nop

(r8) r5 := r0 + r1
(r1) nop
(r1) nop
(r1) nop
(r1) nop

Fork Reconstruction

• During fork reconstruction a block tree is created representing forks
of the control flow of the input block.

• Successively arrange instructions in leaf blocks of the tree:
– Examine whether each guard of the instruction uniformly evaluates to

true or false in a certain leaf block.
– Whenever a guard register does not uniformly evaluate: introduce two

new successors for this block and restrict their environments. In one of
them the violating guard register has to evaluate to true; in the other it
must be false. Then the new blocks are considered for instruction
arrangement.

– Otherwise, the instruction is placed into the block. Operations whose
guard evaluates to false are replaced by nop-operations.

Fork Reconstruction Example (1)

(r1) r9 := r8 > r0
(r1) r6 := r8 <= r0
(r1) r7 := r1 + r0
(r1) nop
(r1) nop

(r6) r8 := r7 + r0
(r9) r8 := r7 + r0
(r1) nop
(r1) nop
(r1) nop

(r8) r5 := r0 + r1
(r1) nop
(r1) nop
(r1) nop
(r1) nop

Input block Block tree

(r1) r9 := r8 > r0
(r1) r6 := r8 <= r0
(r1) r7 := r1 + r0
(r1) nop
(r1) nop

Fork Reconstruction Example (2)

(r1) r9 := r8 > r0
(r1) r6 := r8 <= r0
(r1) r7 := r1 + r0
(r1) nop
(r1) nop

(r6) r8 := r7 + r0
(r9) r8 := r7 + r0
(r1) nop
(r1) nop
(r1) nop

(r8) r5 := r0 + r1
(r1) nop
(r1) nop
(r1) nop
(r1) nop

(r1) r9 := r8 > r0
(r1) r6 := r8 <= r0
(r1) r7 := r1 + r0
(r1) nop
(r1) nop

r6 is neither
true nor false

Fork Reconstruction Example (3)

(r1) r9 := r8 > r0
(r1) r6 := r8 <= r0
(r1) r7 := r1 + r0
(r1) nop
(r1) nop

(r6) r8 := r7 + r0
(r9) r8 := r7 + r0
(r1) nop
(r1) nop
(r1) nop

(r8) r5 := r0 + r1
(r1) nop
(r1) nop
(r1) nop
(r1) nop

(r1) r9 := r8 > r0
(r1) r6 := r8 <= r0
(r1) r7 := r1 + r0
(r1) nop
(r1) nop

r6 true r6 false

Fork Reconstruction Example (4)

(r1) r9 := r8 > r0
(r1) r6 := r8 <= r0
(r1) r7 := r1 + r0
(r1) nop
(r1) nop

(r6) r8 := r7 + r0
(r9) r8 := r7 + r0
(r1) nop
(r1) nop
(r1) nop

(r8) r5 := r0 + r1
(r1) nop
(r1) nop
(r1) nop
(r1) nop

(r1) r9 := r8 > r0
(r1) r6 := r8 <= r0
(r1) r7 := r1 + r0
(r1) nop
(r1) nop

r6 true r6 false

(r6) r8 := r7 + r0
(r1) nop
(r1) nop
(r1) nop
(r1) nop

(r1) nop
(r9) r8 := r7 + r0
(r1) nop
(r1) nop
(r1) nop

Fork Reconstruction Example (5)

(r1) r9 := r8 > r0
(r1) r6 := r8 <= r0
(r1) r7 := r1 + r0
(r1) nop
(r1) nop

(r6) r8 := r7 + r0
(r9) r8 := r7 + r0
(r1) nop
(r1) nop
(r1) nop

(r8) r5 := r0 + r1
(r1) nop
(r1) nop
(r1) nop
(r1) nop

(r1) r9 := r8 > r0
(r1) r6 := r8 <= r0
(r1) r7 := r1 + r0
(r1) nop
(r1) nop

r6 true r6 false

(r6) r8 := r7 + r0
(r1) nop
(r1) nop
(r1) nop
(r1) nop

(r1) nop
(r9) r8 := r7 + r0
(r1) nop
(r1) nop
(r1) nop

(r8) r5 := r0 + r1
(r1) nop
(r1) nop
(r1) nop
(r1) nop

(r8) r5 := r0 + r1
(r1) nop
(r1) nop
(r1) nop
(r1) nop

Join Reconstruction

• A join of control flow after two instructions exists iff they are
indistinguishable with regard on leaving control flow paths.

• The following algorithm is used to recognize control flow joins in
the result of the fork reconstruction phase:
– For every pair of instruction instances (instructions in the tree that are

created from the same instruction of the input block), determine
whether the sets of paths reaching instances of the last instruction are
equivalent.

– Sets of paths A, B are equivalent iff for each path in A there is a path
in B that contains equivalent instruction instances and vice versa.

– Whenever such a pair is found we unify the subpaths after the two
instructions.

Join Reconstruction Example

(r1) r9 := r8 > r0
(r1) r6 := r8 <= r0
(r1) r7 := r0 + r1
(r1) nop
(r1) nop

(r1) nop
(r9) r8 := r7 + r0
(r1) nop
(r1) nop
(r1) nop

(r6) r8 := r7 + r0
(r1) nop
(r1) nop
(r1) nop
(r1) nop

(r8) r5 := r0 + r1
(r1) nop
(r1) nop
(r1) nop
(r1) nop

(r1) r9 := r8 > r0
(r1) r6 := r8 <= r0
(r1) r7 := r1 + r0
(r1) nop
(r1) nop

(r6) r8 := r7 + r0
(r1) nop
(r1) nop
(r1) nop
(r1) nop

(r1) nop
(r9) r8 := r7 + r0
(r1) nop
(r1) nop
(r1) nop

(r8) r5 := r0 + r1
(r1) nop
(r1) nop
(r1) nop
(r1) nop

(r8) r5 := r0 + r1
(r1) nop
(r1) nop
(r1) nop
(r1) nop

can be
unified

Instruction Semantics Evaluation
• The domain used in our analysis contains concrete (e.g. 0, 1, 1.0,...)

and abstract values (e.g. true, false, not(.), or(.,.),...).

• Abstract values reflect boolean and arithmetic relations between
registers. Based on those relations guard registers belonging to
disjoint control paths are identified.

• In our analyses memory cells are supposed to contain unknown
values.

• The truth-value representation implemented by the processor
significantly impacts instruction semantic evaluation (see examples).

Instruction Semantics Evaluation

• In order to achieve maximum precision our evaluation
process is divided into two parts:

– Target-independent, generic evaluation: Applies whenever an
operation has only concrete operands.

– Machine-dependent, generative evaluation (generated from the
TDL machine description of the target processor).

Instruction Semantics Evaluation
(Examples)

r2 → false
r3 → 1

r2 < r3 ⇒ true

r2 → false
r3 → 1

r2 < r3 ⇒ unknown

r2 → 3
r3 → 4

r2 < r3 ⇒ true

r2 → true
r3 → 1

r2 + r3 ⇒ true*

r2 → true
r3 → 1

r2 + r3 ⇒ false

r2 → 3
r3 → 4

r2 + r3 ⇒ 7

Zero
(true iff different from 0)

Least- significant-bitGeneric

*: unless an overflow occurs

Experimental Results
Target processor: Philips TriMedia TM1000
Compiler: Philips tmcc (at highest optimization level)
Input files: DSPSTONE Benchmark

Experimental Results

Conclusion
• We presented an algorithm for precisely refining the

prereconstructed control flow graph:
– Phase 1: Detecting forks by extensive value analysis.
– Phase 2: Reconstructing joins by identifying common subpaths.
– At the end: implicit control flow has been made explicit.

• The algorithm is generic: all required information (e.g.
instruction semantics) is taken from the TDL description
of the target processor.

• The algorithm is based on a symbolic evaluation of
instruction semantics taking into account the truth value
representation of the target processor.

Conclusion
• Experimental results show that the precision of the reconstructed

control flow is significantly higher than with approaches not taking
predicated instructions into account.

• The experiments confirm the applicability of reconstruction algorithm
for typical applications of digital signal processing.

• However: the worst-case complexity is exponential! This is due to the
creation of new forks when contents of predicate registers are
unknown.

• Future Work:
– Refined value analysis based on memory disambiguation.
– Further target architectures.

