S74

FICO
a Fast Instruction Cache Optimizer

Author: Marco Garatti
Presented by: Roberto Costa

Advanced System Technology

STMicroelectronics

M otivations

2 Instruction cache (icache) misses can
drastically decrease code performance

2~ The problem is even more important for 1-level
direct mapped caches

2 0n Lx ST210 the icache slows down the code
by about 14.3% on our BenchSuite

e 177

Goals and Requirements

= Improvement of icache performance for
programs compiled by our industrial compiler

2~ No dynamic program profiling must be
necessary

= No program size increase

e 1S77

Cache Miss Classification

& Compulsory: the very first access to a block cannot be
in the cache, so the block must be brought into the
cache. These are also called cold start misses or first
reference misses

& Capacity: if the cache cannot contain all the blocks
needed during execution of a program, capacity misses
will occur because of blocks being discarded and later
retrieved

& Conflict: if the block placement strategy is set
associative or direct mapped, conflict misses (in
addition to compulsory and capacity misses) will occur
because a block can be discarded and later retrieved if
too many blocks map to its set. These are also called

collision misses r
AOVANGED SYSTEM TECHNOLOGY N/ 4

How to Decrease Misses

& Compulsory misses cannot be avoided

& Capacity misses can be decreased using
two basic ideas:
- Increasing the icache size
- Decreasing the code size

= Conflict misses can be decreased by an
appropriate layout of the program code

FICO Main Features

L7Focuses on conflict misses only
/Works at function level (by reordering them)

/Relies on estimated execution profile
information

/Is implemented as a linking tool

Z It is usable in an industrial compiler since it is
fast and it does not require any program
execution to gather profiling information

= The achieved performance speed-up is about
50% of the maximum achievable
1S7]

ADVANCED SYSTEM TECHNOLOGY

Compilation Flow

CSource 1) CSource >

> o
i

ADVANCED SYSTEM TECHNOLOGY

J

Algorithm Outline

= The algorithm heuristically determines a
function order to minimize function conflicts

= The order is computed by analyzing the call
graph annotated with call frequencies

2 The algorithm has a precise knowledge of the
icache structure

e 1S77

Algorithm Steps

1. Compute the program call graph
2. Prune the call graph

3. Propagate local frequencies to derive global
profiling information

4. Compute interesting neighbors of call-graph
nodes

5. Generate an “optimal” function layout

T 1S77

Step 1: Call Graph

= The call graph is built through a linear scan of
the program code (only direct calls are considered)

= For each call site the compiler creates an entry
into an appropriate section with the local
estimated call execution frequency*

2~ The final graph is annotated with a local
execution frequency on each edge

* Execution frequencies are floating point numbers

e 1S77

Step 2: Graph Pruning

2~ The graph is pruned to speed up the overall
algorithm performance (edges with execution
frequency under a given threshold are deleted)

2 Nodes without parents (all but main) are
deleted

2 Cycles in the graph are destroyed. This makes
the graph a DAG. Each node that was in a
loop will have its frequency increased

AR SYSTEN TEGOLoT Iyl

Step 3: Global Frequencies

G(P)=% G(p)*L(p,P
1 20 (P)=Z sy G (P)*L(P,P)

G(P) is the global frequency of P 40
(how many times P is entered)

L(P1,P2) is the local frequency of

the edge P1 - P2

Step 4. Computation of
Neighbors

= Each node in the call graph has a set of
interesting neighbors associated IF(N)

=~ Node B is an interesting neighbor for node A if
their conflict can affect performance

= IF(N) is estimated including some of the
closest relatives of N

= Depending on the call graph size, IF(N) size is
tuned to let the algorithm be fast enough

T e 1S77

Neighbors: Example

This example shows 3

possible neighbors for

node P4. The number of
neighbors can be extended

to include grandparents,
grandchildren, cousins and other
relatives

Each neighbor has a conflict
cost associated. The closer the
two nodes, the higher this cost.
The cost is also proportional to
the number of times the two
functions may conflict

e 177

Step 5: Layout Computation

= Edges are sorted on their global frequency

= Tail and head of heavy edges are placed one
close to each other

= Nodes are placed in the spot that minimizes
the conflict cost

T e 1S77

Function Placement

£(=20,00) F2(-20,20) F1(0,50) £(50,30) F3(50,10) &(50,0)

The memory layout is modelled by blocks of these types:
Functions, with an offset and a size
Empty blocks, with an offset and a maximum size (coil

When a pair of functions need to be placed all the empty slots
are scanned and for those big enough to accommodate the
functions a placement cost is computed.

e 177

Cost Computation

€(~20,00) F2(-20,20) F1(0,50) £(50,30) F3(50,10) £(50,00)

FA(?,20)F5(?,20)

= Each empty slot big enough to accommodate
F4 and F5 is checked

= Each interesting neighbor of F4 (F5) that is
already placed and that conflicts with F4 (F5)
gives a contribution proportional to their
conflicting frequency and distance

e 1S77

Coail Size Computation

2 Each time a function is placed, the coil
maximum size must be recomputed

= Let F be the function being placed. Each coil
laid between F and one of the non-conflicting
nodes in IF(F) is resized to ensure that they
will not conflict

Prosand Cons

~ Pros
- No execution profiling information is required
- Fast execution

~ Cons

- Relies on the call graph. If it cannot be precisely
built the algorithm is not effective (indirect function
calls, system calls)

+ No temporal information is taken into account

T e 1S77

Experiments

= Experiments used the Lx ST210 icache model:

« 1llevel
- Direct access
- 32K size

« 64-byte line size

2 Miss delay set as a typical one for an embedded
system configuration

= BenchSuite includes multimedia applications and “go”
as general-purpose application

e 177

| cache Impact

Benchmark NoCache Cache-No Opt Cache Impact Compulsory ~ Comp Impact Comp+CapComp+Cap Impac

Adpem 174 17 97.7% 17 97.7% 17 97.7%
Copymark 384 369 96.1% 3718 98.45% 365 95.1%
Crypo 159 153 96.2% 158 99.45% 158 99.4%
csc 348 345 99.1% 345 99.15% 345 99.1%
Dhry 081 071 87.7% 071 87.7% 071 87.7%
Go 126 073 57.9% 115 913% 093 738%
MpZaudio 162 149 920% 157 96.9% 151 93.2%
Mp2vioop 521 457 87.7% 502 96.4% 502 96.4%
Mp2avswich 239 202 845% 231 96.7% 23 96.2%
233 182 781% 221 948% 221 948%

peg: 373 253 678% 357 95.7% 356 95.4%

Opendivk 343 264 77.0% 32 93.3% 32 93.3%
Tipeg 51 469 920% 482 945% 482 945%
Aith Mean 2810 2428 a57% 2608 ossn 2665 (936%)
N~

Legenda:

NoCache: perfect cache Conflict misses

Cache No Opt: real icache, default layout optimization
Compulsory: effect of compulsory misses
Comp+Cap: effect of compulsory and capacity misses upper bound

T e 1S77

FICO Impact (ST210)

Benchmark NoCache Cache-NoOpt IcacheOpt Cache Impact Speedup of FIXO
Adpem 174 17 17 97.79% 1000%
Copymark 384 369 368 958% 99.7%
Crypto 159 153 156 98.1% 102.0%
csc 348 345 345 99.1% 1000%
Dhry 081 071 071 87.7% 1000%
Go 126 073 074 587% 1014%
Mp2audio 162 149 151 93.2% 1013%
Mpvioop 521 457 502 96.4% 1098%
Mp2avswitch 239 202 221 925% 109.4%
Mpadec 233 182 214 918% 117.6%
Mpeg2 373 253 268 718% 105.9%
Opendivx 343 264 301 87.8% 1140%
Tineg 51 469 466 99.4%

Avrith Mean 2810 2428 2544

Gassend

Upper bound is 93.6%
and initially it was 85.7%

Average speed-up

e 177

Future Developments

=7 Other placement algorithms can be
investigated

2 Use of real profile information

2 Tuning on the placement algorithm
performance

