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Abstract. Computational fluid dynamics (CFD) is a Grand Challenge
discipline whose typical application areas, like aerospace and automoti-
ve engineering, often require enormous amount of computations. Parallel
processing offers very high performance potential, but irregular problems
like CFD have proven difficult to map onto parallel machines. In such
codes, access patterns to major data arrays are dependent on some run-
time data, therefore runtime preprocessing must be applied on critical
code segments. So, automatic parallelization of irregular codes is a chal-
lenging problem. In this paper we describe parallelizing techniques we
have developed for processing irregular codes that include irregularly
distributed data structures. These techniques have been fully implemen-
ted within the Vienna Fortran Compilation System. We have examined
the AVL FIRE benchmark solver GCCG, to evaluate the influence of
different kinds of data distributions on parallel-program execution time.
Experiments were performed using the Tjunc dataset on the iPSC/860.

1 Introduction

Computational Fluid Dynamics (CFD) is a Grand Challenge discipline which
has been applied as a successful modelling tool in such areas as aerospace and
automotive design. CFD greatly benefits from the advent of massively parallel
supercomputers [12]. On the close cooperation between researchers in CFD and
specialists in parallel computation and parallel programming, successful CFD
modelling tools were developed. This paper deals with the automatic paralleli-
zation of the FIRE solver benchmark developed at AVL Graz, Austria.

The CFD software FIRE is a general purpose computational fluid dynamics
program package. It was developed specially for computing compressible and in-
compressible turbulent fluid flows as encountered in engineering environments.
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Two- or three-dimensional unsteady simulations of flow and heat transfer within
arbitrarily complex geometries with moving or fixed boundaries can be perfor-
med.

For the discretization of the computational domain a finite volume approach 1is
applied. The resulting system of strongly coupled nonlinear equations has to be
solved iteratively. The solution process consists of an outer non-linear cycle and
an inner linear cycle. The matrices which have to be solved in the linear cycle
are extremely sparse and have a large and strongly varying bandwidth. In order
to save memory, only the non-zero matrix elements are stored in linear arrays
and are accessed by indirect addressing.

Automatic parallelization of irregular codes like FIRE is a challenging problem.
In irregular codes, the array accesses cannot be analyzed at compile time to
determine either independence of these or to find what data must be pre-fetched
and where it is located. Therefore, the appropriate language support is needed,
as well as compile time techniques relying on runtime mechanisms. The Vienna
Fortran (VF) language [14] provides several constructs to deal efficiently with
irregular codes. These include constructs for specifying irregular distributions
and for explicitly specifying asynchronous parallel loops (FORALL loops).

We have transformed one benchmark solver (GCCG, orthomin with diagonal
scaling [1]) of the AVL FIRE package to VF and parallelized it by the Vien-
na Fortran Compilation System (VFCS). Because, access patterns to data
arrays of the inner cycle are not known until runtime, a parallelization method
based on the combination of compile time and runtime techniques has been ap-
plied.

In Section 2 the method and data structures of the GCCG program are dis-
cussed. Section 3 describes the data structures as they are specified by VF. We
focus on the selection of the appropriate data and work distribution for irregular
code parts. We elaborated two versions of the program. In the first version, the
INDIRECT data distribution was specified for the data arrays accessed in the
irregular code parts, and in the second one, all arrays got BLOCK data distri-
butions. The mapping array used for the irregular distribution was determined
by an external partitioner. Section 3 also describes the automatic parallelization
strategy which the VFCS applies to irregular codes and the interface to runtime
support. Performance results for the Tjunc dataset achieved for both GCCG
program versions on the Intel iPSC/860 system are discussed in Section 4. The
rest of the paper deals with related work (Section 5), followed by the conclusion
(Section 6). Concepts described in this paper can be used in the compiler of any
language that is based on the same programming model as VF.

2 Survey of the GCCG solver

The FIRE benchmark consists of solving the linearized continuity equation with
selected input datasets using the unstructured mesh linear equation solver GC-
CG. Each dataset contains coefficients, sources, and the addressing array inclu-



ding linkage information. The numerical solution to differential equation descri-
bing the transport of a scalar variable @ is performed with the finite volume
method. For the discrete approximation the computational domain is subdivi-
ded into a finite number of hexahedral elements, the control volumes or internal
cells. A compass notation is used to identify the interconnections between the
centres of the control volumes (E=East, W=West, etc.). Integrating over the
control volumes results in a system of non-linear algebraic equations:
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where the pole coefficient A, can always be written as the sum of the neighbour
coefficients in different directions. Due to the locality of the discretisation me-
thod equation (1) represents an extremely sparse system of algebraic equations
which has to be solved iteratively. The solution process consists of an outer cycle
dealing with the non-linearities and an inner cycle dealing with the solution to
the linearized equation systems. In particular, the outer cycle is designed to up-
date the coefficients and sources from the previous iterations in order to achieve
strong coupling between momentum and pressure. The innermost cycle consists
of solving the linear equation systems:

A® =Sy (2)

for every flow variable @. The main diagonal of A consists of the pole coefficient
Ap, and the sidebands of A are obtained from the neighbouring node coefficients
Ac of (1). Both, the coefficients and the sources are kept constant during the
iterative solution steps. To solve the linear equation system the truncated Krylov
subspace method Orthomin is used [13].

The solution process stops when the ratio of the residual vector R™ at iteration
n and the residual vector R? at iteration 0 falls below a small value e :
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For boundary conditions an additional layer of infinitely thin cells is introduced
around the computational domain, called eziernal cells.

Flow variables, coefficients and sources associated with each cell are held in 1-
dimensional arrays of two different sizes: one size corresponds to the number of
internal cells (parameter NNINTC), and the second size corresponds to the to-
tal number of cells, internal plus external cells (parameter NNCELL). These two
kinds of arrays are related with each other in such a way that the first portion of
the bigger arrays (including internal cells), is aligned with the smaller arrays. To
determine the interconnection of cells (links cell-centre to cell-centre) an indirect
addressing scheme is used whereby a unique number, the address, is associated
with each cell. These linkage information is stored in the 2-dimensional array
LCC, where the first index stands for the actual cell number and the second
index denotes the direction to its neighbouring cell. The value of LCC(cell num-
ber, direction) is the cell number of the neighbouring cell. All calculations in



the solver GCCG are carried out over the internal cells. External cells can on-
ly be accessed from the internal cells, no linkage exists between the external cells.

3 Automatic Parallelization of GCCG

Initially, the sequential code of the GCCG solver has been ported to the VF
code. Declarations of arrays with distribution specifications and the main loop
within the outer iteration cycle is outlined in Figure 1. This code fragment will
be used as a running example to illustrate our parallelization method.

PARAMETER :: NP = ...
PARAMETER :: NNINTC = 13845, NNCELL = 19061
PROCESSORS P1D(NP)
DOUBLE PRECISION, DIMENSION (NNINTC), &
DISTRIBUTED (BLOCK ) :: BP, BS, BW, BL, BN, BE, BH, &
DIREC2, RESVEC, CGUP
INTEGER, DISTRIBUTED (BLOCK, :) :: LCC(NNINTC, 6)
S1 DOUBLE PRECISION, DIMENSION (NNCELL), DYNAMIC : &
DIREC1, VAR, DXOR1, DXOR2
$2 INTEGER, DISTRIBUTED (BLOCK ) :: MAP(NNCELL)

S3 READ (u) MAP
S4 DISTRIBUTE DIRECI, VAR, DXOR1, DXOR2 :: INDIRECT (MAP)

F1 FORALL nc =1, NNINTC ON OWNER (DIREC2(nc))

)
DIRECZ(nc) = BP(nc) * DIRECI(nc) &
— BS(nc¢) * DIRECL(LCC(nc, 1)) &
~ BW(nc) * DIRECL(LCC(nc, 4)) &
— BL(nc) * DIRECI(LCC(nc, 5)) &
~ BN(nc) + DIRECL(LCC(nc, 3)) &
~ BE(n¢) * DIRECI(LCC(nc, 2)) &
— BH(nc) = DIRECI(LCC(nc 6))

END FORALL

Fig. 1. Kernel loop of the GCCG solver

Arrays DIREC1, VAR, DXOR1 and DXOR2 are distributed irregularly using
the INDIRECT distribution function with the mapping array MAP which is
initialized from a file referred to as mapping file; the remaining arrays have got

the BLOCK distribution.
The mapping file has been constructed separately from the program through the



Domain Decomposition Tool (DDT) [8] employing the recursive spectral bisec-
tion partitioner. The DDT inputs the computational grid corresponding to the
set of internal cells (see Figure 2), decomposes it into a specified number of par-
titions, and allocate each partition to a processor. The resulting mapping array
is then extended for external cells in such a way that the referenced external cells
are allocated to that processor on which they are used, and the non-referenced
external cells are spread in a round robin fashion across the processors. Arrays
VAR, DXOR1 and DXOR2 link DIREC1 to the code parts that don’t occur in
Figure 1.
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Fig. 2. Flow of Data in Compilation and Execution Phases

The code version that only includes regular distributions is simply derived from
Figure 1 by replacing the keyword DYNAMIC in statement S1 by the distri-
bution specification: DISTRIBUTED(BLOCK), and removing statements S2,
S3 and S4. The main loop (F1) within the outer iteration cycle computes a new
value for every cell by using the old value of this cell and of its six indirectly
addressed neighbored cells. This loop has no dependences and can be directly
transformed to the parallel loop. Work distribution ON OWNER(DIREC2(nc))
ensures that communications are caused only by the array DIREC1. The remai-
ning loops, with exception of the one that updates the DIREC1, perform either
calculations on local data only or global operations (global sums).

In the rest of this section, we first describe the parallelization strategy applied
to the code version from Figure 1 and then briefly discuss simplifications applied
when processing the code containing regularly distributed arrays only. Our ap-



proach is based on a model that is graphically sketched in Figure 2. The method
applied by DDT is outlined on the previous page. The strategy used by the VF-
CS generates four code phases for the above kernel, called the constructor of
data distribution descriptors (CDDD), work distributor, inspector, and
executor [10]. CDDD constructs a runtime distribution descriptor for each ir-
regularly distributed array. The work distributor determines how to spread the
work (iterations) among the available processors. The inspector analyzes the
communication patterns of the loop, computes the description of the commu-
nication, and derives translation functions between global and local accesses,
while the executor performs the actual communication and executes the loop
iterations. All the phases are supported by the appropriate runtime library that
is based on the PARTI library developed by Saltz and his coworkers [7].

INTEGER. :: MAP(local™#” size)

INTEGER.,, DIMENSION :), POINTER. :: local ?T#EC? ocal PTRECT gipe
TYPE (TT_EL_TYPE), DIMENSION:), POINTER :: tt?7#E?

TYPE (DIST_DESC) :: ddprrrci

C——Constructing local index set for DIREC] using the MAP values
CALL build_TLocal(ddarap, MAP, local PTRECT ocal PTRECT gize)
C——Constructing translation table for DIRECI1
ttPTRECT — build_TRAT (local T *ECT gige, local PTRECT)

C——Constructing runtime distribution descriptor for DIRECI1

ddprrrci%local = local PTRECT

10Ca1DIRECl

ddprreci %local_size = _size

ddprruc1%tt = ttPTRECT

... initialization of other fields of ddprrEc1

Fig.3. CDDD for array DIREC1

3.1 Constructor of Data Distribution Descriptors (CDDD)

For each irregularly distributed array A and in each processor p, CDDD con-
structs the runtime distribution descriptor dda(p) which includes information
about: shape, alignment and distribution, associated processor array, and size of
the local data segment of A in processor p. In particular, it includes the local
index set local?(p) and the translation table ##%. The set local?(p) is an orde-
red set of indices designating those elements of A that have to be allocated in a
particular processor p. The translation table ¢4 is a distributed data structure
which records the home processor and the local address in the home processor’s
memory for each array element of A. Only one distribution descriptor is con-
structed for a set of arrays having the same distribution. The construction of



ddprreci (it also describes the distribution of VAR, DXOR1 and DXOR2) is
illustrated by Figure 3. On each processor p, the procedure build_Local compu-
tes the set localPTRECY(p) and its cardinality denoted by variables localPTRECT
and localPTRECY size respectively. These two objects are input arguments to the
PARTI function build T RAT that constructs the translation table for DIRECT
and returns a pointer to it.

3.2 Work Distributor

On each processor p, the work distributor computes the ezecution set exec(p),
i.e. the set of loop iterations to be executed on processor p.
For the GCCG kernel loop in Figure 1, the execution set can be determined by
a simple set operation (see [2]):

exec(p) = [l : NNINTC] N localPTREC(p)
VF provides a wide spectrum of possibilities for the work distribution specifica-
tion. The appropriate techniques for processing individual modes are described

in [3, 4, 5, 6].

3.3 Imspector, Executor, and PARTI support

The inspector performs a dynamic loop analysis. Its task is to describe the
necessary communication by a set of so called schedules that control runtime
procedures moving data among processors in the subsequent executor phase.
The dynamic loop analysis also establishes an appropriate addressing scheme to
access local elements and copies of non-local elements on each processor. The
inspector generated for the GCCG kernel loop is introduced in Figure 4.
Information needed to generate a schedule, to allocate a communication buffer,
and for the global to local index conversion for the rhs array references can be
produced from the appropriare global reference lists, along with the knowledge
of the array distributions. Each global reference list globref; is computed from
the subscript functions and from ezec(p)? (see lines G1-G16 of Figure 4). The
list globref;(p), its size and the distribution descriptor of the referenced array
are used by the Parti procedure localize to determine the appropriate schedule,
the size of the communication buffer to be allocated, and the local reference
list locref;(p) which contains results of global to local index conversion. The
declarations of rhs arrays in the message passing code allocate memory for the
local segments holding the local data and the communication buffers storing
copies of non-local data. The buffers are appended to the local segments. An
element from locref; (p) refers either to the local segment of the array or to the
buffer. The procedure ind_conv performs the global to local index conversion for
array references that don’t refer non-local elements.

The executor is the final phase in the execution of the FORALL loop; it per-
forms communication described by schedules, and executes the actual computa-
tions for all iterations in ezec(p). The schedules control communication in such a

2 In Figure 4, ezec(p)and its cardinality are denoted by the variables ezec and ezec_size
respectively.



C——INSPECTOR code

C——Constructing global referece list for the 1st dimension of LCC
Gl nl=1

G2 DO k=1, exec_size

G3 globrefl(nl) = exec(k); n1 =nl + 1

G4 END DO

C——Index Conversion for LCC having the data distribution desc. dd_1

CALL ind_conv (dd-1, globrefl, locrefl, n1-1)

C——Constructing global reference list for DIREC1 and
C--DIREC2, BP, BS, BW, BL, BN, BE, BH

G5 nl=1mn2=1n3=1
G6 DO k=1, exec_size

G7 globref2(n2) = exec(k); n2 =n2 + 1
G8 globref3(n3) = exec(k)
G9 globref3(n3+1) = LCC(locrefl(n1),1)

G10 globref3 n3—|—2) = LCC
G11 globref3 n3—|—3) = LCC(locrefl nl) 5)

( locref1(n1),4)
( (
G12 globref3(n3—|—4) = LCC locrefl(nl) 3)
( (
( (

Pty

G13 globref3 n3—|—5 = LCC(locrefl(nl

G14 globref3(n3+6) = LCC(locrefl(nl

G15 n3=n3 4+ 7;nl =nl +1

G16 END DO

C——Index Conversion for DIREC2, BP, BS, BW, BL, BN, BE, BH

C——having the common data distribution descriptor dd_2
CALL ind_conv (dd-2, globref2, locref2, n2-1)

C——Computing schedule and local reference list for DIREC1
CALL localize(ttPT#FC? sched3, globref3, locref3, n3-1, nonloc3)

C——EXECUTOR code

C——Gather non-local elements of DIRECI1
CALL gather(DIREC1(1), DIREC1(local®"*E€? size+1), sched3)
C——Transformed forall loop
n2=1;n3 =1
DO k=1, exec_size
DIREC2(locref2(n2)) = BP(locref2(n2)) * DIREC1(locref3(n3)) &
— BS(locref2(n2)) * DIRECI(locref3(n3+1)) &
— BW(locref2(n2)) * DIREC1(locref3(n3+2)) &
— BL(locref2(n2)) * DIREC1(locref3(n3+3)) &
— BN(locref2(n2)) * DIRECI1(locref3(n3+4)) &
— BE(locrefZ(n2)) * DIREC1(locref3(n3+5)) &
— BH(locref2(n2)) * DIRECI(locref3(n3+6))
n2=n2+1;n3=n3+4+7
END DO

Fig. 4. Inspector and Executor for the GCCG kernel loop



way that execution of the loop using the local reference list accesses the correct
data in local segments and buffers. Non-local data needed for the computations
on processor p are gathered from other processors by the runtime communica-
tion procedure gather®. It accepts a schedule, an address of the local segment,
and an address of the buffer as input arguments.

4 Performance Results

This section presents the performance of the automatically parallelized bench-
mark solver GCCG for two types of data distribution: the regular BLOCK, and
the irregular distribution according to the mapping array. The generated code
was slightly optimized by hand in such a way that the inspector was moved out
of the outer iteration cycle, since the communication patterns do not change
between the solver iterations.

Dataset: TJUNC

Number of internal cells: 13845
Number of total cells: 19061
Number of solver iterations: 338

|| Sequential code ||

Number of Processors Time (in secs)
1 43.47
|| Parallel code ||
Number of Processors Time (in secs)
Data Distr: BLOCK | Data Distr: INDIRECT
4 30.25 27.81
8 24.66 19.50
16 22.69 13.50

Table 1. Performance results of the GCCG solver

We examined the GCCG using the input dataset Tjunc, with 13845 internal cells
and 19061 total number of cells. Calculation stopped after the 338 iterations.
The program has been executed on the iPSC/860 system, the sequential code
on 1 processor, the parallel code on 4, 8, and 16 processors. The results are
sumarized in the Table 1. Figure 5 shows the speedup defined by the ratio of the

3 If necessary, space for the local segment and buffer is reallocated prior to the gather
call, depending on the current size of the segment and the number of non-local
elements computed by localize.



single processor execution time 7T, to the multi-processor execution time Ty,
where np stands for the number of processors.

GCCG solver: Tjunc

4.0
GC—=© Distr: INDIRECT
—+1 Distr: BLOCK
3.0 F J
o
=}
8 20+ .
o
7]
1.0 + A
00 L L L L L L L L
0 4 8 12 16

Number of Processors

Fig.5. Speedup of the GCCG solver

5 Related Work

Solutions of many special cases of the problems discussed in this paper appeared
in the literature. Koelbel [10] introduces the term inspector/executor for proces-
sing irregular data-parallel loops. PARTI [7] has been the first runtime system
constructed to support the handling of irregular computations on massively par-
allel systems on the basis of the inspector/executor paradigm. Van Hanxleden [9]
developes a method for optimizing communication placement in irregular codes.
Techniques developed for automatic coupling parallel data and work partitioners
are described in [6, 11].

6 Conclusions

Our experiments have shown that in irregular codes like the AVL FIRE Bench-
mark it 1s advantageous to use irregular distributions. There are many heuristic
methods to obtain irregular data distribution based on a variety of criteria;
different partitioners that have been developed in the last years offer the imple-
mentation of those methods. VFCS automatically generates interface to external



and on-line partitioners on the basis of the information provided by the user and
derived by the compile time program analysis. This paper described the auto-
matic parallelization method based on the utilization of the external partitioner.
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