
 
 
 

Optimizing Data-Parallel Programs for Clusters of SMPs1 
 

Siegfried Benkner, Maria Lucka, Viera Sipkova 
 

Institute for Software Science 
University of Vienna 

Austria 
 
 

Abstract. 
High Performance Fortran (HPF) is a high-level data-parallel programming language which 
has been designed mainly for distributed-memory parallel computers. We present extensions 
of HPF for clusters of shared-memory multiprocessors and outline a hybrid parallelization 
strategy, efficiently combining distributed-memory with shared-memory parallelism. 
 
 

1 Introduction 
 
Clusters of (symmetric) shared-memory multiprocessors (SMPs) have become the most 
promising parallel computing platforms for scientific computing. Examples of such systems 
include multiprocessor clusters from SUN, SGI, IBM, a variety of multi-processor PC 
clusters, supercomputers like the NEC SX-5 or the future Japanese Earth Simulator and the 
ASCI White machine. SMP clusters consist of a set of multi-processor compute nodes 
connected via a high-speed interconnection network. While processors within a node have 
direct access to a shared memory, accessing data located on other nodes has to be realized by 
means of message-passing. As a consequence, the complexity of user applications 
development is significantly increased, forcing programmers to deal with shared-memory 
programming issues such as multi-threading and synchronization, as well as with distributed-
memory issues such as data distribution and message-passing communication. 

There are mainly two trends in parallel programming, depending on how the address 
space of parallel systems is organized. On the one hand, the standard application 
programming interface (API) for message-passing, MPI[13], is widely used, mainly for 
distributed-memory systems. On the other hand, a standard API for shared-memory parallel 
programming, OpenMP[15], has recently become available. While OpenMP is restricted to 
shared-memory architectures only, MPI programs can also be executed on shared-memory 
machines and clusters. However, MPI programs that are executed on clusters of SMPs usually 
do not directly utilize the shared-memory available within nodes and thus may miss a number 
of optimization opportunities. 

A promising approach for parallel programming attempts to combine MPI and 
OpenMP in a single application [6][9][10]. Such a strategy attempts to fully exploit the 
potential of SMP clusters by relying on data distribution and explicit message-passing 
between the nodes of a cluster, and on shared-memory and multi-threading within the nodes. 
While such an approach allows optimizing parallel programs by taking the hybrid architecture 
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of SMP clusters into account, applications written in such a way tend to become extremely 
complex. 

In contrast to MPI and OpenMP, High Performance Fortran (HPF) [11] is a high-level 
parallel programming language which can be employed on both distributed-memory and 
shared-memory machines. Although HPF programs can be compiled for clusters of SMPs, the 
language does not provide features for exploiting the hierarchical structure of clusters. As a 
consequence, current HPF compilers usually ignore the shared-memory aspect of SMP 
clusters and treat such machines as distributed-memory systems. 

In order to overcome these shortcomings of HPF and its compilers, we propose 
extensions of the HPF mapping mechanisms such that the hierarchical structure of SMP 
clusters can be taken into account. Based on these features, an HPF compiler can then adopt a 
hybrid parallelization strategy whereby distributed-memory parallelism based on message-
passing, e.g. MPI, is exploited across the nodes of a cluster, while shared-memory parallelism 
is exploited  within SMP nodes by relying on multi-threading, e.g. OpenMP. 

The rest of this paper is organized as follows. Section 2 proposes language features for 
optimizing existing HPF programs for clusters of SMPs by providing an explicit specification 
of the hierarchical structure of clusters. Section 3 sketches a hierarchical HPF compilation and 
execution model for clusters of SMPs. Experimental performance results are presented in 
Section 4. A discussion of related work and concluding remarks are provided in Sections 5 
and 6, respectively. 
 
 

2 Exploiting the Hierarchical Structure of SMP Clusters 
 
HPF provides the concept of abstract processor arrangements for establishing an abstraction 
of the parallel target architecture in the form of one or more rectilinear processor arrays. 
Processor arrays are utilized within data distribution directives to describe a mapping of array 
elements to abstract processors. Array elements mapped to an abstract processor are owned by 
that processor. Ownership of data is the central concept for the execution of data parallel 
programs. Based on the ownership of data, the distribution of computations to abstract 
processors and the necessary communication and synchronization are derived automatically. 

Consider now an SMP cluster consisting of NN nodes, each equipped with NPN 
processors. Currently, if an HPF program is targeted to an SMP cluster, abstract processors 
are either associated with the NN nodes of the cluster or with the NN*NPN processors. In the 
first case, data arrays are distributed only across the NN nodes of the cluster and therefore only 
parallelism of degree NN can be exploited. In the second case, where abstract HPF processors 
are associated with the processors of a cluster, potential parallelism of degree NN*NPN can be 
exploited. However, by viewing an SMP cluster as a distributed-memory machine consisting 
of NN*NPN processors, the shared-memory available within nodes is usually not exploited, 
since data distribution and communication are performed within nodes as well.  
 
2.1 Processor Mappings 
 

The concept of processor mappings is introduced for describing the hierarchical 
structure of SMP clusters. A processor mapping specifies a mapping of an abstract processor 
array to an abstract node array. The NODES directive is introduced for declaring one or more 
abstract node arrays. Processor mappings are specified by using a subset of the HPF 
distribution mechanisms. For homogeneous clusters, the usual HPF block distribution 
format may be used. Heterogeneous clusters can be supported by means of the gen_block 
distribution format of the Approved Extensions of HPF. In order to support abstract node 
arrays whose sizes are determined upon start of a program, the new intrinsic function 



number_of_nodes() is provided, which returns the actual number of nodes used to 
execute a program. Examples of processor mappings are shown in Figure 1. 

Processor mappings provide a simple means for optimizing HPF applications for SMP 
clusters. Using processor mappings, the hierarchical structure of SMP clusters may be 
specified, without the need to change existing HPF directives. Based on processor mappings, 
an HPF compiler can adopt a cluster-specific parallelization strategy, which exploits 
distributed-memory parallelism across the nodes of a cluster, and shared-memory parallelism 
within nodes. A full specification of HPF extensions for SMP clusters can be found in [3]. 
 
!hpf$ processors P(8) 
!hpf$ nodes N(4) 
!hpf$ distribute P(block) onto N 
 
      real A(NA) 
!hpf$ distribute A(block) onto P 

(a) 

!hpf$ processors R(4,8)  
!hpf$ nodes M(4) 
!hpf$ distribute R(*,block) onto M 
 
      real B(NB) 
!hpf$ distribute B(cyclic,block) onto R 

(b)
 
Figure 1: Examples of processor mappings. In Figure (a) the processor mapping specifies a 4x2 SMP cluster, 
while Figure (b) specifies a cluster of 4 nodes each with 8 processors arranged in a 4x2 configuration. 
 
 
2.2 Exploiting DM and SM Parallelism 
 

If a dimension of an abstract processor array is distributed by block or gen_block, 
contiguous blocks of processors are mapped to the nodes in the corresponding dimension of 
the specified abstract node array. As a consequence of such a processor mapping, both 
distributed-memory parallelism and shared-memory parallelism may be exploited for all data 
array dimensions that are mapped to that processor array dimension. On the other hand, if in a 
processor mapping a dimension of an abstract processor array is distributed by means of "* ", 
all abstract processors in that dimension are mapped to the same node of an abstract node 
array, and thus only shared-memory parallelism may be exploited across array dimensions 
which have been mapped to that processor array dimension. 

In Figure 1 (a), both distributed- and shared-memory parallelism may be exploited for 
array A. In Figure 1 (b), only shared-memory parallelism may be exploited across the first 
dimension of array B, while both shared-memory and distributed-memory parallelism may be 
exploited across the second dimension. 

 
2.3 Inter- and Intra-Node Data Mappings 
 

An HPF data mapping directive, e.g. distribute A(block) onto P, 
determines for each processor of the abstract processor array P those parts of the data array A 
that are owned by it.If, in addition, a processor mapping for P with respect to a node array N 
is specified, an inter-node data mapping and an intra-node data mapping may be 
automatically derived from the data mapping and the processor mapping. Inter-node data 
mappings control distributed-memory parallelization across the nodes of a cluster while intra-
node mappings control shared-memory parallelization within nodes. 

An inter-node data mapping determines for each node of the node array those parts of 
array A that are owned it. The implicit assumption is that those portions of an array owned by 
a node are allocated in an unpartitioned way in the shared memory of this node, while data is 
distributed across the local memory of nodes, according to the derived inter-node mapping.  

Intra-node data mappings specify a mapping of the data allocated on a node of a 
cluster with respect to the processors within a node. Intra-node data mappings are utilized by 
the compiler to control the exploitation of thread parallelism within SMP nodes.  



3 Hierarchical Compilation and Execution Model 
 
In this section we sketch a hierarchical compilation and execution model for clusters of SMPs 
which is adopted for the parallelization of HPF programs that utilize the proposed language 
extensions. This model has been realized within the VFC compiler [1], a source-to-source 
translation systems which transforms HPF programs into explicitly parallel Fortran programs. 
As opposed to the usual HPF compilation [4], where a single-threaded SPMD node program 
is generated, a multi-threaded node program is generated under the hierarchical execution 
model. An extended HPF program is compiled by VFC for clusters of SMPs as follows. 

First, VFC analyzes data mappings and processor mappings in order to derive for each 
array dimension an inter-node mapping and an intra-node data mapping. During this analysis, 
each array dimension is classified as DM, SM, or DM/SM, depending on the type of 
parallelism that may be exploited across this dimension, or as SEQ, if the array dimension is 
replicated. This information is propagated to parallel loops which are classified accordingly. 

Second, in the distributed-memory parallelization phase, VFC translates the original 
HPF program into an SPMD message-passing node program by distributing data and work to 
the nodes of the cluster and inserting MPI message-passing calls in order to communicate 
non-local data between nodes. This parallelization phase is controlled by the inter-node data 
mappings.  

Third, the intermediate SPMD program is parallelized for shared-memory according to 
the intra-node data mapping derived by the compiler. Those loops which have been classified 
as DM/SM or SM are transformed in such a way that additional thread parallelism within the 
nodes is exploited by inserting corresponding OpenMP directives. Work distribution of loops 
and array assignments is derived from the intra-node data mapping of the accessed arrays and 
realized by corresponding OpenMP work-sharing constructs and/or appropriate loop 
transformations (e.g. strip-mining). Data consistency of shared data objects is enforced by 
inserting appropriate OpenMP synchronization primitives [2]. This shared-memory 
parallelization phase is driven by the intra-node data mappings. 

Finally, the parallel MPI/OpenMP code generated by the VFC compiler is compiled 
with an OpenMP Fortran compiler and linked with the MPI library.  

HPF programs compiled for clusters of SMPs as outlined above, are executed 
according to a hierarchical execution model. Within this model an HPF program is executed 
in parallel by a set of MPI processes, each of which executes on a separate node of an SMP 
cluster within its own local address space. Process parallelism, data partitioning, and message-
passing communication based on MPI is utilized across nodes. Each node process generates a 
set of threads which emulate the abstract processors mapped to a node and which execute 
concurrently in the shared address space of a node. The data mapped to one node is allocated 
in a non-partitioned way in the shared memory, regardless of the intra-node mapping. Parallel 
execution of threads within nodes is organized on the basis of the derived intra-node data 
mapping, which controls the distribution of computations among the threads. Consistency of 
shared data objects is guaranteed by automatically generated synchronization primitives [2]. 

 
 

4. Experimental Results 
 
In this section we report on early experiments with the proposed language extensions and the 
hierarchical compilation and execution model on a Beowulf cluster consisting of 8 nodes, 
each equipped with two Pentium II (400MHz) processors, connected by Fast Ethernet. For the 
performance experiments, we used an HPF kernel from a numerical pricing module developed 
in the context of the AURORA Financial Management System [8]. This kernel realizes a 
backward induction algorithm on a Hull and White interest rate tree. In the HPF code the 



interest rate tree is represented by 2-dimensional arrays and several index vectors which 
capture the structure of the tree. All these arrays have been distributed by usual HPF 
distribution mechanisms. The main computations are performed in an inner INDEPENDENT 
loop with indirect data accesses, which operates on a single level of the Hull and White tree. 
Due to the peculiarities of the algorithm, communication is required for each level of the tree, 
introducing a significant communication overhead.  

The performance experiments were performed for a tree with 3650 levels. We 
compared the original HPF kernel to an extended kernel, where an additional processor 
mapping was used for specifying the hierarchical structure of the PC cluster. The original 
HPF kernel was compiled by VFC to Fortran/MPI, while the extended kernel (HPF-Cluster) 
was compiled to Fortran/MPI/OpenMP and executed according to the hierarchical execution 
model combining MPI process parallelism with OpenMP thread parallelism. Both kernels 
were measured on up 8 nodes, utilizing always both processors of a node. 

As Figure 2 shows, the HPF-Cluster version significantly outperforms the original 
HPF kernel. The major reason for this performance difference seems to be the communication 
overhead induced by MPI communication2 within the nodes of the cluster.  

Figure 2. Experimental results for a financial optimization kernel on a Beowulf cluster 
with dual-processor nodes. 
 
 

5 Related Work  
 
Several researchers have worked on high-level parallel programming support for SMP 
clusters.  

MPISpro Power Fortran from SGI offers OpenMP with HPF-like data placement 
directives [14]. Compaq has added a set of new directives to its Fortran for Tru64 UNIX that 
extend the OpenMP Fortran API by features for controlling the placement of data in memory 
and the placement of computations that operate on that data [5]. Chapman, Mehrotra and 
Zima [7] propose a set of OpenMP extensions, similar to HPF mapping directives, for locality 
control. Portland Group, Inc. proposes a high-level programming model [12] that extends 
OpenMP with additional data mapping directives, library routines and environment variables 
for controlling data locality with respect to the nodes of SMP clusters.  
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All these approaches introduce data mapping features into OpenMP in order to control 
locality, but still utilize the explicit work distribution via OpenMP directives. Our approach is 
based on HPF and relies on an implicit work distribution which is derived automatically from 
the data mapping. 
 
 

6 Conclusions 
 

Processor mappings provide a simple means for optimizing existing HPF applications 
for SMP clusters. Using processor mappings the hierarchical structure of SMP clusters may 
be explicitly specified, without the need to change existing HPF directives. Based on 
processor mappings, an HPF compiler can adopt a cluster-specific parallelization strategy in 
order to efficiently exploit distributed-memory parallelism across the nodes of a cluster, and 
shared-memory parallelism within nodes. Such a parallelization strategy has been realized 
within the VFC compiler based on a hierarchical compilation and execution model that 
combines MPI processes parallelism OpenMP thread parallelism. 

Experimental results indicate that a hybrid parallelization strategy combining 
distributed and shared-memory parallelism has the potential to outperform a strategy based on 
pure message-passing. A more detailed evaluation of our approach and the investigation of its 
relevance for a larger range of scientific applications will be the subject of future work. 
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