Coupling Parallel Data and Work Partitioners
to the Vienna Fortran Compilation System

Peter Brezany, Viera Sipkova

Institute for Software Technology and Parallel Systems
University of Vienna, Liechtensteinstrasse 22, A-1092 Vienna, Austria
E-mail: {brezany,sipka} @par.univie.ac.at

A significant amount of software research for developing programming
environments for distri-buted—memory systems is currently underway in
both academia as well as industry. This paper addresses the automatic
parallelization of irregular codes for distributed—memory systems. We
present the language constructs provided by the Vienna Fortran to deal
efficiently with irregular codes. They have been implemented within the
Vienna Fortran Compilation System. This system also provides an inter-
active interface which enables the user to direct the system to derive data
and work distributions automatically according to a selected strategy. The
description of these advanced features is the main concern of the paper.

Key words: data—parallel languages, irregular computations, irregular data
distribution, data—parallel loop, automatic parallelization, partitioner,
inspector—executor

1 Introduction

Languages like Vienna Fortran [8], Fortran D/90D [4], or High Performance
Fortran (HPF) [5], that are based on the data parallel programming model,
represent a modern approach to programming distributed-memory systems.
Here, programs are written using constructs of a sequential language to spec-
ify the computation on the data, and annotation constructs to specify how
large data arrays and computation should be distributed among processors.
The computation code is written using a global name space. The compiler an-
alyzes the distribution annotations and generates parallel code based on the
SPMD (Single-Program—Multiple-Data) programming model inserting com-
munication statements where required by the computation.

This paper addresses the specification and automatic parallelization of ad-
vanced irregular applications for distributed-memory systems which is a chal-

Preprint submitted to Elsevier Preprint 17 January 1996

lenging problem of great importance. An application is considered to be ir-
regular if there is limited compile time knowledge about data access patterns
and/or data distributions. Therefore, the process of transforming irregular
codes combines compile time parallelization techniques with runtime analysis.
Application areas in which such codes are found range from unstructured
multigrid computation fluid dynamic solvers, through molecular dynamics
codes, to time dependent flame modeling codes. In Section 2, we present the
language constructs provided by Vienna Fortran for handling irregular codes.
This Section also briefly outlines the compilation strategy developed and im-
plemented for these constructs within the Vienna Fortran Compilation System
(VFCS) [9]. In extensive irregular codes, using naive block distributions may
result in a very inefficient implementation. VFCS provides a higher level lan-
guage support and an interactive interface which enables the user to direct
the system to derive irregular data and work distributions automatically ac-
cording to the selected partitioning strategy. This is described in Section 3.
Performance results achieved for an Euler solver kernel on the Intel iPSC/860
system are introduced in Section 4. The rest of the paper deals with related
work, followed by the conclusion (Sections 5 and 6).

2 Irregular Distributions and FORALL Loops

Vienna Fortran provides regular distribution intrinsic functions BLOCK, BLOCK(M),
GENERAL_BLOCK((block-length-spec) and CYCLIC(L). To support irregular ap-
plications, Vienna Fortran provides indirect distribution defined by means of

the intrinsic function INDIRECT and a mapping array which stores a processor
reference for each array element. An array whose distribution may be modified
during runtime is called a dynamically distributed array and must be declared

with the DYNAMIC attribute; else it is called a statically distributed array.

Irregular computations can be specified by explicit data parallel loops — forall
loops. The general form of the forall loop is the following:

FORALL ([, = secy,..., I, = secy,)[Work_distr_spec | Partitioner_spec]
forall-body
END FORALL

where for 1 < j <n, I; are index names, and sec; are subscript triplets of the
form (I;,u;,s;). The range of the index variable I; is specified by the corre-
sponding section sec;. Optional Work_distr_spec denotes a work distribution
specification which determines how loop iterations are assigned to processors
for execution. Partitioner_spec denotes a specification of the strategy to be
automatically applied by the programming environment to the forall loop for
calculating optimal data and work distributions. Work_distr_spec and Parti-

parameter : nnode=...,nedge=...,np=...

processors ppl(np)

real , dynamic :: flux(nnode), wl(nnode), w2(nnode), w3(nnode),
w4(nnode), cc(nnode)

integer , distributed (block) :: map(nnode)

integer , distributed (block , :) :: nde(nedge,2)

real :: econs, al, a2, gs

. initialization of map ...
distribute flux, wl, w2, w3, w4, cc :: (indirect (map))

forall i =1, nedge
al = econs * (w2(nde(i,1))+w3(nde(i,1))+w4(nde(i,1))
a2 = econs * (w2(nde(i,2))+w3(nde(i,2))+w4(nde(i,2))
gs = (al + a2) / 2.0
reduce (add , flux(nde(i,1)), abs(qs) + cc(nde(i,1))*econs)
reduce (add , flux(nde(i,2)), abs(qs) + cc(nde(i,2))+*econs)
end forall

wl(nde(i,1)
wl(nde(i,2)

)
)

~

)
)

Fig. 1. Kernel loop of the unstructured Euler EUL3D solver

tioner_spec can be either introduced in the source program or specified inter-
actively during the parallelization process.

Vienna Fortran provides the REDUCE statement to allow operations (e.g.
global reductions) across the iterations of a parallel loop. The effect of the

statement is to accumulate the values of the expression onto the target vari-
able.

An example of Vienna Fortran code is shown in Fig.1. This code fragment
represents the kernel loop from the unstructured 3—D Euler solver and will
be used as a running example to illustrate our parallelization methods. The
loop represents the sweep over the edges, the computationally most intensive
part. The indirection array nde has got a block distribution and arrays wi,
w2, w3, w4, cc, and flux are distributed irregularly using the indirect distri-
bution function with the mapping array map which is block distributed. The
values of map may be defined either through reading an external data file that
was constructed separately from the user program, or they can be calculated
dynamically at runtime employing a parallel partitioner (see Section 3).

Compilation Method

VFCS is a source-to—source translator from Vienna Fortran programs to op-
timized Fortran message passing programs.

In VFCS, the parallelization of irregular codes combines compile-time paral-
lelization techniques with runtime analysis. A processing strategy based on the
inspector—executor paradigm is used to implement runtime analysis and paral-
lel execution. Each forall loop is transformed into four code phases called the
constructor of data distribution descriptors (CDDD), the work distributor, the
inspector, and the executor. CDDD constructs a runtime distribution descrip-
tor for each irregularly distributed array. The work distributor determines
how to spread the iterations among the available processors. The inspector
performs runtime analysis of the forall loop, generates the description of the
communication necessary for the loop, and derives translation functions be-
tween the global and local accesses. The last phase, executor, performs the
actual communication and executes the loop body. All those phases are sup-
ported by the runtime library that is based on the CHAOS library [7].

3 Automatic Data and Work Partitioning

Over the years researchers have developed a variety of partitioning algorithms
to obtain reasonable mappings for irregular problems [6], but it is particularly
troublesome to couple them to a parallel program. A partitioning algorithm
(referred also to as partitioner) will decompose a dataset to a number of par-
titions and allocate each partition to a processor. The produced partitions
need to have the minimum number of connections to other partitions (mini-
mum communication requirements) and they should have the approximately
equal number of data items (good load balancing). Partitioners typically make
use of one or more of the following types of information: description of graph
connectivity, spatial location of array elements, and information associating
array elements with computational load. The distribution produced by these
methods typically results in a table that stores a processor reference for each
array element.

For each forall loop that was specified as a candidate for automatic partition-
ing, VFCS generates a partitioning phase including automatic determination
data and work distribution before the inspector—executor phases. The essence
of the implementation is contained in the CHAOS runtime library providing a
number of parallel partitioners which are called from the compiler embedded
code. The runtime support also includes procedures for generating interface
data structures for partitioners.

Specification of the Partitioning Strategy

Currently, the CHAOS parallel partitioners implement the following partition-
ing methods: Recursive Spectral Bisection (RSB), Recursive Coordinate Bi-

section (RCB), Weighted Recursive Coordinate Bisection (WRCB), Recursive
Inertial Bisection (RIB), and Weighted Recursive Inertial Bisection (WRIB).
Each partitioner needs specific information and heuristics for its partitioning
algorithm. The RSB partitioner decomposes data using connectivity informa-
tion included in the distributed runtime data structure, called Runtime Data
Graph (RDG). It is constructed at runtime from array access patterns occur-
ring in the forall loop. The four other partitioners decompose data based on
spatial and/or computational load information stored in data arrays.

VFCS provides the user with the opportunity to specify the appropriate parti-
tioners and their arguments for a set of selected loops interactively. The system
immediately checks the correctness of the specification, stores the specification
in the internal representation of the program, and displays it at the forall loop
header.

The snapshots in Figure 2 illustrate a selection of the partitioner. To specify
a partitioner the user has to mark the target forall loop and select the menu
[Parallelization : Partitioner|. The system then provides a list of partitioners cur-
rently available in the environment (see the upper snapshot). Then the user
clicks, for example, on the [Coordinate] item to select the RCB partitioner. The
system asks to pass the information about dimensionality and spatial location
of array elements. The user introduces arrays (for example, X, Z and Z) as
objects storing the coordinates (see the lower snapshot).

Implementation Issues
The partitioning process involves three major steps:

Data Distribution. This phase calculates how data arrays are to be de-
composed by making use of the selected partitioner. In the case of the RSB
partitioner, the compiler generates the coupling code which produces a RDG
structure at runtime. RDG is then passed as input to the RSB partitioner.
RCB, WRCB, RIB and WRIB partitioners are passed the spatial location of
the array elements and/or information associating the array elements with
computational load in the form of data arrays. The output of the partitioners
is the new data distribution descriptor which is stored as a CHAOS construct
called translation table representing a part of the distribution descriptor.

Work Distribution. Once the new data distribution is obtained, the loop
iterations must be distributed among the processors to minimize non-local
array references. For work partitioning the almost owner computes paradigm
is chosen that assigns a loop iteration to a processor which is the owner of
the largest number of distributed array elements referenced in that iteration.
The work partitioner operates on the runtime data structure, called Runtime

Yienna Fortran Compilation System - Yersion 1.1

File Transformations Parallelization |Analysiz Performance Utilitiez Options
' Data Distribution,.. N
49 OLWMED (g (T10 7
50 OWMED (W5 {I1, &
51 OWNED{F{I1D
523 QWHED ¢ OLUM 00
53 E<SE W1iI1D Work Distribution -
gg; Eﬁﬁ?n?éé%??' Partitioner " Spectral ...
56 10 CONTINUE
57 ECONS = 1.0 : : - : :
5 TIMO = nDcLock Communication Optimization Coordinate ...
59 00 100 JID=1, weeei foisw
603 D0 11 Iop=1 =0 ’ ST asakiss
[OWNED ¢FLL: Code Generatiaon
B2: 11 CONTINUE ; ;
631 FORALL 101 T2000=1,17377 BLOCK e benu=HiBRarHina =t
DISTR ARRAYS: W1.W2.MDE.W3. W4, FLUX.CC lWeighted Irnertial ...
LOCAL SCALARS: Al.AZ.05
bd: Al = (W2{NDE{IZD00, 1% + WI{HDE(IZDO0.1%) + W4{NDE{IZO00. 133}
ECONS / WLCNDE(I2O00, 1%}
{
i~ [
- - 7
i Vienna Fortran Compilation System - Yersion 1.1
File Transformations Parallelization Analysiz Performance Utilitiez Options
N A
T 00 100 JiD=1,100
58 mask-» OO0 11 I20=1,2800
59 FLUS{IZDY = 0,0
RO 11 COMTINUE
Bl: FORALL 101 IZD00=1,17377 USE (RCB{3.x.Y.Z2)}
DISTRE ARRAYS: W1.WZ.HOE, W3, Wd,FLUX, CC
LOCAL SCALARS: Al.AZ.05
B2: Al = (W2{NDE{IZD00, 1% + W3{HDE(IZDO0.1)y + W4{NDE{IZO00. 133}
® # ECONS / W1dHDE(I2DO00,13}
B3: A2 = (W2{NDE{IZ000, 23 + W3{HDE(IZDO0,2)) + W4{NDE{IZ000,. 233}
® # ECONS / Wi CHDE{(I2000, 23}
bd: W5 = (Al + AZ) ~ 2.0
B0 FLU%{HDE{I2000,.13) = FLUSCHNDE{I2O00.13 + ABS{ES) + CC{MDE(
I12D00.1)3 = ECONS
Bb: FLU%{HNDE{I2000,23) = FLUKCHNDE{I2O00, 23 + ABS{ES) + CC{MDE!
12000, 233 = ECONS
B7: 101 COMTINUE
B8 FLUXSUM = 0,0
B9 FORALL 103 IZD01=1.2800 0N OWHER(FLU={IZD0L13}
{
;"“i I~
=i oy

Fig. 2. Specifying a Partitioner

Iteration Graph (RIG), which lists for each iteration 7 all indices of each dis-
tributed array accessed in this iteration. RIG is constructed at runtime and
passed as input to the work partitioner. The output of the work partitioner is
a new work distribution descriptor stored as translation table.

Redistribution of Data and Iterations. To complete the partitioning
process, all data arrays associated with the original block distribution are
redistributed to the new data distribution. Similarly, the loop iterations are
redistributed according to the new work distribution specification. The in-
direction arrays (data references) must be redistributed following the work
distribution to conform with the new execution set.

A detailed description of the partitioning code for the EUL3D kernel loop
given in Figure 1 can be found in [1].

4 Preliminary Performance Results

This section presents the performance of the automatically parallelized 3—D
Euler solver (EUL3D), whose kernel is introduced in Section 2. We examined
the code included in the outer loop with 100 iteration steps, using the input
datasets with nnode = 2800 and nedge = 17377. Two versions of the code have
been elaborated to evaluate the influence of different kinds of data distribu-
tions on parallel-program execution time. In the first version, all data arrays
are block distributed, in the second version, data arrays accessed in irregular
code parts are initially declared as block distributed, and after applying a
partitioner they are redistributed irregularly according to the calculated new
mapping. For lack of space we introduce only times for RSB and RCB par-
titioners. Times for other partitioners (RIB, WRCB and WRIB) are like the
times for the RCB partitioner. Experiments were performed on Intel iPSC/860
system, the sequential code on 1 processor, the parallel code on 4, 8, and 16
processors. The generated parallel code was optimized in such a way that the
partitioning code and the invariant part of the inspector was moved out of
the outer loop, since the communication patterns do not change between the
solver iterations. The timing results (in seconds) are summarized in Table 1.

5 Related Work

Chapman et al. [3] propose the use—clause for the HPF INDEPENDENT loop
which enables the programmer to specify a partitioner. Ponnusamy et al. [6]
propose a directive that can direct a compiler to generate a data structure on
which data partitioning is to be based and a directive for linking this data
structure to a partitioner. An experimental Fortran 90D implementation is
able to couple the CHAOS partioners to simple forall statements. In [2], we
describe the utilization of an external partitioner.

Table 1
Performance results of the EUL3D solver

Sequential code

35.37

Parallel code

Irregular Distribution Block Distribution
Comput. RSB RCB
Phases Number of Processors
4 8 16 4 8 16 4 8 16

Data Part. | 3.20 | 10.92 | 12.47 | 0.17 | 0.18 | 0.33 - - -

Work Part. | 0.59 | 0.40 | 0.30 | 0.59 | 0.35 | 0.25 - - -

Total 20.31 | 19.56 | 17.14 | 15.64 | 8.23 | 4.91 | 25.84 | 18.06 | 13.14

6 Conclusion

In this paper we have introduced a progressive technology for developing ad-
vance irregular applications for massively parallel systems. The work has been
inspired by the CHAOS project conducted at the University of Maryland.
In VFCS, the techniques supporting automatic work and data partitioning
are fully integrated with the compile time techniques. The implementation is
currently in a stage of testing and benchmarking on real codes.

Acknowledgement

The authors would like to thank Joel Saltz and his research group for pro-
viding the PARTI and CHAOS libraries, and for their valuable help by the
implementation of the VFCS—-CHAOS interface.

References

[1] P. Brezany, B. Chapman, R. Ponnusamy, V.Sipkova, H.P.Zima, Study of
Application Algorithms with Irreqular Distributions (Report D1Z-3 of the CEI-
PACT Project, University of Vienna, April 1994).

[2] P. Brezany, V. Sipkova, B. Chapman, R. Greimel, Automatic Parallelization of
the AVL FIRE Benchmark for a Distributed-Memory System, (Proc. of PARA95
Workshop, Denmark, August 1995).

[3] B. Chapman, P. Mehrotra, H. Zima, Extending HPF' for Advanced Data Parallel
Application (Tech. Report TR 94-7, University of Vienna, May 1994).

[4] G. Fox, S. Hiranandani, K. Kennedy, Fortran D Language Specification (Tech.
Report COMP TR90-141, Rice University, December 1990).

[5] High Performance Fortran Forum, High Performance Fortran Language
Specification (Tech. Report, Rice University Houston Texas, May 1993).

[6] R. Ponnusamy, J. Saltz, A. Choudhary, Y.-S. Hwang, G. Fox, Runtime—
Compilation Techniques for Data Partitioning and Communication Schedule
Reuse (CS-TR-93-32, University of Maryland, College Park, MD, April 1993).

[7] J. Saltz et al., A Manual for the CHAOS Runtime Library (Tech. Report,
University of Maryland, College Park, MD 20742, May 1994).

[8] H. Zima, P. Brezany, B. Chapman, P. Mehrotra, A. Schwald, Vienna Fortran -
A language Specification V 1.1 (ACPC-TR 92-4, Univ. of Vienna, March 1992).

[9] H. Zima et al., Vienna Fortran Compilation System (User’s Guide, University of
Vienna, October 1995).

