
Parallel I/O Support for HPF on Clusters

Peter Brezany and Viera Sipkova
Institute for Software Science

University of Vienna
Liechtensteinstr. 22, A-1090 Vienna, Austria�

brezany,sipka � @par.univie.ac.at

Abstract

Clusters of workstations are a popular alternative to in-
tegrated parallel systems designed and built by a vendor.
Besides their huge cumulative processing power, they also
provide a large data storage capacity which allows efficient
implementations of large-scale applications which are I/O
intensive. This paper proposes a language, compiler and
runtime software solution to the problem of parallel I/O on
clusters. The proposal is presented in the context of High
Performance Fortran and its compiler that is being devel-
oped at the University of Vienna. The system provides ef-
ficient support for explicit I/O operations on parallel files,
accesses to sections of multi-dimensional arrays stored in
parallel files, checkpoint/restart operations, and time step
output and input operations. The implementation is based
on our parallel I/O library implemented on top of MPI. The
paper also presents experimental performance results using
the implementation of the developed software on a Beowulf-
class cluster system.

1. Introduction

In the past few years, clusters of workstations have
emerged as an important and rapidly expanding approach
to parallel computing. These systems often employ inex-
pensive commodity processors, open source operating sys-
tems and communication libraries and commodity network-
ing hardware to deliver supercomputer performance at the
lowest possible price. Clusters, besides their huge cumu-
lative processing power, also provide a large data storage
capacity which allows efficient implementations of large-
scale applications which are input and output (I/O) inten-
sive. Some examples of such systems are Berkeley NOW,
HPVM, Beowulf, Solaris-MC, which are discussed in [4].

In order to effectively exploit the power of clusters,
appropriate programming environments and development
tools are a must. Within the long-term project Aurora [2],

we are developing a set of I/O intensive applications (dy-
namic stochastic optimization in financial planning, quan-
tum mechanical calculations of solids, and simulation of
semiconductor processes and devices) and a parallel pro-
gramming environment and tools for cluster architectures.
High Performance Fortran (HPF) [10] is the main program-
ming language used in this project.

So far, the HPF development has almost fully focused on
providing support for compute intensive parts of scientific
and engineering applications and only minimally addressed
their I/O aspects in spite of the fact that the experience from
the scientific application development in the past years has
shown that I/O is a major performance bottleneck for many
large-scale scientific applications running on parallel plat-
forms.

Vienna Fortran [12] was one of the first HPF-like lan-
guages attempting to provide a high-level and efficient sup-
port for parallel I/O operations [18]. Several proposals were
also elaborated directly for HPF [3, 19, 25], Fortran D [13],
and MPP Fortran [6]. However, no language extensions
proposed to the HPF Forum were included into the final
HPF specification documents. Consequently, at present,
HPF and the existing HPF programming environments do
not provide an appropriate framework for programming and
implementing I/O intensive applications.

So far, the major I/O software research efforts have been
led along two lines: parallel file system research and paral-
lel I/O library research. The most important results include
PASSION [1], IBM/PIOFS [22], Galley [16], Panda [24],
Disk Resident Arrays Library [15], PAFS [5], and ViPIOS
[7]. An excellent description of the recent development in
this field can be found in [14].

As an extension to the MPI standard [11], the MPI-IO
interface was proposed and its functions were portable im-
plemented by a software system called ROMIO [23]. Carns
et al. [21] developed a parallel file system for Linux clus-
ters, called the Parallel Virtual File System (PVFS) and im-
plemented MPI-IO on top of it.

The work presented in this paper describes the design

Nodes
ComputeFront-End

Node

INTERCONNECTION NETWORK

CPU

Memory

Disk

Figure 1. The Cluster Model

and implementation of a system providing the HPF users
with the opportunity to access the parallel I/O function-
ality of clusters and other high performance systems at a
high abstraction level. We addressed research issues asso-
ciated with four different scenarios in which the application
may need to access secondary memory frequently and po-
tentially become I/O bound [8]:
(1) explicit I/O operations that are inherent in the applica-
tion algorithm, (2) timestep operations - for time-dependent
applications, snapshots of certain arrays are output at se-
lected intervals over time; output data will then be read
and analyzed by visualization tools, (3) checkpointing - for
long-runningproduction runs, it is desirable to save the state
of certain program objects periodically (checkpoint) in or-
der to be able to resume (restart) from a previous state in
case of the application run interruption, and (4) out-of-core
computations - their data structures are larger than the avail-
able main memory; therefore it is necessary to keep them on
disk and transfer piecewise to the main memory and back.

Our prototype implementation has been done in the con-
text of an HPF compiler called the Vienna Fortran Compiler
(VFC) [9] we have developed at the University of Vienna
and based on our parallel I/O library implemented on top of
the MPI Linux implementation (MPICH 1.2.1).

This paper is organized as follows. Section 2 introduces
the extensions of HPF to allow the HPF programs to ac-
cess the cluster parallel I/O. The implementation of these
extensions is briefly discussed in Section 3. Section 4 dis-
cusses the experimental performance results achieved on an
eight-node Beowulf-class cluster system. The experiments
are discussed in the context of a code implementing quan-
tum mechanical calculations of solids and a synthetic code.
Section 5 discusses related work. We briefly conclude in
Section 6.

2 Language Support

Our design of the HPF parallel I/O concepts discussed in
this section is based on the cluster model depicted in Fig-
ure 1. This model consists of a front-end node and a set of
compute nodes which are interconnected by some kind of

message passing network. Each node includes a processor,
memory, and a disk1. I/O statements introduced in a pro-
gram control the data flow between the program variables
and the files which may reside physically on the front-end
node disk or compute node disks.

Standard Fortran file operations introduced in an HPF
program are processed by our HPF compiler, VFC, using a
strategy in which one compute node, so called master node,
reads and writes data from/to the standard Fortran files lo-
cated on the front-end node disk and communicates with
the computes nodes which own the appropriate parts of the
data.

As a first step towards the specification of parallel I/O,
the PARIO directive accompanying the OPEN statement is
provided. By means of this directive, the user can indicate
that a file is being opened which allows, under some condi-
tions, concurrent accesses. Consequently, this OPEN state-
ment and all the subsequent I/O statements operating on this
file will be transformed by the VFC into the parallel form.
With the PARIO directive, the user can introduce opera-
tions on standard parallel files (Subsection 2.1) which cor-
respond to the sequential Fortran file model, or operations
on structured parallel files, called array files (Subsection
2.2), which can be seen as a sequence of file data objects
representing multidimensional arrays. The design supports
parallel I/O operations including both distributed and non-
distributed objects. Currently only unformatted parallel I/O
is supported. The form of the directory path in the FILE
specifier of the OPEN statement decides whether the file
resides physically on the front-end node disk or compute
node disks.

For the specification of checkpoint/restart and timestep
operations, a set of special directives is provided (Subsec-
tions 2.3 and 2.4).

In this paper, we prefer an informal presentation (pri-
marily based on examples) of the language constructs de-
signed. A complete formal specification of their syntax can
be found in [20].

1A node of a real cluster may include several processors and a set of
disks.

2

INTEGER, PARAMETER :: N1 = 2000, N2 = 2000
INTEGER, DIMENSION(N1,N2) :: x, y, w
INTEGER, DIMENSION(N1) :: z
INTEGER :: u, s

!HPF$ PROCESSORS P(NP1,NP2)
!HPF$ DISTRIBUTE(BLOCK,BLOCK) ONTO P :: x, y

...
! Open new parallel file
!HPF$ PARIO

OPEN (unit=u, file=’/pariodir/stdfile.u’, &
form=’UNFORMATTED’)

WRITE (u) x, y(1:N1), s, z, w
CLOSE (u)
...

!HPF$ PARIO
OPEN (unit=u, file=’/pariodir/stdfile.u’, &

form=’UNFORMATTED’, status=’OLD’)
READ (u) x, y, s, z(1:N1/2)
CLOSE (u)

Figure 2. Examples of Specifying I/O Opera-
tions on Standard Parallel Files

2.1 I/O Operations on Standard Parallel Files

The introduction of I/O operations on standard parallel
files requires only minimal modifications to HPF programs
- insertion of PARIO directives immediately before the ap-
propriate OPEN statements, as illustrated in Figure 2. We
can see that the READ and WRITE operations may include
scalars, distributed arrays, and non-distributed arrays. The
fact that they operate on a parallel file will be determined
by the runtime analysis code generated by VFC (Section
3). In this example, file stdfile.u will be distributed across
compute node disks; multiple processes can have efficient,
concurrent accesses to it. To open a file on the front-end
node disk which can be shared by multiple processes, the
file specifier should have, for example, the following form2:
file = ’nfs:./mypariodir/stdfile.u’

The PARIO directive also allows a user to provide infor-
mation such as file access patterns and file system specifics
to direct optimization. Providing such hints may enable
an implementation to deliver increased I/O performance or
minimize the use of system resources. For example, in the
directive:

!HPF$ PARIO, STRIPING UNIT(32000)
the specifier STRIPING UNIT specifies the suggested
striping unit to be used for the new file which is to create
and open [11].

2The NFS prefix expresses that the implementation is based on the NFS
(Network File System) approach [26]

! Open new array file
D1: !HPF$ PARIO, ARRFILE
S1: OPEN (unit=u, file=’/pariodir/parrfile.u’, &

form=’UNFORMATTED’)
D2: !HPF$ PARIO, NEWARR (N1, N2)
S2: WRITE (u) x ! Write array x of the shape (N1,N2)
D3: !HPF$ PARIO, NEWARR (N1), FNAME (’array z’)
S3: WRITE (u) z ! Write array z of the shape (N1)
D4: !HPF$ PARIO, NEWARR (N1, N2), &

!HPF$ FNAME (’array w’), &
!HPF$ FSECTION (N1-49:N1,N2-49:N2)

! Allocate FRA of the shape (N1, N2), write contents
! of w(1:50,1:50) into the
! FRA section (N1-49:N1,N2-49:N2)

S4: WRITE (u) w(1:50, 1:50)
...

S5: CLOSE (u) ! Close array file
...

D5: !HPF$ PARIO, ARRFILE
S6: OPEN (unit=u, file=’/pariodir/parrfile.u’,

form=’UNFORMATTED’, status=’OLD’)
D6: !HPF$ PARIO, ARR (1)
S7: READ (u) x ! Read the 1st FRA
D7: !HPF$ PARIO, FNAME(’array z’), FSECTION(1:5)
S8: READ (u) z(11:15) ! Read the section (1:5)

! from the second FRA
D8: !HPF$ PARIO, FNAME(’array w’), &

!HPF$ FSECTION(101:150,101:150)
! write x(1:50,1:50) into the
! FRA section (101:150,101:150)

S9: WRITE (u) x(1:50, 1:50)
S10: CLOSE (u) ! Close array file

Figure 3. Examples of Specifying I/O Opera-
tions on a Parallel Array File

2.2 I/O Operations on Parallel Array Files

Fortran supports file organization known as direct access
where each record is identified by an index number. If the
file stores an array, it is possible to directly access an array
element corresponding to a specific index value. However,
programming accesses to the file elements corresponding
to a multi-dimensional array section of a distributed array,
as it is often required in parallel out-of-core applications, is
rather awkward and may be highly inefficient. Therefore, to
solve this problem, we introduce a new file type called ar-
ray file. Array files are structured into records. Each record
contains data elements associated with one array - there-
fore, this record is called file resident array (FRA). There is
a descriptor associated with each FRA that contains infor-
mation about its rank, its shape, and its type. The descriptor

3

After S2After S1

After S3 After S4

Elements of w(1:50,1:50)

. . .

After S5

FRA address: 3
Allocated for an integer array of the shape(N1,N2)

Pointer to
metadata

FRA address: 2
Elements of z

FRA address: 1
Elements of x

FRA name: FRA name: FRA name:array_z array_wno name

Metadata

Figure 4. Storage of Arrays and Array Sections in an Array File

is stored in the metadata part of the file. The operation on an
array file may specify the transfer of the whole FRA or its
section; addressing the section elements is based on the in-
formation stored in the descriptor associated with this FRA.
Each FRA is assigned an address which corresponds to its
position in the file. When a new FRA is created, it can be
optionally given a name.

Figure 3 illustrates the use of the array file operations
involving the arrays declared in Figure 2, and Figure 4
sketches their effect on the array file as it can be viewed
by an HPF programmer. The opening of a new array file
is specified by the OPEN statement (line ���) which is pre-
ceded by the directive PARIO (line D1). The PARIO direc-
tive includes the ARRFILE specifier and may also specify
a set of hints, as we briefly discussed in the last subsec-
tion. File parrfile.u is created and a pointer to the meta-
data section is allocated. The language constructs in D2
and S2 specify the allocation of a new integer FRA (by the
clause NEWARR), of the shape (��� , ���) and the trans-
fer of the section x ���
	����
����	������ into this FRA. The
transfer of the section z ����	������ (the constructs in lines D3
and S3) into the file can be described in a similar way; the
FRA obtains the name ’array z’ specified by the FNAME
clause. The constructs in D4 and S4 specify the allocation
of a new integer FRA of the shape (��� , ���) and writing
the contents of the section w ����	���������	������ into its sec-
tion � �������! "	#���
�$���%�&�� '	(���*) which is specified by
the FSECTION clause. Immediately before the array file
is closed (line S5), a metadata record is appended to the file
and its byte offset address is assigned to the pointer which
was allocated during the OPEN operation.

The ARR specifier of the directive PARIO defines the
current FRA visible and accessible from an open array file.
For example, lines D7 and S8 specify reading the section
�+��	��*) from FRA having the address 2. The current and
visible FRA can be also specified by a FNAME directive as

shown in D8. An intrinsic function is provided which re-
turns the FRA address corresponding to a given FRA name.

Other operations on array files include: SKIP (,-�*.) -
skip to the end of the array file, SKIP (,/�10) - skip 0 FRAs,
and BACK (,) - move back to the previous FRA.

2.3 Checkpoint/Restart Support

CHARACTER (LEN=10) :: chname
...
! Define checkpoint object chname

!HPF$ CHECKP DEF (chname) :: x, z, s
! Execute checkpoint operation

!HPF$ CHECKP WRITE (chname)
...
! Restart from checkpoint

!HPF$ CHECKP RESTART (chname)
! Deactivates all checkpoint objects

!HPF$ CHECKP DEACTIVATE

Figure 5. Checkpoint/Restart Operations

A checkpoint operation saves the state of some program
variables to disk to be restored during a restart operation.
A checkpoint is logically an overwriting operation, as the
latest checkpoint is the only one of interest. Our support
for these operations does not explicitly work with files. The
operations are performed on a data repository which is de-
fined by the programming environment. We introduce the
concept of checkpoint object that is considered as an ab-
stract data object associated with a set of program variables
that are involved in checkpoint/restart operations. A check-
point object is defined by the CHECKP DEF directive,
where its argument represents the name of the checkpoint

4

object, and the right hand side consists of the list of vari-
ables related to the checkpoint object. Execution of a check-
point operation and a restart operation is specified by the
CHECKP WRITE and the CHECKP RESTART direc-
tive, respectively. The directive CHECKP DEACTIVATE
deactivates a specific checkpoint object or, by default, all
defined checkpoint objects; however, this directive has no
influence on the content of the data repository. The applica-
tion of these constructs to the variables defined in Figure 2
is illustrated in Figure 5.

CHARACTER (LEN=10) :: tname
INTEGER :: tversion, obj
...
! Define timestep object tname

!HPF$ TIMESTEP DEF (tname, OUT) :: x, z, s
DO i= ...

...
!HPF$ TIMESTEP WRITE (tname) ! Write timestep

END DO
! Deactivates timestep object tname

!HPF$ TIMESTEP DEACTIVATE (tname)
...
! Define timestep object tname

!HPF$ TIMESTEP DEF (tname, IN) :: x, z, s
tversion = 1
! Read timestep version 1

!HPF$ TIMESTEP READ (tname, tversion)
tversion = 5; obj = 2
! Read array z from timestep version 5

!HPF$ TIMESTEP READ OBJECT (tname, tversion, obj)
! Deactivates timestep object tname

!HPF$ TIMESTEP DEACTIVATE (tname)

Figure 6. Timestep Operations

2.4 Time-Step Output and Input

The timestep operations are used for repeatedly writ-
ing data to disk for future analysis. Timestep is an ap-
pend operation. Like the checkpoint operations, the direc-
tive TIMESTEP DEF is used to define a timestep object
which is associated with a number of program’s variables.
One of the optional intent arguments IN, OUT, or INOUT
may be introduced to specify in which way the timestep ob-
jects will be accessed in the repository. The IN determines
that the variables associated with the timestep object will be
read from the existing timestep records in the data reposi-
tory; OUT determines that these variables will be written
into the new timestep records created in the data repository;
and INOUT determines that the variables may be both read
and written; however, in this case, the timestep records have

already to exist. If the intent argument is omitted, the de-
fault value is INOUT.

...
tilemax = 4

! ... Precompute parameters of iteration tiles:
! tile bounds, tile sizes, low, and up ...

DO tile = 1, tilemax ! Out-of-Core Loop
!HPF$ PARIO, ARR(1), FSECTION(low(tile):up(tile))

READ (pariounit) H(1:tile sizes(tile))
!HPF$ INDEPENDENT, ON HOME(A2R(i))

DO i = tile bounds(tile), tile bounds(tile+1)
DO j = 1, tile bounds(tile+1)-1

H((i*(i-1)/2)+j-base) = H((i*(i-1)/2)+j-base) +
A1R(j)*A2R(i) - A1I(j)*A2I(i) +

B1R(j)*B2R(i) - B1I(j)*B2I(i)
END DO

END DO
! ... update base ...
!HPF$ PARIO, ARR(1), FSECTION(low(tile):up(tile))

WRITE (pariounit) H(1:tile sizes(tile))
END DO
...

Figure 7. Out-of-Core Code Fragment from
Wien97

1

I

J
N

1

N

Tile 1

Tile 2

Tile 3

Tile 4

The directive TIMESTEP WRITE initiates a timestep
operation. Every timestep record written into the
file represents one version of the timestep object.
The TIMESTEP READ directive initiates reading the
specified version of the timestep object; and the
TIMESTEP READ OBJECT directive initiates reading
one variable from the specified version of the timestep ob-
ject.

The directive TIMESTEP DEACTIVATE deactivates a
specific timestep object or, by default, all defined timestep

5

Table 1. Time (in secs) for Various I/O Implementations in the Out-Of-Core Code

Implementation Style 2 nodes 4 nodes 6 nodes 8 nodes

out-of-core loop (I/O by master node) 291.94 151.16 115.21 99.47
write sections (by master node) 40.00 35.69 34.49 33.80
read sections (by master node) 40.82 35.86 34.34 33.94

out-of-core loop (nfs I/O) 129.20 81.04 50.90 35.11
write sections (nfs mode) 0.24 0.28 0.29 0.29
read sections (nfs mode) 0.15 2.86 2.88 2.87

out-of-core loop (I/O parallel) 129.06 77.25 44.99 32.07
write sections (parallel) 0.07 0.06 0.05 0.05
read sections (parallel) 0.07 0.04 0.03 0.03

objects. The application of these constructs to the variables
defined in Figure 2 is illustrated in Figure 6.

3 Implementation Notes

VFC is a source-to-source parallelization system that
translates HPF programs into parallel Fortran 90/MPI mes-
sage passing programs. In our approach, the overall parallel
I/O software consists of two components: a set of I/O sup-
port modules included in VFC, and a parallel I/O runtime
system. VFC processes the I/O specifications provided by
the user and replaces them by code segments that perform
the runtime analysis of file attributes and execute I/O opera-
tions. The I/O runtime system consists of a component sup-
porting the master-node based I/O (Section 2, page 2), and
the ViMPI library which is implemented in Fortran 90 on
top of ROMIO [23]. The data repository supporting check-
point/restart and timestep operations is implemented by a
set of standard parallel files.

4 Performance Results

We run the experiments on the Beowulf-Cluster consist-
ing of one front-end node and 8 compute nodes.
The parallel I/O support was applied to two model applica-
tions. The first application is a part of the Eigenvalue solver
code taken from the software package WIEN973. Figure 7
shows a part of the out-of-core version of the kernel loop
nest of this code. In the original in-core version, the iter-
ation space has a triangular form as depicted in the figure
left. In the out-of-core version, the iteration space has been
tiled in the way depicted in this figure, whereby we set N to
500500. In our experiments, we used three versions of I/O
implementation: (1) using the standard Fortran I/O opera-
tions (VFC applies the master-node strategy), (2) using the

3WIEN97 [17] is a well established computer code used for quantum
mechanical calculations of solids.

array file approach - the file is stored on the front-end node
disk (nfs I/O), and (3) using the array file approach - the ar-
ray file is stored on the compute node disks (parallel I/O).
The experimental performance results are shown in Table 1.
For each version, we show the execution time of the whole
out-of-core loop, and how much of this time was consumed
for reading and writing array sections. These performance
results show that the array file approach brings a great effi-
ciency improvement, especially, in the case when the array
file is stored on the compute node disks.

In the second I/O application study, we measured the
performance of the checkpoint/restart operations introduced
in Figure 5 and compared this performance with the cases
when these high-level operations were implemented by ex-
plicit read and write operations. The experimental results in
Table 2 show that only the parallel restart operations, in the
experiments with 6 and 8 compute nodes, have visibly lower
performance than the corresponding read operations. How-
ever, any implementation shows a dramatical performance
improvement in comparison with the master-node I/O.

5 Related Work

So far, only a small effort has been put into the design
of language extensions supporting parallel I/O in HPF. P.
Brezany, et al. [18] introduced array files optimizing stor-
age and transfer of distributed arrays; in their approach, op-
erations on array sections were not supported. M. Snir [25]
proposed an annotation for mapping of arrays to disks and
I/O nodes. Bordawekar and Choudhary [3] proposed some
directives for parallel I/O that can be used in conjunction
with other HPF directives. In particular, they have intro-
duced a directive for the specification of a logical disk ar-
ray, an array of processors which really participate in per-
forming I/O, a file template that is distributed across the
disk array, and association of an HPF array template with
a file template. M. Paleczny, et al. [13] proposed language
constructs for distribution of out-of-core arrays across I/O

6

Table 2. Time (in secs) for Various Implementations of Checkpoint/Restart

Implementation Style 2 nodes 4 nodes 6 nodes 8 nodes

write (by master node) 694.82 611.91 591.37 578.48
write (nfs mode) 11.35 11.56 12.23 12.06
write (parallel) 1.44 0.78 0.85 0.78
read (by master node) 682.81 600.79 577.70 564.72
read (nfs mode) 3.79 5.99 6.26 4.93
read (parallel) 1.97 0.93 0.68 0.52

checkp def (nfs mode) 0.016 0.014 0.016 0.020
checkp def (parallel) 0.046 0.050 0.033 0.029
checkp write (nfs mode) 11.42 12.42 12.24 12.30
checkp write (parallel) 6.11 3.85 3.49 0.98
checkp restart (nfs mode) 3.98 5.99 5.54 4.76
checkp restart (parallel) 1.98 1.08 1.21 0.82

nodes. J. Nieplocha and I. Foster [15] developed a library
optimizing accesses to two-dimensional out-of-core arrays;
this library could be coupled to the VFC modules imple-
menting accesses to array files.

6 Conclusions

Clusters of workstations can be equipped with high-
capacity parallel I/O subsystems. Efficient usage of such
subsystems is critical to the performance of I/O bound ap-
plication codes. In this paper we have presented language
constructs to express parallel I/O operations in HPF. The
extensions to the HPF compiler and the parallel I/O run-
time library have been fully implemented and the prototype
implementation was evaluated on the eight-node Beowulf-
class cluster system installed at our Institute. On the per-
formance results gained from two model applications, we
showed that the introduction of parallel I/O has radically
improved the performance of these applications. The lan-
guage concepts, presented here in the context of HPF, can
be easily integrated into any other data parallel language.

References

[1] A. Choudhary, R. Bordawekar, M. Harry, R. Krishnaiyer,
R. Ponnusamy. PASSION: parallel and scalable software for
input-output. Technical Report SCCS-636, Syracuse Uni-
versity, ECE Dept., NPAC and CASE Center, September
1994.

[2] AURORA - Advanced Models and Software Sys-
tems for High Performance Computing. Special
Research Program of the Austrian Science Fundation;
http://www.vcpc.univie.ac.at/aurora/.

[3] R. Bordawekar and A. Choudhary. Language and compiler
support for parallel I/O. IFIP Working Conference on Pro-

gramming Environments for Massively Parallel Distributed
Systems, April 1994.

[4] R. Buyya, editor. High Performance Cluster Computing,
volume 1 and 2. Prentice Hall, New Jersey, 2000.

[5] T. Cortes. Cooperative Caching and Prefetching in Paral-
lel/Distributed File Systems. PhD thesis, UPC: Universitat
Politècnica de Catalunya, Barcelona, Spain, 1997.

[6] D.M. Pase, T. MacDonald, A. Meltzer. MPP FORTRAN
Programming Model. Technical Report, Cray Research,
March 1992.

[7] E. Schikuta, T. Fuerle and H. Wanek. ViPIOS: The Vi-
enna Parallel Input/Output System. In Proc. Euro-Par’98,
Southampton, England, 1998. Springer-Verlag, LNCS.

[8] E. Smirni, R.A. Aydt, A.A. Chien, and D.A. Reed. I/O
Requirements of Scientific Applications: An Evolutionary
View. In Proc. of the Fifth IEEE International Symposium
on High Performance Distributed Computing, pages 49–59,
Syracuse, NY, IEEE Computer Society, 1996.

[9] S. B. et al. VFC - The Vienna HPF+ Compiler. In Proc. of
the Int. Conf. on Compilers for Parallel Computers, Linkop-
ing, Sweden, June-July 1998.

[10] H. P. F. Forum. High Performance Fortran, Version 2.0,
February 1997.

[11] M. Forum. MPI-2: Extensions to the Message–Passing In-
terface, July 1997.

[12] H. Zima, P. Brezany, B. Chapman, P. Mehrotra, and
A. Schwald. Vienna Fortran - a language specification.
ACPC Technical Report, University of Vienna, 1992.

[13] M. Paleczny, K. Kennedy, and C. Koelbel. Compiler Support
for Out-of-Core Arrays on Parallel Machines. In Proc. of
the 7th Symposium on the Frontiers of Massively Parallel
Computation, McLean, VA, February 1995.

[14] J. May. Parallel I/O for High PerformanceComputing. Mor-
gan Kaufmann Publ., 2000.

[15] J. Nieplocha and I. Foster. Disk Resident Arrays: An Array-
Oriented I/O Library for Out-Of-Core Computations. In
Proc. of the Sixth Symposium on the Frontiers of Massively
Parallel Computation, pages 196–204. IEEE Computer So-
ciety Press, October 1996.

7

[16] N. Nieuwejaar and D. Kotz. The Galley parallel file sys-
tem. In Proc. of the 10th ACM International Conference on
Supercomputing, May 1996.

[17] P. Blaha, K. Schwarz, P. Dufek, and R. Augustyn. WIEN95,
a full-potential, linearized augmented plane wave program
for calculating crystal properties. Research Report, TU
Wien, 1997.

[18] P. Brezany, M. Gerndt, P. Mehrotra, and H. Zima. Concur-
rent file operations in a High Performance FORTRAN. In
Proc. of Supercomputing ’92, pages 230–237, 1992.

[19] P. Brezany, P. Czerwinski, A. Swietanowski, and
M. Winslett. Parallel Access to Persistent Multidi-
mensional Arrays from HPF Applications Using Panda.
In High-Performance Computing and Networking Europe
2000. Springer-Verlag, May 2000.

[20] Specification of the Extended I/O Support
for HPF. Online document available at
http://www.par.univie.ac.at/˜brezany/par-io/pario-lang.ps,
October 2000.

[21] P.H. Carns, W.B. Ligon III, R.B. Ross, and R. Thakur.
PVFS: A Parallel File System for Linux Clusters. In Proc.
of the Externe Linux Track: 4th Annual Linux Showcase and
Conference, October 2000.

[22] IBM AIX Parallel I/O File System: Installation, Adminis-
tration, and Use. IBM Document SH34-6065-00, 1995.

[23] R. Thakur, W. Gropp, and E. Lusk. On Implementing MPI-
IO portably and with high performance. In Proc. of the 6th
Workshop on I/O in Parallel and Distributed Systems, pages
23–32. ACM Press, May 1999.

[24] K. Seamons and M. Winslett. Multidimensional Array I/O
in Panda 1.0. Journal of Supercomputing, 10(2):191–211,
1998.

[25] M. Snir. Proposal for I/O. Posted to HPFF I/O Forum, July
1992.

[26] Sun Microsystems, Inc. The NFS distributed
file service. Online whitepaper available at
http://www.sun.com/software/white-papers/wp-nfs/,
March 1995.

8

