
Scalable Translation Validation

Tools, Techniques and Framework

DISSERTATION

submitted in partial fulfillment of the requirements for the degree of

Doktor der technischen Wissenschaften

by

Dipl.-Ing. Roland Lezuo

Registration Number 0227059

to the Faculty of Informatics

at the Vienna University of Technology

Advisor: Ao.Univ.Prof. Dipl.-Ing. Dr. Andreas Krall

The dissertation has been reviewed by:

(Ao.Univ.Prof. Dipl.-Ing. Dr.

Andreas Krall)

(Prof. Dr. rer. nat. habil. Wolf

Zimmermann)

Wien, 20.03.2014

(Dipl.-Ing. Roland Lezuo)

Technische Universität Wien

A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Erklärung zur Verfassung der Arbeit

Dipl.-Ing. Roland Lezuo
Burggasse 35/1, 1070 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwende-
ten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit -
einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken oder dem Internet im
Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als Ent-
lehnung kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Verfasser)

i

For Maya

Acknowledgments

First I want to thank my wife for her encouraging support and understanding during this time of
ups and downs and my children for cheering me up as only children can.

Many thanks to my advisor, Andreas Krall, for letting me pursue the topic with such a high
degree of freedom and personal responsibility. The trust he put into me was always motivating
for me. I also want to thank Wolf Zimmermann for the enlightening discussion on the topics
of programming language semantics and translation validation. Without his support this work
would not have been possible. And last, but not least, I want to thank Laura Kovács for her
invaluable support regarding theorem provers.

I also want to mention all my colleagues at the Complang group in Vienna which always
made going to the office a joy. Especially I want to emphasize Gergö Barany for his precise
comments on paper drafts and fruitful discussion on CASM and Ioan Dragan for his collabora-
tion regarding vanHelsing. Special thanks go to Dominik Inführ and Philipp Paulweber for their
commitment to provide solid implementations of my prototypes. And very special thanks to my
sister Cornelia for her heroic proof reading.

Funding: This work is partially supported by the Austrian Research Promotion Agency (FFG)
under contract 827485, Correct Compilers for Correct Application Specific Processors and Catena
DSP GmbH.

v

Abstract

Today embedded computer systems are often used in safety-critical applications. A malfunction
in such a system (e.g. X-by-wire) often has severe effects, even life-threatening consequences.
Lots of effort is put into certification to assure the correct and safe behavior of safety-critical ap-
plications. Due to the high complexity of modern technical systems, a high-level programming
language like C is commonly used to implement their software.

This makes the compiler a critical component in the certification of safety-critical systems.
Even if the source code is fully certified and error-free an erroneous compiler could introduce
unintended behavior and hence the certification would be in vain. This is one motivation of
research in compiler correctness, a discipline which develops methods to show that the compiler
behaves correctly. One approach, namely translation validation, formally proves that a single,
specific run of the compiler was error-free.

This thesis contributes a framework which allows to apply translation validation from the
source code down to its binary representation. The CASM language, based on the formal method
of Abstract State Machines (ASM), has been developed as part of this thesis to specify the se-
mantics of the source language and machine code. Using the novel technique of direct symbolic
execution a first-order logic representation is created as the foundation for the formal proofs. To
exploit the common structure found in problems originating from translation validation prob-
lems a specialized prover called vanHelsing has been implemented as part of this thesis. Its
visual proof debugger enables non-domain experts to analyze failing proofs and pinpoint the
causing, erroneous translation.

The detailed evaluation shows that CASM is by far the best performing ASM implemen-
tation. It is efficient enough to synthesize Instruction Set Simulation and Compiled Simula-
tion tools. The vanHelsing prover performs much better than other state of the art provers on
problems stemming from translation validation. These efficient tools and the high degree of
parallelism in our translation validation framework enable fast validations. The implemented
prototypes for instruction selection, register allocation and VLIW scheduling demonstrate that
validation of real-world applications like bzip2 is possible within a few dozen minutes.

vii

Kurzfassung

Viele der heute verwendeten eingebetteten Computersysteme übernehmen sicherheitskritische
(safety-critical) Aufgaben. Die Fehlfunktion eines sicherheitskritischen Systems führt per Defi-
nition zu großen Schäden, unter ungünstigen Umständen auch zur Gefahr für Leib und Leben.
Teure Zertifizierungsverfahren werden durchlaufen um das korrekte und sichere Verhalten sol-
cher Systeme sicherzustellen. Aufgrund der allgemein hohen Komplexität moderner technischer
Systeme wird die Software, auch von sicherheitskritischen Anwendungen, oft in Hochsprachen
wie C implementiert.

Dadurch wird der Übersetzer (compiler) dieser Sprache zertifizierungsrelevant. Selbst wenn
der zugrunde liegende Quellcode der Software bewiesenermaßen fehlerfrei ist kann ein einzi-
ger Übersetzungsfehler ein verändertes Verhalten in der Ausführung bewirken. Dieser würde
jedoch die komplette Zertifizierung obsolet machen, eine Motivationen für Forschung im Gebiet
der Übersetzerkorrektheit (compiler correctness), einer Disziplin welche Techniken und Metho-
den erforscht um mit Hilfe formaler Verfahren die Korrektheit von Übersetzern sicherzustellen.
Ein methodisches Vorgehen, die sogenannte Translation Validation, prüft dabei a posteriori die
semantische Äquivalenz des Quellcodes mit dem übersetzten Programm.

Diese Dissertation beschreibt einen strukturellen Ansatz, welcher es ermöglicht, alle Schrit-
te einer Übersetzung mit der Translation Validation Methode zu verifizieren. Um eine präzise
Beschreibung der Semantik des Quellcodes und der ausführenden Maschine zu erstellen wurde,
basierend auf der Theorie der Abstract State Machine (ASM), eine geeignete Sprache (CASM)
spezifiziert und implementiert. Durch die innovative Technik der direkten symbolischen Ausfüh-
rung von ASM kann die Semantikspezifikation konkreter Programme in Prädikatenlogik erster
Stufe dargestellt werden. Diese Darstellung bildet die Grundlage für den formalen Beweis der
Übersetzerkorrektheit. Die sich ergebenden Beweisverpflichtungen weisen eine gemeinsame,
problembezogene Struktur auf. Der im Zuge dieser Arbeit entwickelte vanHelsing Beweiser ist
in Hinblick auf diese Struktur optimiert. Die Möglichkeit nicht bewiesene Probleme grafisch zu
untersuchen bietet, auch ungeübten Anwendern von Theorembeweisern, ein Werkzeug um die
jeweilige Ursache in der Problemdomäne zu identifizieren.

In der ausführlichen empirischen Untersuchung wird gezeigt, dass die CASM Sprache we-
sentlich schnellere Programmausführung ermöglicht als andere ASM Implementierungen. Die
Geschwindigkeit ist hoch genug um sowohl Befehlssatz Simulatoren (Instruction Set Simula-

tor) als auch übersetzende Simulation (compiled simulation) aus den CASM Spezifikationen
der Maschine zu erzeugen. Der vanHelsing Beweiser ist, für Probleme hinsichtlich derer er opti-
miert wurde, wesentlich schneller als andere Theorembeweiser. Erst diese effizienten Implemen-

ix

tierungen ermöglichen dass die Laufzeiten, der im Zuge dieser Arbeiten erstellten Prototypen
für Translation Validation (Codeerzeugung, Registerzuteilung und Befehlsanordnung für VLIW
Maschinen), selbst für realistisch große Programme wie z.B.: bzip2, jeweils nur wenige Minuten
betragen.

List of used Acronyms

ABI Application Binary Interface

ADL Architecture Description Language

ALU Arithmetic Logic Unit

ASM Abstract State Machine

AST Abstract Syntax Tree

ATP Automated Theorem Proving

BV Bit Vector

CFA Control Flow Association

CFG Control Flow Graph

cLIR causal LIR

CS Compiled Simulation

DFT Data Flow Tree

DSL Domain Specific Language

EBNF Extended Backus-Naur Form

EMF Eclipse Modeling Framework

FFT Fast Fourier Transformation

FU Functional Unit (part of CPU dedicated to specific operation)

FUF FU Field (part of internal state of a FU)

FV Field Value (decoded field of an instruction)

ILP Instruction Level Parallelism

xi

IR Intermediate Representation

ISS Instruction Set Simulation

LASM Linked Assembly Module

LIR Low-level IR

LOC Lines of Code

MIR Mid-End IR

mMIR matcher MIR

SIMD Single Instruction Multiple Data

sLIR scheduled LIR

SMT Satisfiability Modulo Theories

STS State Transition System

SSA Static Single Assignment

VLIW Very Long Instruction Word

XML eXtensible Markup Language

Contents

1 Introduction 1

2 Related Work 5

2.1 Compiler Verification . 5
2.2 Abstract State Machines . 7
2.3 First-Order Theorem Provers . 8

3 CASM - Efficient Abstract State Machines 11

3.1 CASM - An Implementation of ASM . 11
3.2 Direct symbolic execution of ASM . 14
3.3 Efficient Compilation of CASM . 20

4 Semantics and Compilers 25

4.1 ADL for Retargetable Compilers . 25
4.2 Compiler Overview . 27
4.3 Semantics of Compiler IR . 28
4.4 A unified Machine Model . 31

5 Proof Techniques 35

5.1 Program Checking . 35
5.2 Simulation Proofs . 35

6 The Big Picture - Chain of Trust 41

6.1 Definition of Correct Compilation . 42
6.2 Front-end . 44
6.3 Mid-end - Verification of Analyses . 44
6.4 Back-end - Verification of Transformations 45
6.5 Multiple Iterated Passes . 45

7 Correctness of Selected Back-end Transformations 47

7.1 Prolog and Epilog Insertion . 47
7.2 Instruction Selection . 49
7.3 If Conversion . 52
7.4 VLIW Scheduling . 54

xiii

7.5 Software Pipelining . 56
7.6 Register Allocation & Spilling . 58
7.7 Stack Finalization . 61
7.8 Linking . 61
7.9 Summary . 62

8 vanHelsing: Prover and Debugger 63

8.1 Input Language . 64
8.2 Implementation . 65
8.3 Proof Debugger . 67
8.4 Defining Expressions . 69

9 Instruction Set Simulation & Compiled Simulation 71

9.1 Instruction Set Simulation . 71
9.2 Instruction Set Simulator Verification . 72
9.3 Compiled Simulation . 75

10 Evaluation 79

10.1 CASM implementation . 79
10.2 vanHelsing Prover . 89
10.3 Translation Validation . 90

11 Future Work 97

11.1 CASM Object Model . 97
11.2 Update Placement Optimization for the CASM Compiler 97
11.3 Translation Validation of the CASM Compiler 98
11.4 Synthesization of the Compiler Specification 98

12 Conclusion 99

Bibliography 101

A Vocabulary and Axioms 109

B The CASM Language 119

C vanHelsing Input Language 125

D Colophon 129

E Curriculum Vitae 131

1 Introduction

The number of embedded systems used in everyday life has increased significantly in the last
decade and will increase further. With the increasing prevalence, more and more systems are
used in safety-critical applications. According to Wikipedia a malfunction of a safety-critical
system may result in death or serious injury to people, or loss of severe damage to equipment
or environmental harm. To manage the complexity, software used to operate critical systems is
often written in a high-level programming language, like C. There are industry-wide standards
on the usage of C in such systems, e.g. MISRA C:2004 1, a guideline to the use of the C language

in critical systems.
To assure the correctness of safety-critical systems a significant effort is put into their veri-

fication. A good point in case is the seL4 micro-kernel [40], a kernel for security-critical appli-
cations with high reliability demands. It has been shown that this approximately 10.000 Lines
of Code (LOC) C program is consistent with its specification models and free of a large class
of common bugs (including null pointer access, alignment constraints, termination, processing
unchecked user data). The manual labor put in (and therefore the costs of) such a verification
are very high, i.e. many person years of work. The result of the verification is a trusted base of
C code.

But the guaranteed properties of verified source code do not imply that those properties hold
in the embedded system. The source code is compiled to the target hardware and executed by
a real micro-processor, and both, the compiler and the hardware, may be erroneous. Hardware
verification is a well studied problem and today’s designs are at least partially verified [37].
Although there exist hardware bugs (e.g. the famous Intel FDIV bug 2) they are much less
problematic than software bugs in today’s systems.

1
http://www.misra.org.uk/

2
http://en.wikipedia.org/wiki/Pentium_FDIV_bug

1

http://www.misra.org.uk/
http://en.wikipedia.org/wiki/Pentium_FDIV_bug

1 Introduction

All it takes to invalidate the verification results is a single compilation error resulting in a
behavioral difference between source code and binary. Such an change in behavior invalidates
the preconditions made to verify the source code, and thous the results don’t hold for the binary.
A recent study by Yang et al. [68] reports on a large scale random testing of 11 C compilers
including GCC, LLVM and CompCert [43]. They found silently erroneous compiled code in
every single compiler, including the CompCert compiler, which is the only major commercial
available (in large parts) verified C compiler. The conclusion is that compiler errors are probably
more common than anticipated and can not be ignored in safety-critical systems.

Compiler verification is the field of research which deals with methods and techniques to
show that a compiler behaves as specified. A verified compiler is a compiler for which has
been shown that it is error-free, i.e. each program translated with a verified compiler is error-
free. A disadvantage of this approach is that the smallest change in the compiler triggers a full
re-verification. The other major approach is translation validation, which does not show that
the compiler is correct, but that a specific, single compilation is correct. The compiler itself
may contain errors, but they do not matter as long as those errors do not manifest themselves
(i.e. changing the behavior of the binary). One advantage of this approach is that the compiler
can be developed using common software engineering techniques, the disadvantage is that the
validation has to be performed for each compilation.

To apply translation validation the semantics of the source and target languages must be
known concisely (formally). The proof itself relies on formal methods and tools. Automated
Theorem Proving (ATP) is an established field of research and a number of mature theorem
provers is available. The method presented in this thesis makes use of that knowledge by creating
a problem formulation suitable for ATP tools.

Contribution

This thesis contributes to the field of compiler verification by developing scalable, fully auto-
mated methods which allow to verify the whole compilation process (from source to binary).
A translation validation framework is proposed which splits the validation task along compiler
passes. This allows each pass to be validated in isolation (local correctness), keeping the valida-
tors simple. The validators further split the validation task along basic blocks of the program.
This gives a very high degree of parallelism which can be exploited to achieve fast validation
even for very large programs. The framework allows to extend those local proofs to the notion
of a global correctness.

We developed a variant of Abstract State Machine (ASM), called CASM, to formally specify
the semantics of the involved languages. The novel technique of direct symbolic execution is
used to create first-order logic representations of the CASM specifications, which allows the use
of theorem provers.

Another contribution of this work is the vanHelsing theorem prover. This prover is special-
ized for the type of problems stemming from translation validation. Due to the specialization
on this specific class of problems it also delivers excellent performance. A distinct feature is
its support for graphical debugging failing proofs. This allows to analyze problems in proofs
without expert knowledge in theorem proving. Even a novice user is able pinpoint the causing
issue in the problem domain.

2

We also feel that verification in an industrial context should not be an isolated task. Therefore
we developed tools to reuse the semantic models to synthesize instruction set simulators and
perform compiled simulation. We argue that a single rigorous (formal) specification of the
hardware is sufficient for verification, and synthesization of Instruction Set Simulation (ISS)
and Compiled Simulation (CS) tools.

Layout of the Thesis

The remainder of this thesis is structured as follows: Chapter 2 discusses related work in the
field of compiler verification, ASM and first-order theorem provers. Chapter 3 introduces the
CASM language developed as part of this thesis. It defines the novel method of direct symbolic

execution and describes the optimizing compiler. In chapter 4 the semantic aspects of compiler
Intermediate Representations (IRs) are presented. A method to specify the semantics for a retar-
getable compiler for application specific processors is given. The technical aspects of creating
IR dumps as CASM programs are presented. Chapter 5 introduces the proof techniques used
in this work. The simulation proof technique and the common semantic vocabulary are a core
concept of this thesis.

After the technical foundations have been laid chapter 6 presents our translation validation
framework and describes the verification from C source code down to machine code. The defi-
nition of the term correct compilation is given. Front-end and mid-end are discussed, while the
focus of this thesis is on the compiler back-end. In chapter 7 the validator tools for specific back-
end passes developed in this work are presented. This chapter is the technical core of this thesis.
Chapter 8 describes the vanHelsing prover, a fully-mechanized first-order theorem prover devel-
oped as part of this thesis. The main motivation to implement a custom prover is its ability to
provide graphical debugging aids for failing proofs. vanHelsing is specialized on a specific class
of proofs which commonly occur in the context of translation validation. This chapter describes
the proof class and argues why a specific prover performs significantly better than more general
theorem provers. Chapter 9 describes the implementation details of ISS and CS based on the
CASM models. Chapter 10 reports on the performance of the methods developed in this work.
We present benchmark data of selected validator prototypes, the vanHelsing prover and our ISS
and CS implementations. In chapter 11 possible extensions to the tools and open issues which
were not addressed by this work are discussed, and chapter 12 finally concludes this thesis.

3

2 Related Work

pic unrelated

2.1 Compiler Verification

Compiler verification is a very old idea with its roots in the 1960s. One idea is to prove that
a compiler will only generate correct code. In this work we call this a verified compiler in the

strict sense. The main disadvantage of this approach is that any change in the compiler triggers
a complete re-verification. A verified compiler is therefore a piece of software set in stone.

Nonetheless Leroy’s CompCert [43], the most important commercial available verified com-
piler, is a verified compiler in the strict sense. Large parts of CompCert are specified in Coq [9],
an interactive proving tool which allows to extract executable code out of a specification. The
compiler front-end (parser, type-checker and simplifier) and the assembler output module are
not verified, though. With Yang et al. [68] recently finding serious bugs in the simplifier a com-
plete source-to-binary verification seems to be necessary. The CompCert approach also fully
trusts the assembler (creating the binary representation of the assembler language) and linker.
Our approach covers parsing and linking.

The second important approach to compiler verification is translation validation. It has been
suggested by Pnueli [57] and only verifies that a specific compilation is correct. The idea is sim-
ilar to program checking [10]. An external observer (the validator) determines the correctness
of an computation by inspection of the input and the calculated output. After a source program
has been translated by an unverified compiler a validator tries to prove the target program to be
a correct compilation. The proofs are performed by simulating source and target in a common
semantic framework. The motivation of translation validation is that the validator may be signif-
icantly easier to write (and verify) than the compiler itself. In addition the software development
process of the compiler is unconstrained (as changes don’t trigger expensive re-verification).

Zimmermann and Gaul showed that this approach can be applied to realistic compilers (Ver-
ifix project [70]). They suggested ASM to build the common semantic framework, an idea also

5

2 Related Work

used in this work. Tree pattern matching rules are partially checked when generating the Verifix
back-end, it is therefore (partly) verified in the strict sense. It is also entangled with register allo-
cation. Our approach separates these passes and fully validates tree pattern matching at compile
time.

Zuck et al. present VOC, a translation validation framework and tool for an optimizing com-
piler. They focus on the compiler IR and optimizations performed on it but do not cover machine
code. Otherwise their notation of correctness is very similar to ours. Using a common semantic
framework to describe source and target program they rely on simulation proofs to show that
the target is a refinement of the source. Our approach is more general as we allow the source
and target program to be in different IR languages. The validation tool operates on functions
and considers whole paths through the function which may lead to scalability issues for large
functions. Our approach operates on basic blocks which are on average significant smaller. They
also discuss structure changing loop transformations which are quite hard to validate. In contrast
to our work they do not consider pointers and aliasing at all.

Leviatan [44] presents a translation validation tool for software pipelining. They derive
a large number (depending on the number of parallel stages) of correctness conditions to be
verified. Pointers and aliasing is also not handled by this approach.

In [53] Necula describes a translation validation tool for an unmodified version of the GCC
compiler. His approach operates on GCC’s IR directly which is dumped before and after each
optimization pass has been performed. Using a small set of heuristics enables identification of
the applied transformations in the majority of the cases (i.e. there are false negatives). As in our
approach symbolic execution of basic blocks combined with tracking of liveness information
yields a good scalability. The main limitations of this approach are that it is unclear how to
extend it to machine code as it operates on GCC IR directly.

More work on compiler verification can be found in Maulik’s bibliography [20].

Differentiation

Figure 2.1 compares the discussed approaches with respect to various features. A ++ means
very well suited, + means well suited, - means not so well and - - finally is not well suited. An
important aspect is whether the approach can handle the whole compilation, that is from source
down to binary (source-to-binary). Providing witness information means that the compiler must
be changed which is an undesirable property for industrial application. By scalability we mean
whether the method can cope with large programs. Modern industrial compilers transform pro-
grams in multiple (probably repeated) passes. Splitting the validation into passes is therefore
important (multi-pass compilers). The effort to create a validator for an additional pass is an
important aspect for industrial acceptance of translation validation. And finally the size of the
trusted code base matters. The larger it is the more effort (and monetary resources) must be put
into its certification.

6

CompCert Necula VOC Verifix this work
source-to-binary - - - - - ++ ++
compiler-provided witness ++ + - - –
scalability ++ ++ - - ++
multi-pass compilers + ++ + - ++
effort for additional pass - - + + - ++
size of trusted code-base - ++ ++ + +

Figure 2.1: Compiler verification feature matrix

2.2 Abstract State Machines

ASM was introduced by Gurevich (originally named evolving algebras) in the Lipari Guide [31].
The original motivation was to bridge the gap created by the computational model of Turing
machines. A coding-free technique to describe algorithms on a natural abstraction level was
sought.

The ideas of ASMs were further developed by Gurevich and others at Microsoft Research
resulting in a powerful specification language called AsmL [33]. AsmL is designed to be simple,
precise, executable, testable, inter operable, integrated, scalable and analyzable. The language
is statically typed, supports object oriented features, has call-by-value semantics and supports
exceptions. An efficient compiler for .NET has been developed and the language has been fully
integrated into the .NET framework and the Microsoft development environment [7]. The tool
environment comprehends parameter generation for providing method calls with parameter sets,
finite state machine generation from an ASM, sequence generation for deriving test sequences
and run-time verification for testing if an implementation performs conforming to the model.
The tool environment around AsmL is the most advanced currently available.

One of the most performance critical issue in ASMs is the problem of partial updates. Gure-
vich and Tillmann discussed the problem in detail and showed how concurrent data modifica-
tions can be implemented efficiently [34]. Similar problems occur in version control systems on
software merging [52]. Techniques which work only on the delta (the differences) of the data
sets inspire optimizations on efficient update implementation in CASM.

Castillo describes the ASM Workbench in [17]. Similar to CASM he added a type system
to his language. The ASM Workbench is implemented in ML1 in an extensible way. Castillo
describes an interpreter and a plugin for a model checker, which allows to translate certain
restricted classes of ASMs to models for the SMV2 model checker.

Schmid describes compiling ASM to C++ [60]. The compiler uses the ASM Workbench
language as input. He proposes a double buffering technique avoiding implementing update sets
at all. This approach is limited to parallel execution semantics only, though.

Schmid also introduced AsmGofer in [61]. AsmGofer is an interpreter for an ASM based
language. It is written in the Gofer3 language (a subset of Haskell) and covers most of the

1
http://en.wikipedia.org/wiki/Standard_ML

2
http://www.cs.cmu.edu/~modelcheck/smv.html

3
http://web.cecs.pdx.edu/~mpj/goferarc/index.html

7

http://en.wikipedia.org/wiki/Standard_ML
http://www.cs.cmu.edu/~modelcheck/smv.html
http://web.cecs.pdx.edu/~mpj/goferarc/index.html

2 Related Work

features described in the Lipari guide. The author notes however that the implementation is
aimed at prototype modeling and too slow for performance critical applications.

Anlauff introduces XASM, a component based ASM language compiled to C [4]. The novel
feature of XASM is the introduction of a component model, allowing implementation of reusable
components. XASM supports functions implemented in C using the extern keyword. CASM
does not feature modularization, but can be extended using C code as well. XASM was used as
the core of the gem-mex system, a graphical language for ASMs.

Gargantini et al. report on ASMETA [28]. Part of the development is a compiler translating
ASM models into Eclipse Modeling Framework (EMF). The focus of this ASM implementation
are high level models and design space exploration.

Farahbod designed CoreASM, an extensible ASM execution engine [23]. The CoreASM
project is actively maintained and has a large user base. The CASM language is inspired by the
CoreASM language, but over time they have diverged significantly.

Teich, Kutter and Weper describe a method to extract an ASM based instruction set descrip-
tion from a hardware description language [66]. This description is then used to automatically
generate C code for a cycle accurate simulator of the processor. The Gem-Mex tool used pro-
vides support for implementing a parser which is used to read in assembler files for the simulator.
Bit-true arithmetic functions are implemented in C and linked to the generated code. The feasi-
bility of the approach is demonstrated by simulating very short programs on an ARM processor.
No comparison to conventional simulators and no performance data are presented however.

Differentiation of CASM

The available ASM tools are not implemented with efficient execution of ASM in mind. One
reason is that ASM are often used to create high level models and explore the design space.
Concrete implementations are written by hand and verified against the ASM model, often us-
ing model checkers. CASM differs from these approaches as it aims to be executed efficiently.
Our models are not just specifications, but concrete and efficient implementations are synthe-
sized. For that purpose we have developed an optimizing compiler. CASM is to the best of our
knowledge the only ASM implementation offering symbolic execution.

2.3 First-Order Theorem Provers

Most state-of-the art theorem provers are based on the superposition calculus [6, 54]. Those
provers try to perform proofs by refutation, i.e. by deriving an contradiction. A common clas-
sification of provers is whether they use an OTTER [50] style saturation algorithm or DIS-
COUNT [5] style. The difference is in the treatment of generated clauses. As this set constantly
grows the prover may need to remove inferred clauses at some point in time. DISCOUNT based
prover therefore never utilize clauses from this set for inference or simplification. Schulz’s E [62]
prover is a modern, fast implementation based on DISCOUNT.

Vampire [59, 41] on the other hand implements both variants. Vampire is among the fastest
theorem prover and has won the first-order section of the CASC [64] competition many years in
a row now.

8

Satisfiability Modulo Theories (SMT) is another major branch in ATP. SMT is a general-
ization of the boolean SAT problem. Certain predicates in a SMT problem are interpreted using
additional theories (hence the name SMT). The solvers for the theories (e.g. bit vector arith-
metic) need to feed back results into the generic SAT solving part. A popular implementation is
Microsoft’s Z3 [21] prover. It is available under a shared-source license for many platforms.

Manna et al.’s STeP prover [49] has a rich graphical user interface allowing the user to guide
the proof system. Counter examples can be derived automatically and debugging of problems is
possible. STeP is an interactive tool, though, and its primarily intended for temporal specifica-
tions.

Differentiation of vanHelsing

The proving tool developed in this thesis is solely unification based. In contrast to superposition
based provers, it is not searching for a refutation of the problem but performing unification until
a fix-point is reached. The conjecture must then be provable with the found unifications. This
simplicity allows a very efficient implementation based on a graph data structure. The graph
data structure can be visualized and allows graphical introspection and debugging of problems.
We are not aware of a fully-mechanized prover which offers graphical proof introspection.

In contrast to SMT proving no background theories are implemented. Uninterpreted predi-
cates are axiomatized using first-order formulae. This allows more flexibility, but may negatively
influence performance.

9

3 CASM - Efficient Abstract State Machines

restrain from equiring whether the name comes from the letters, the

pillars, the leather, the place, or the mode of behavior

Puck, The Sandman by Neil Gaiman

This chapter introduces the CASM language, its tools and focuses on the features distinguishing
CASM from other ASM implementations. The novel technique of direct symbolic execution of
ASM is formally defined and the implementation in the CASM interpreter is described. Further
an efficient compilation scheme and an optimizing compiler are presented. During this thesis
python prototypes of the CASM interpreter (including symbolic execution) and the compiler
have been developed. The knowledge gained by the prototypes influenced the language de-
sign. A more efficient implementation of the interpreter using the C language was developed
by Dominik Inführ in his bachelor thesis [36] under supervision by the author. The optimizing
compiler was implemented by Philipp Paulweber in his master thesis [56] under supervision by
the author. Interpreter and compiler are implemented as a single binary sharing the front-end
(parser, type annotation, AST).

3.1 CASM - An Implementation of ASM

For a formal definition of CASM we refer to Gurevich’s Lipari guide [31], Börger and Schmid’s
introduction of sequential execution [11] and Farahbod’s CoreASM handbook [22]. More details
on the CASM language can be found in [45]. An Extended Backus-Naur Form (EBNF) grammar
can be found in appendix B. A novel feature of the interpreter is its capability to symbolically

execute [39, 18] ASM models.

3.1.1 Types

The CASM language is statically typed and offers Int, sub-range Int, Boolean, and String as
atomic types. Compound types are List and Tuple. There are no implicit type conversions

11

3 CASM - Efficient Abstract State Machines

performed by CASM. If desired the programmer can convert types using the (range checking)
built-in functions: Int2Boolean, Boolean2Int, Int2Enum, Enum2Int.

3.1.2 State

The central notion of ASM is the state. It is described using a set of functions. Each function

has an arity. Let a be an vector of arity n and f and n-ary function, then (a) is called a location.
In ASM functions are mathematical objects and are therefore defined over their whole range.
CASM functions are typed and programs are checked statically. A (finite) program only uses
a finite subset of values (of the state). The special value undef is assigned to locations which
have never been defined by the CASM program. Undef is a continuation of the underlying
function which assures a mathematical sound model. This gives a sound semantics to programs
reading undefined locations, in contrast to C’s behavior which e.g. is undefined if a program
reads undefined memory.

ASM rules (statements) do not change the state directly, but create updates. An update is a
tuple (f(a), v) which describes that the location f(a) was changed to value v. ASM rules are
executed in parallel, the updates produced by rules are joined to an update set. An update set
which contains more than one update to the same location is called inconsistent. Inconsistent
update sets are a run-time error in CASM.

Each CASM program has a top-level rule. This distinct rule is executed repeatedly, until the
program is terminated explicitly. Whenever the top-level rule concludes (function return) the up-
date set is applied to the state in an atomic operation. Hence ASM programs have transactional

semantics.

3.1.3 Rules

The following list briefly summarizes the most important rules implemented in CASM. Börger
and Schmid [11] is an excellent reference and we use the notational conventions introduced
there. All rules except the call rule have exactly the semantics given there (and we omit it here).
Ri is a rule and tj : Type is a term of the specific type. We omit the type specification for some
terms if it is not needed to capture the semantics, but keep in mind that all terms are typed in
CASM.

• Skip Rule: This rule does nothing and returns an empty update set.

skip

• Update Rule: Creates an update for a n-ary function f , assigning v to f(a).

f(a0, a1, . . . , an):=v

• Block Rule: This is the most basic rule defining parallel composition of enclosed rules.

{ R1R2 . . . Rn }

12

• Sequential Block Rule: All enclosed rules are composed using sequential execution se-
mantics.

{| R1R2 . . . Rn |}

• Conditional Rule: The basic ASM conditional rule. The conditional expression must be
of boolean type and the else-branch is optional.

if t : Boolean then R1 else R2

• Case Rule: An optional default case label is provided which will be executed if none of
the given cases match the value of the conditional expression t. The types of all ti must
be equal to the type of t.

case t : Enum, Int ,String of

t0 : R0

...

tn : Rn

default : R

endcase

• Forall Rule: The forall rule evaluates the rule of the body composing the resulting update
sets in parallel. Rule R will be evaluated for each element of the set described by t,
binding the element’s value to i. t may be an Enum type in which case each element of
the enumeration is used as value or a List (with obvious semantics).

forall i in t : Enum,List do R

• Iterate Rule: Turbo ASM’s iterate rule iteratively evaluates R using the intermediate state
of the previous iteration (sequential composition) until R’s update set is empty.

iterate R

• Let Rule: This rule adds a variable v to the environment. v is assigned the value t and R
is evaluated in this environment. CASM performs type inference so the type of v can be
skipped in most cases.

let v = t in R

• Call Rule: Basic ASM call semantics are defined as call-by-name which can be imple-
mented by a so called thunk [8], but this mechanism is not very efficient. CASM there-
fore has a modified semantics of the call rule. All arguments are evaluated before being
passed as arguments (one could simulate this with let rules in the basic ASM definition).
This makes call-by-name equivalent to call-by-value which is what CASM actually im-
plements. The other change is that a call rule is evaluated in a new (empty) environment.

13

3 CASM - Efficient Abstract State Machines

This effectively reduces the scope of variables introduced by let and forall rules (and the
scope of rule arguments). Dynamically scoped variables cannot be compiled efficiently
and cannot be typed statically. For all arguments ai of the rule R the type of ai must match
the type of the term ti. (A is a state, ζ the environment, ζ x

u
creates a new environment

ζ ′ which equals ζ except that ζ ′(x) = u. ζ x0

u0

x1

u0
is the obvious composition of the new

environment operator and ζ∅ is the empty environment.)

Jcall R(t0 , . . . , tn)K
A

ζ = JRKAζ∅
a0
v0

...an
vn

where vi = JtiK
A

ζ

• Indirect Call Rule: CASM supports indirect invocation of rules. This mechanism uses
a slightly different syntax where r is an expression returning a reference to a rule. The
semantics is otherwise identical to the call rule.

call (r : RuleRef)(t0, . . . , tn)

Further implemented rules are print, debuginfo (in accordance to [22]) and assert. The
debuginfo facilities support named channels and CASM tools accept a list of active channels.
Only the output produced by active channels is actually printed. The assert rule is in accordance
to the assert statement of the C language.

3.1.4 Expressions

The common boolean operations and, or, xor and not are implemented for Boolean values. Int

operations are +,−,∗,/ and modulo (%). Comparisons operators are <=, >=, ! = and equality
(=).

A standard library is provided by CASM providing the following operations: cons, app for
list construction, peek, tail to extract the list head (and tail) and hex converts an Int to a String

with its hexadecimal representation.

3.2 Direct symbolic execution of ASM

This section introduces symbolic execution of ASM and describes how it is implemented in
the CASM interpreter. We first define the formal foundations of symbolic execution in the
context of ASM. A way to represent symbolic trace as first-order logic predicates is given and
the implementation is described.

3.2.1 Definition of a Symbolic ASM

In this section we introduce symbolic execution and present an extension of Gurevich’s basic
ASM definition [31]. We tried our best to extend the basic ASM in a most natural way and in
the spirit of the original definition. Although we output symbolic traces as first-order logical
predicates, the definition of a symbolic ASM is generic and output formats (e.g. for model
checkers) could be generated as well. The remainder of this section discusses various design
decisions and gives definitions S1-S5 of a symbolic ASM.

14

Symbolic Execution

Symbolic execution is a technique where input values for a program may be so called symbols

representing any possible concrete value. When a symbolic value appears as argument to an
operation the result of the operation becomes a symbolic expression. Assume an addition y =
x+1 and let x be a symbol, y then becomes the symbolic expression x+1. Symbolic expressions
itself may be used as arguments for operations, e.g. z = y∗2. The value of z would then become
the symbolic expression (x + 1) ∗ 2. By construction symbolic expressions are expressions
consisting of operations applied to input symbols. There may be multiple input symbols for a
program and there must be a way to distinguish them.

Things get difficult (but interesting) when a symbolic expression appears as the conditional
in a control flow statement. The exact program continuation can’t be determined and execution
is forked to consider all paths. Instead of a single trace a tree of possible traces is generated. The
continuation chosen on a fork point implies a condition for the (symbolic) conditional (i.e. con-
ditional evaluated to true or false). The sum of all those conditions is called the path condition.

A system performing symbolic execution can without loss of generality create a fresh (never
used before) symbol for each symbolic expression and only operate on symbols. We assume
such a system for the remainder of this paper and use symbolic expressions, symbol and symbolic

value synonymous.

The Symbolic Universe

All basic ASM [31] contain the special null-ary function undef to deal with partial functions.
One could allow symbols to represent that value, but we think it is in the spirit of the basic ASM
definition that symbols cannot represent the value undef. We define symbols to be a distinct sort
(although compatible to other sorts), therefore:

A symbolic ASM is a basic ASM with addition of an universe Symbol. (S1)

All symbolic values are elements of this universe. Following the rule that undef is not part
of any universe we state:

s ∈ Symbol =⇒ s 6= undef. (S2)

A symbolic value is an unknown but concrete value, whereas undef is used to express the
value of an undefined location. In that sense the definition is natural. Finally it is important to
note that symbols can be uniquely identified (e.g. by numbering them), or in other words

The equality operator (=) is defined for all s1, s2 ∈ Symbol . (S3)

Summarizing S1-S3 a symbolic ASM contains at least 2 universes (Boolean and Symbol).
All symbols are unique and part of the Symbol universe, they cannot represent the value undef.

Symbolic Functions

To perform symbolic execution a way to provide input symbols to the ASM programs is needed.
Similar to undef being a continuation of partially defined functions, we define a symbolic con-
tinuation of partially defined symbolic functions. Partially defined symbolic functions are con-
tinued using pairwise distinct symbols. Obviously this definition implies an infinite number

15

3 CASM - Efficient Abstract State Machines

of symbols for infinite domains. This allows to model systems with an unknown or unbound
number of input symbols. In section 3.2.3 we present a technique to efficiently handle infinite
domains.

In ASM different types of functions (e.g. static for read-only) are possible. We add a new
function type – symbolic – which can be combined with the existing types. Only symbolic

functions are continued with pairwise distinct symbols.

Functions tagged symbolic =⇒ associated locations to be symbolic. (S4)

Each symbolic location contains a unique symbolic value. (S5)

3.2.2 Mapping Symbolic Traces to First Order Logic

While building symbolic expressions is well understood, presenting them for further processing
is an open issue. There is no single, clearly superior solution to the problem. Various authors
proposed different solutions, all suited for their special needs. Boyer’s [12] SELECT tool al-
lows the user to symbolically execute a program under his interactive control to support manual
proving of properties. Khurshid et al. [38] generate output for model checkers supporting non-
deterministic choice. Coen et al. [19] present symbolic expressions in the path description
language (PDL) output and process them using the SAVE tool.

We wanted a human readable format also suitable for automated processing and proving
tools. First-order theorem-proving is a mature branch of automated theorem proving with a
number of commercial and free provers available (e.g. Isabelle [55], SPASS [67] or Otter [51])
and is well suited for our needs. The TPTP language proposed by Sutcliffe et al. [65] is a text
based format understood by a wide range of automated theorem provers. We therefore decided
to generate symbolic traces as first-order logic formulas in TPTP format. Each trace created
describes exactly one path the program takes while being executed symbolically.

There is a semantic gap between a bunch of logic formulas and a trace describing a (sym-
bolical) program execution. The later has a notion of time whilst a set of logical formulas is not
time-aware. The remainder of this section describes how to map symbolic expressions and the
changed state produced by each computation step to first-order formulas.

Mapping of State and a Notion of Time

The basic idea is to map the value v of a location f(a) to a predicate f(a, v). Locations can
change their value over time, therefore they cannot be mapped to a logical predicate directly.
One needs to add a notion of time. We add a logical time-stamp as an additional (first) argument
to functions.

For a basic ASM, only consisting of synchronous parallel updates, a notion of time is easy
to give. Gurevich argues that each step of the computation corresponds to a tick of the logical
clock [32]. Assume the ASM (infinitely) executing rule = x := x+ 1. The trace of predicates
resulting of this program would be the (infinite) set {x(t, xi + t) : t = 0, 1, . . . } where xi is the
initial value of the function x.

16

A critical question is how to measure (logical) time in presence of the sequential block rule.
Consider a parallel block containing a sequential block, i.e.

{

{| R1 R2 |}

R3

}

Clearly the time-stamp for rule R1 < R2, as R1 is executed before R2. On the other hand
both of them are executed in parallel to R3. So R3 = R1 ∧ R3 = R2 also is an arguable
requirement for the time-stamps. Obviously these requirements are contradicting. Following
the definition of hidden internal computation steps (Fruja and Stärk [26]) we simply do not emit
predicates for sequential block internal state changes at all. As a consequence, the model must
make all state transitions an application wants to reason about non-hidden. We think this is
reasonable.

After each computation step of the (symbolic) ASM, predicates for all symbolic locations
are written to the symbolic trace. The logical time-stamp of each of the predicates equals the
number of computation steps the ASM performed so far. Due to definition S5 there is an infinite
number of symbolic locations if there is at least one symbolic function with an infinite domain.
Obviously only a relevant subset of symbolic locations can be written to the symbolic trace. For
now we vaguely define the relevant set as the set of symbolic locations the application using the
symbolic trace is interested in. In section 3.2.3 we present a solution to this problem.

The initial state is assigned logical time 1. The final state is (additionally) labeled with
logical time 0. Thus the time-stamps of the initial and final states are always known which is
comfortable for many proofs.

Mapping of Symbolic Expressions - DFT

At the beginning of program execution only input symbols exists. During program execution
more complex symbolic expressions are built (by applying operators to symbols). Internally we
use fresh symbols to abbreviate complex symbolic expressions. A simple inductive argument
shows that each fresh symbol implicitly represents a tree of of input symbols and operators.

We therefore map each application of a n-ary ASM operator to a n+1-ary predicate. The ad-
ditional (last) argument is a fresh symbol (the result of the operation), the name of the predicate
is the name of the operator. Again assume the program calculating y := x + 1 and z = 2 ∗ y
yielding the symbolic expression 2 ∗ (x + 1) for z and let x be the (input) symbol sym1. The
addition will be mapped to the predicate add(sym1, 1, sym2) where sym2 is a fresh symbol. This
can be read as: it is true that the result of the addition of sym1 and 1 is named sym2. Next the
multiplication will be mapped to mul(2, sym2, sym3) with a fresh symbol sym3.

One may wonder about expressions modifying intermediate state inside of a sequential block

rule. Although the intermediate state is not visible in the symbolic trace it may be updated
and read by expressions. The above argument however showed that symbolic expressions are
expressed solely by means of input symbols and operator application. An update may store a

17

3 CASM - Efficient Abstract State Machines

symbolic expression to an intermediate location, if it should be read again it is the symbolic
expression itself, not the state, that matters.

Actually the state is completely transparent for expression evaluation. Consider for exam-
ple the following ASM program fragment: {| x := x + 1; x := x ∗ 2 |}, further assume x
to contain the symbolic value sym0. The addition operator creates a fresh symbol sym1 rep-
resenting sym0 + 1 and updates x. The multiplication operator creates a fresh symbol sym2
representing sym1 ∗ 2. This will be mapped to the two predicates add(sym0, 1, sym1) and
mul(sym1, 2, sym2), correctly representing the resulting symbolic expression but without any
reference to the (intermediate) state x.

In our proof applications the input symbols are mapped to program variables and registers.
The symbolic expressions directly correspond to the concept of Data Flow Tree (DFT) which is
implicitly described by the predicates.

3.2.3 Implementation of Symbolic Execution in CASM

This section describes the implementation of symbolic execution in the CASM interpreter.

Lazy Initialization of Symbolic Functions

As indicated in section 3.2.2 one needs to identify a relevant subset of symbolic locations to be
written to the symbolic trace after each computation step of the ASM. The CASM implementa-
tion uses a technique called lazy initialization (Khurshid et al. [38]). A fresh symbol is created
for a symbolic location when it is accessed for the very first time. Therefore a CASM symbolic
trace contains the (finite) set of all symbols ever accessed during program execution. Unless the
application wants to reason about locations not affected by the CASM program it is justified to
assume that this set forms a super-set of the relevant set.

Two problems need to be considered implementing lazy initialization of symbolic functions.
A symbolic location f(a) may first be accessed in computation step n > 1, leading to creation
of a fresh symbolic value sk. All symbols accessed in a symbolic function are considered to
be input symbols. Therefore predicates for all previous computation steps have to be emitted as
well. This allows to reason about symbolic value in the preceding steps (including the initial
one).

The second problem is due to the tree structure of currently active intermediate states induced
by sequential block rules. Assume two rules Rx and Ry both accessing the same uninitialized
symbolic location f(a) and the following context:

{

{| R1 Rx |}

{| R2 Ry |}

}

The intermediate states used to evaluate Rx and Ry are different, nonetheless the implementation
of symbolic execution has to assure that both rules read the same symbolic value for f(a).

18

Trace Output Format

TPTP is a human-readable text based format in essence consisting of annotated formulas with
the following general form: language(name, role, formula). The language speci-
fies the type of the formula, we exclusively use first-order forms with the language specifier
fof. While name is an otherwise ignored arbitrary identifier, role specifies the user semantics
of the formula (e.g. axiom, hypothesis, conjecture). An example of a formula is
fof(id, hypothesis, sym3 = 5) stating that the constant term sym3 equals to 5.

An Example

Consider the CASM program (fragment) given in listing 3.1 which swaps and increases values
of foo and bar with bar being symbolic. Listing 3.2 shows the symbolic trace resulting from a
single evaluation of rule r.

1 function (symbolic) foo : -> Int

2 initially {3}

3 function (symbolic) bar : -> Int

4
5 rule r = {

6 {|

7 foo := bar

8 foo := foo + 1

9 |}

10 bar := foo + 1

11 }

Listing 3.1: Swap and increment

1fof(0, hypothesis, bar(1, sym2)).

2fof(1, hypothesis, add(sym2, 1, sym3)).

3fof(2, hypothesis, foo(2, sym3)).

4fof(3, hypothesis, bar(2, 4)).

5

Listing 3.2: Symbolic trace in TPTP

Line 7 in the program corresponds to line 1 in the trace. The location bar is used by the
update rule (assignment) which triggers creation of the symbol sym2. This symbol is temporarily
stored at location foo, but this is a hidden intermediate state not visible in the trace. Line 8 (of
the program) triggers the output of the add predicate describing the addition which creates a
symbolic expression named sym3 (line 2 in of the trace). Finally sym3 is assigned to location
foo, which can be seen in line 3 of the trace. In line 4 of the trace one sees that location bar

contains the concrete value 4 (foo was initially 3 and the sequential block is executed in parallel
to this update, so foo is still 3 here) after the first computation step (logical time is now 2).

Semantic Annotation

For some proofs it is useful to know when exactly a certain symbolic location was accessed for
the very first time. Assume this happens at logical time t. As the symbolic value existed since
the initial state (and will exist till the final state unless updated), the trace contains predicates
for all this logical times. The trace alone is therefore not sufficient to determine time t. The
predicates emitted for times less than t are therefore annotated by appending the TPTP comment
%SYMBOLIC at the end of the line. Predicates emitted when a symbolic location is accessed
the very first time are annotated with the comment %CREATE. Although the annotations for

19

3 CASM - Efficient Abstract State Machines

predicates corresponding to the update of a location (%UPDATE) are redundant and could be
extracted from the trace, they are added to ease the programming of validators.

Symbolic Control Flow

In the CASM language we implemented symbolic execution for if-then-else and case rules.
When the conditional expression of the rule is a symbolic value, all continuations are possible.
That is if-branch taken or (optional) else-branch taken for if-then-else and each of the cases

(including an optional default case) taken for the case rule. Program execution needs to be
forked and continued for each of the possible continuations. Each continuation writes its trace
to a separate trace file, so the application can reason about different paths taken by the program.
Which continuation has been chosen induces a constraint for the symbol presenting the condi-
tional expression. Those constraints are memorized in a path condition store and further control
flow decisions on the symbolic values are evaluating the store. This eliminates the creation of
contradicting traces.

The path condition is crucial for proving program properties. Listing 3.3 illustrates the
importance. The code assures that no division by zero can occur, but this can only be proven
utilizing the path condition in listing 3.5.

Listing 3.3: Path Condition
1 if x = 0 then skip

2 else foo := 12 / x

1 fof(id0, hypothesis, x(0, sym2)).

2 fof(’if’, hypothesis, sym2=0).

Listing 3.4: if-branch

1fof(id0, hypothesis, x(0, sym2)).

2fof(’else’, hypothesis, sym2!=0).

3
4fof(id1, hypothesis,

5divide(12, sym2, sym3)).

6fof(id2, hypothesis, foo(0, sym4)).

7fof(id3, hypothesis, foo(1, sym3)).

Listing 3.5: else-branch

Line 2 in both listings (3.4 and 3.5) shows the emitted constraint. A theorem prover could
now be used to prove that listing 3.3 is division-by-zero free (by proving both traces to be
division-by-zero free).

3.3 Efficient Compilation of CASM

The CASM language is designed with efficient compilation in mind (static type system, call-
by-value for rule invocations). As part of this work a prototype implementation of a CASM
compiler has been developed in python. Knowledge gained from this implementation has been
used to refine the language design. Performance critical issues of the run-time system have been
identified and an optimizing compiler has been designed. Theses ideas have been implemented
by Philipp Paulweber in his master thesis [56]. Details on the analysis framework and run-time
implementation are published in an article by Lezuo, Paulweber and Krall [48].

We will give a brief explanation of the main ideas behind the CASM compiler here. The
run-time is based on the assumption that the state of the compiled programs is larger than the
update sets.

20

3.3.1 Dynamic Memory Allocation

Only functions and updates need to be allocated dynamically. Due to the transactional semantics
of ASM languages the life-span of an update is exactly one step of the machine. A pre-allocated
memory pool is used to store updates until a step is made and all updates are committed to the
function storage. This pool can simply be reused in subsequent steps (dump-allocation). The
run-time therefore has virtually no memory management overheads.

3.3.2 Storage for CASM Functions

To properly implement functions, set operations are necessary. All locations which are not
explicitly defined otherwise have the special value undef (demanding an is-element-of set op-
eration). A distinct hash-map (with linear probing) is used as storage for each function. The
function arguments are concatenated to form the key. Each slot of the map has two special
properties, undef and branded. The undef property is set if the location has the special value
undef. An update may set a previously defined location to undef, so such locations need to be
tracked explicitly. A slot is branded when its corresponding location is accessed for the first
time. (Branding allows to use other default values than undef, CASM supports this feature). The
run-time uses the slot’s address, which must be guaranteed to be stable, as a unique identifier.

After each step of the machine the hash-map can safely be enlarged, if the load factor should
have become too large. In the rare case that during a single step the hash-map would overflow,
additional memory is allocated. In-between the next machine step the hash-map is resized and
the overflow memory gets merged.

If a sub range integer type is used for the domain of a CASM function, an array is used as
function storage instead of a hash-map (for reasonable sizes of the domain). An additional byte
is needed to keep track of the special value undef.

3.3.3 Updates and Pseudo States

Due to the interleaving of parallel and sequential execution semantics the state used to evaluate a
statement and the state affected by its updates are in general not equal [26]. Listing 3.6 illustrates
the problem. stmt1 and the sequential blocks containing stmt2 and stmt4 are in a parallel
block. Therefore they are evaluated under the same state S0, their updates however are applied
to different states. While updates produced by stmt1 are applied to S0, updates produced by
stmt2 are used to create a temporary state S1. The sequential composition with stmt3 may
modify updates produced by stmt2 and only the resulting update set will be applied to S0. The
same situation is with stmt4 and stmt5. As e.g. stmt4 may contain a nested parallel block
a tree-like structure of states is created. The nesting of update sets is very similar to nested
transactions in software transactional memory (STM) [2]. The major difference is that an STM
transaction aborts when reading an object for which a commit is pending while in ASM read
access can never fail. Multiple updates to the same location in a parallel context is a run-time
error (inconsistent update) in CASM.

Our assumption is that the number of updated locations (in a single ASM step) is much
smaller than the whole state of the program. We therefore do not duplicate the state but keep

21

3 CASM - Efficient Abstract State Machines

{

stmt1
{| stmt2

stmt3
|}

{| stmt4
stmt5

|}

}

Listing 3.6: Interleaving PAR/SEQ

track of all updates produced so far in a data structure called update set. When looking up a
location the run-time has to query the update set for updates affecting the current state (due to
sequential execution semantics).

We use the notation of pseudo state to keep track of updates affecting the current state. The
pseudo state is a counter which is increased (at run-time) when a block with different execution
semantics is entered. When a block is left (and control-flow returns into a block with different

execution semantics) the update set is merged into the update set of the surrounding block. This
is a serialization of the (partial) parallel execution semantics of ASM. Initially the system starts
in parallel execution state, so pseudo state 0 denotes a block with parallel execution semantics.
When entering a block with sequential semantics the pseudo state will be increased by 1. By
construction this counter is odd when executing a block with sequential execution semantics and
even when in parallel mode.

The update set is implemented as a hash-map. The keys are 64 bit values, the lower 16 bits
are the pseudo state of the block the update originates from, the remaining bits are the lower bits
of the slot used to store the location. (This limits the number of nested states to 65536 and the
keys may collide for slots whose addresses only differ in the uppermost 16 bits. A key collision
triggers an erroneous program abort, but no wrong behavior. We never hit any of the limits in
our applications.)

Additionally the slots in the update set are forming a linked list with the latest update being
the head. This property is used when merging update sets. Figure 3.1 shows the update set data
structure.

3.3.4 Lookup and Update

A lookup for a specific location first needs to query the functions storage to acquire the address
of the slot. This address and the current pseudo state are used to query the update set for any
updates to this location which may be visible in the current state. By construction of the update

set the corresponding keys can be efficiently calculated using the current key. The sequential
states are all odd numbered pseudo states with a number that is lower than the current one. The
complexity of this operation is linear in the number of active pseudo states (dynamic nesting
depth of parallel and sequential blocks).

An update also needs to query the functions storage to acquire the address of the slot corre-
sponding to the location. This address and the current pseudo state form the key for the update

22

Address (48 bit)

&update

Pseudo state (16 bit)

last update

key

lookup: O(#ps), merge: O(#updates), insert&collision: O(1)

Figure 3.1: CASM Update Set

set. If the slot in the update set already contains a value, the further behavior depends on the cur-
rent pseudo state. In sequential execution mode (odd pseudo state) the value will be overwritten,
in parallel mode an inconsistent update error is triggered. The complexity of the inconsistency

check is constant.

3.3.5 Merging of Update Sets

When leaving a block (with different execution semantics) the list property of the update set is
exploited to efficiently merge all updates into the surrounding update set. The list is traversed
backwards until the first update not belonging to the current update set is found (encoded in the
lower 16 bits of the key). All updates are removed from the update set and re-inserted with the
pseudo state part of their key reduced by one. Merging of update sets produced by sequential
blocks may trigger inconsistent update errors as they are re-inserted into an update set with
parallel execution semantics. The complexity of merging is linear in the size of the update set to
be merged.

3.3.6 Optimizations

The hash-maps used to implement the update set and functions are obviously very expensive in
terms of performance. In this section we describe two optimizations called lookup elimination

and update elimination that aim to reduce the number of hash-map operations. The first ob-
servation is that lookups from a parallel execution context will always retrieve the same value
(for same locations). In such situations only the first lookup needs to query the function storage
and the update set to retrieve the value. The second observation is that, in sequential execution
context, updates and lookup behave like local variables in the language C.

The idea is to introduce so called local locations. That is a rule-local storage which will
be used by optimized lookup and update code. Once fetched, the local location can be used by

23

3 CASM - Efficient Abstract State Machines

{

if X(3) = 3 then

skip

if X(3) = 4 then

skip

}

{

local X_3 = X(3) in

if X_3 = 3 then

skip

if X_3 = 4 then

skip

}

Table 3.1: Redundant Lookup and its Elimination

{|

X(4) := foo

if X(4) > 0 then

skip

|}

local L_1 = foo in

{|

X(4) := L_1

if L_1 > 0 then

skip

|}

Table 3.2: Preceded Lookup and its Elimination

{|

X(5) := foo

X(5) := bar

|}

{|

X(5) := bar

|}

Table 3.3: Redundant Update and its Elimination

subsequent lookups without the overheads of a hash-map. Table 3.1 illustrates the basic idea
(local is not a valid CASM keyword).

Another pattern which allows the elimination of a lookup arises from updates (to the same
location) preceding the lookup in a sequential context. In this case the value to be retrieved is
known already and can be propagated instead of performing an expensive lookup. We call this
pattern a preceded lookup, for an example see table 3.2.

Update elimination tries to reduce the number of updates stored in the update set. If a
specific location is updated multiple times in a sequential context, only the last update will
be committed to the state. All preceding updates can safely be omitted. See table 3.3 for an
example.

Paulweber [56] has developed an analysis framework and implemented the described opti-
mizations as part of this master thesis. In section 10.1 we report on the effectiveness of these
optimizations.

24

4 Semantics and Compilers

וּפַר�סִן! תְק²ל מְנ¾א מְנ¾א

This chapter describes how CASM is used in our retargetable research compiler. A method
to give concise semantics to a configurable instruction set based on a Architecture Description
Language (ADL) is described. The technical aspects of creating CASM representations of the
matcher MIR (mMIR) and Low-level IR (LIR) languages are discussed. The ADL contains
highly redundant specifications for ISS and CS tools, which motivate using CASM as an unified
model.

4.1 ADL for Retargetable Compilers

Our industrial partner offers a retargetable toolchain for application specific processors. The
instruction set of such a processor is created by the custom demands of its software application.
This includes removal of unused instructions, choosing an optimal instruction encoding and
providing instructions tailored for the application and customization of the data paths. A rich
eXtensible Markup Language (XML) based ADL has been developed to cover all the demands
(Farfeleder et al. [25]).

So called micro instructions describe the hardware building blocks for the Arithmetic Logic
Unit (ALU) Each instruction implemented by a specific processor is built from such micro in-

structions. The set of implemented instructions define the data paths and layout of the resulting
ALU. Listing 4.1 shows the micro instruction describing a hardware add operation. The data-
flow of this instruction accepts 2 operands (lines 2 and 3) and defines 3 values (lines 4 to 6). The
bit width is not determined yet, but the result has the same width as the first operand (line 4).
The semantics of this micro instruction is specified by the asm_semantic tag.

In listing 4.2 the specification of a full machine instruction (addition) is shown. Lines 2-4
specify 3 variants with different assembler mnemonics. The expr attribute of the mnemonic
nodes specify the value of the instruction’s flags which are then used to conditionally invoke
micro instructions. In this example the addition instruction is available as half word addi-
tion and saturated addition. The when attribute specifies the pipeline stage the micro opera-

tion is executed at. A normal addition variant would therefore execute the micro instruction

25

4 Semantics and Compilers

1 <minstr id="ADD">

2 <in name="op1"/>

3 <in name="op2"/>

4 <out name="sum" width="%in(op1)"/>

5 <out name="overflow" width="1"/>

6 <out name="overflow_sign" width="1"/>

7 <asm_semantic>

8 %fuvar(%out(sum)) :=

9 BVadd_result(%width(%in(op1)), %fuvar(%in(op1)), %fuvar(%in(op2)))

10 %fuvar(%out(overflow)) :=

11 BVadd_overflow(%width(%in(op1)), %fuvar(%in(op1)), %fuvar(%in(op2)))

12 %fuvar(%out(overflow_sign)) :=

13 BVadd_overflowsign(%width(%in(op1)), %fuvar(%in(op1)), %fuvar(%in(op2)))

14 </asm_semantic>

15 </minstr>

Listing 4.1: Micro Instruction for addition

READ_REGISTER at time CMP_READ_OPERAND_1 and store that as op_left_ (line 12) to
later copy the value to op_left (as h==0, line 16). Line 18 - 25 read the second operand and
the remaining markup handles performing the hardware add operation (line 28) and storing the
result in the register set (line 38).

To specify the semantics of the micro-processor the semantics of each instruction (and all
its variants) must be defined. Listing 4.1 showed that the semantics is attached to micro instruc-

tions. Lines 8-13 show CASM markup where concrete input and output values still need to be
replaced by a simple macro substitution. All % prefixed strings are preprocessed and replaced
by strings. E.g. %in(op1) is replaced by the input operand of that name (op_left) in this case
(%out(overflow) by ov).

A tool called casm_gen is used to create a complete CASM specification for a specific pro-
cessor out of the ADL. Each instruction is mapped to a single CASM rule implementing all
variants thereof. Listing 4.3 shows the general structure of an instruction’s CASM model.

rule ADDITION(bndladdr:Int, addr:Int, stage:PipelineStages,

phase:PipelineCycles) =

let h = decode_field(addr, FV_h) in

let r = decode_field(addr, FV_r) in

let sa = decode_field(addr, FV_sa) in

{

if h=0 and r=0 and sa=0 then

{

{|

if stage=EX1 and phase=begin then { /* ... */ }

if stage=EX1 and phase=end then { /* ... */ }

|}

/* for more stages */

}

/* more variants */

}

Listing 4.3: CASM markup of an instruction

26

1 <instr id="ADDITION" group="CMP" xml:base="../instructions.xml">

2 <mnemonic expr="sa==0 and h==0">add</mnemonic>

3 <mnemonic expr="sa==1 and h==0">add.s</mnemonic>

4 <mnemonic expr="sa==0 and h==1">add.h</mnemonic>

5
6 <op field="a"/>

7 <op field="b"/>

8 <op field="c"/>

9 <op_type field="r" operands="op1,op2,op3">TYPE_COMBINATION_ALU_SAME_3</op_type>

10
11 <invoke when="CMP_READ_OPERAND_1">

12 op_left_ = READ_REGISTER(%op(1),1)</invoke>

13 <invoke when="CMP_READ_OPERAND_1" expr="h==1">

14 op_left = SIGN_EXTEND1(op_left_)</invoke>

15 <invoke when="CMP_READ_OPERAND_1" expr="h==0">

16 op_left = op_left_</invoke>

17
18 <invoke when="CMP_READ_OPERAND_2">

19 reg_right_ = READ_REGISTER(%op(2),2)</invoke>

20 <invoke when="CMP_READ_OPERAND_2" expr="h==1">

21 reg_right = SIGN_EXTEND1(reg_right_)</invoke>

22 <invoke when="CMP_READ_OPERAND_2" expr="h==0">

23 reg_right = reg_right_</invoke>

24 <invoke when="CMP_READ_OPERAND_2">

25 op_right = reg_right</invoke>

26
27 <invoke when="CMP_WRITE_OPERAND_3" expr="h==0">

28 [sum, ov, os] = ADD(op_left, op_right)</invoke>

29 <invoke when="CMP_WRITE_OPERAND_3" expr="h==1">

30 sum = ADD_HALVE(op_left, op_right)</invoke>

31 <invoke when="CMP_WRITE_OPERAND_3" expr="h==1">

32 [ov, os] = [0, 0]</invoke>

33 <invoke when="CMP_WRITE_OPERAND_3" expr="sa==0">

34 result = sum</invoke>

35 <invoke when="CMP_WRITE_OPERAND_3" expr="sa==1">

36 result = SATURATE(sum, ov, os)</invoke>

37 <invoke when="CMP_WRITE_OPERAND_3">

38 WRITE_REGISTER(%op(3), result, ov, os, 0)</invoke>

39 </instr>

Listing 4.2: Addition Instruction

4.2 Compiler Overview

Our research compiler uses a number of IRs. The front-end is based on GCC and therefore uses
GIMPLE [63]. GIMPLE is then translated to a tree-ish Mid-End IR (MIR) language. Mid-end
optimizations are implemented as MIR to MIR transformations. Before the program is lowered
to a sequential machine like LIR certain MIR operations are replaced. This restricted language
is called mMIR and is used to perform instruction selection. LIR has two main variants, code
which is not scheduled yet (causal LIR (cLIR)) and fully scheduled code (scheduled LIR (sLIR)).

27

4 Semantics and Compilers

+

p i

n0

n1 n2

POINTER(n0):=true,

WIDTH(n0):=20

POINTER(n1):=true,

WIDTH(n1):=20

INTEGER(n2):=true,

WIDTH(n2):=16,

SIGN(n2):=true

Figure 4.1: mMIR example

4.3 Semantics of Compiler IR

For translation validation the compiler must dump the IR before (pre) and after (post) each pass.
In this section the modeling of the IRs and creation of the dump is described.

4.3.1 mMIR

MIR code is a tree-ish language which needs to be translated into a sequential (CASM) notation.
The nodes are either instruction nodes (that are operations, e.g. addition, multiplication) or
operand nodes (e.g. constant values, variables, results created by instruction nodes).

Figure 4.1 shows an example of a mMIR tree (addition of a signed offset i to a pointer
p). Each node has a unique label (n0, n1, n2) and is of a specific type. The top-level node is
an addition, while its leaves are variables (mMIR is in Static Single Assignment (SSA) form).
mMIR nodes are polymorph and the exact type of the operation is determined by its operands
and result. The CASM functions POINTER, INTEGER, WIDTH and SIGN are used to describe
the exact types of variables. Evaluating trees is implemented by updating the VALUE function
which associates values to nodes. The result of this addition is stored in VALUE(n0).

Table 4.1 shows the most important CASM functions used to model mMIR. The VALUE

function contains the (dynamically) calculated values associated to nodes. WIDTH, SIGN,

SIMDTYPE, SIMDFACTOR, INTEGER, POINTER are used to describe the types of variables.
mMIR operates on Bit Vectors (BVs) of arbitrary size. WIDTH determines the size of the BV.
INTEGER and POINTER are used to determine whether a value is used arithmetically or as a
pointer. SIGN is only used to INTEGER types and specifies whether an integer is signed or
unsigned. SIMDTYPE is also only valid for INTEGER types and if set to true the underlying
bit vector is interpreted as a container holding multiple data points. SIMDFACTOR finally spec-
ifies the number of data points (of equal size) in an Single Instruction Multiple Data (SIMD)
container. mMIR operates on a linear memory which has the same properties as the target ma-
chine’s memory (endianess, word size). Control flow is modeled using a dedicated call stack
(MIRHWSTACK). mMIR also has support for hardware based loops and has explicit support
through MIRHWLOOP. Loops are denoted by their start node, end node and number of iter-

28

function signature comment
VALUE Node → Int the value of a node
WIDTH Node → Int width of value in bits
SIGN Node → Boolean signed or unsigned value
SIMDTYPE Node → Boolean value is a SIMD container
SIMDFACTOR Node → Int number of SIMD words
INTEGER Node → Boolean value is a number
POINTER Node → Boolean value is a pointer
MIRMEMORY Int → Int the system memory
MIRHWSTACK → List (Node) MIR call stack
MIRHWLOOP → List (Tuple(Node,Node,Int)) hardware loop
MIRPC → Node currently executed MIR node
NEXTMIRPC Node → Node static successor MIR node

Table 4.1: mMIR State Representation

ations. A node’s (statically) determined successor node is modeled using the CASM function
NEXTMIRPC and MIRPC addresses the node currently executed.

The tree is traversed in a depth-first fashion, processing all child nodes before the parent is
processed. Each node is assumed to have a unique identifier. MIR is polymorph in the sense
that the exact semantics of an instruction may depend on the type of its operands and type of
the result (i.e. conversions). For operand nodes all type information is emitted in hash-maps
(their CASM equivalents), e.g. WIDTH, SIGN, with the unique node identifier serving as key.
Instruction nodes are replaced using a macro expansion.

Listing 4.4 shows the template used when replacing an ADDITION node. The %in macro
is replaced by the numbered child of the node, the result is the last child (by convention).
BVadd_result is the CASM operation corresponding to the semantic operation add_result. Four
cases are handled i) both operands have the same width (line 2) ii) first operand is wider and sec-
ond signed (sign-extend second operand, line 6) iii) first operand is wider and second unsigned
(zero-extend second operand, line 10) and iv) second operand is wider (extract relevant bits from
second operand, line 15).

Our reference implementation is limited to handle mMIR programs, which are basically
single expressions (see section 7.2). A full execution semantics would need to model the current
environment (mapping variable name to value) and the activation records as well.

4.3.2 cLIR and sLIR

cLIR and sLIR consist of sequentially executed instructions closely resembling the target ma-
chine. The difference between the two is that sLIR instructions are forming bundles and are
executed in a pipeline. cLIR instructions are scalar and not pipelined (they can be seen as a
functional model of the same sLIR instruction). In this work cLIR instruction models are cre-
ated from sLIR instruction models by consecutively executing all pipeline stages. Thus during

29

4 Semantics and Compilers

1 if TYPE(%in(1)) = TYPE(%in(2)) or WIDTH(%in(1)) = WIDTH(%in(2)) then

2 VALUE(%in(3)) := BVadd_result(WIDTH(%in(1)), VALUE(%in(1)), VALUE(%in(2)))

3 else

4 if WIDTH(%in(1)) > WIDTH(%in(2)) then {

5 if SIGN(%in(2)) then

6 VALUE(%in(3)) := BVadd_result(WIDTH(%in(1)), VALUE(%in(1)),

7 BVse(WIDTH(%in(2)),WIDTH(%in(1)),VALUE(%in(2))))

8 else {

9 // ! SIGN(%in(2))

10 VALUE(%in(3)) := BVadd_result(WIDTH(%in(1)), VALUE(%in(1)),

11 BVze(WIDTH(%in(2)),WIDTH(%in(1)),VALUE(%in(2))))

12 }

13 } else {

14 // ! WIDTH(%in(1)) > WIDTH(%in(2))

15 VALUE(%in(3)) := BVadd_result(WIDTH(%in(1)), VALUE(%in(1)),

16 BVex(0, WIDTH(%in(1)) -1,VALUE(%in(2))))

17 }

Listing 4.4: ADDITION MIR macro template

execution at most a single cLIR instruction is in the pipeline, preventing subsequent cLIR in-
structions to interact with each other.

Table 4.2 shows the most important functions used to model the state. PC is the program
counter used to address the currently executed machine instruction. The target machines are
supposed to have a hardware loop unit which state is modeled by the HWLOOP function. Each
active hardware loop consists of the first and last instruction of the loop as well as the number
of iterations (still to be done). MEM and HWSTACK model the machines memory and hardware
call stacks. All functions starting with REG_ are used to model the register file of the target
machine, in this case data and address registers, flags and so called modify registers. The target
machine used in this example offers auto post and pre increments, circular buffer addressing and
a special addressing mode for Fast Fourier Transformation (FFT). PMEM models the program
memory (instruction stream) while PARG holds the decoded Field Values (FVs) for each in-
struction. Internal state of each Functional Unit (FU) is modeled by the FUstate function. Each
component of the internal state is called a FU Field (FUF). The target hardware features pred-
icated execution which may disable certain FUs. This is modeled using the PE_unit_disabled

function which holds the disabled status for each pipeline stages and FU. pipeline holds a list
of instructions (addresses) for each pipeline stage of the CPU. For cLIR the size of the list is at
most one, but for sLIR (which models Very Long Instruction Word (VLIW) bundles) larger val-
ues are valid. The branching unit may trigger (partial) flushes of the pipeline which is modeled
by the functions inval_pipeline.

Technically cLIR models are simulated by sLIR models. cLIR is semantically equivalent to
sLIR without considering (potentially conflicting) pipeline resources. By consecutive execution
of each pipeline step of a sLIR model in an otherwise empty pipeline model the semantic effects
of the cLIR model are simulated.

30

CASM function function signature comment
PC → Int current program counter
HWLOOP → List(Tuple(Int,Int,Int)) hardware loop (start, end, iterations)
MEM Int → Int machine data memory
HWSTACK → List(Int) machine call stack
FUstate FU * FUF → Int internal state of FU
PE_unit_disabled PS * FU → Boolean predicated execution
pipeline PS → List(Int) CPU pipeline
inval_pipeline_AL → Boolean interaction pipeline, branch unit
inval_pipeline_EX1 → Boolean interaction pipeline, branch unit
REG_GuardBits Int → Int DSP register guard bits
REG_DataRegister Int → Int data registers
REG_AddressRegister Int → Int address registers
REG_ModifyRegister Int → Int auto modification for address registers
REG_Flag Int → Int separate flags for each data register
PMEM Int → RuleRef program memory
PARG Int * FV → Int decoded instruction fields

Table 4.2: cLIR State Representation

On Predicated Execution

The used research architecture features predicated execution. The actual instructions operate
on bundles, hence they are only available in sLIR code. For cLIR code wrapper instructions
have been implemented which are aware of the condition and condition registers. During VLIW
scheduling (see section 7.4) actual sLIR instructions are created and added to predicated bundles.

Predicated instructions create forks during symbolic execution (caused by symbolic evalu-
ation of the conditions). The traces can easily be matched by inspection of the path condition,
though. No special treatment is therefore needed to handle predicated execution in our frame-
work.

To validate passes which create predicates (i.e. if-conversion, see section 7.3), it may be
necessary to create a trace where the result of the conditions is known a-priori (i.e. whether con-
dition evaluates to true or false). To support such validators we have added override fields to the
LIR instructions, i.e. BRANCH_CONDITION_OVERRIDE and PE_CONDITION_OVERRIDE.
The models for conditional branching check those fields first and can be forced act as if the
condition were true of false. If no override is given they (symbolically) evaluate the condition
and (if needed) create forks. Our current validators do not use this feature, though.

4.4 A unified Machine Model

The ADL of our research compiler contains two (highly redundant) semantic specifications for
each micro-instruction. Two types of simulators are synthesized out of the ADL, an cycle-
accurate ISS and a tool to perform CS. Each of the tools have a different run-time system but

31

4 Semantics and Compilers

both need semantics specifications of the instructions. Interaction with the simulator run-time
is explicitly encoded in those specifications. Each simulator uses (preprocessed) snippets of C
code which invokes its run-time functions. Figure 4.2 shows the simulator specifications for
the addition. Without going into the details here the semantics of the addition is given by a
C implementation. In the ISS specification (listing 4.5) the $-prefixed strings are replaced by
macro substitution (similar to %-prefixed strings in listing 4.1). The CS specification (listing 4.6)
uses $-prefixed and %-prefixed strings to be replaced. There are two different specifications
in use, because ISS operates on structured models of the hardware (i.e. the execution unit)
while CS performs partial evaluation on level of architecture features and operates on temporary
variables [24].

Our CASM specification 4.1 is similar to the ISS specification, the %fuvar hides the struc-
tured access to the models of the underlying functional units of the micro-processor. A compiler
which allows CASM programs to be executed efficiently could enable the reuse of the CASM
specification to synthesize an ISS. An optimizing compiler which is able to perform partial
evaluation could enable to synthesize the CS specification out of the CASM models as well.
We have developed ISS and CS synthesization as part of this work which is covered in chap-
ter 9. Therefore the two highly redundant simulator specifications can be replaced by our CASM
specification, which also acts as the formal foundation used for translation validation.

32

<idata id="xsim_impl">

exec_unit_->result_ = exec_unit_

->operand1_ +

exec_unit_->operand2_;

if (width_$2_ < width_$1_)

{

if (exec_unit_->operand2_

& (1llu <<

(width_$2_ - 1)))

exec_unit_->result_ +=

(uint64)-1 << width_$2_;

}

if (((exec_unit_->operand1_ &

exec_unit_->operand2_ &

~exec_unit_->result_) >>

(width_$1_ - 1)) & 0x1)

{

exec_unit_->

check_negative_overflow_ = true;

}

else if (((~exec_unit_->operand1_

& ~exec_unit_->operand2_

& exec_unit_->result_)

>> (width_$1_ - 1))

& 0x1)

{

exec_unit_->

check_positive_overflow_ = true;

}

</idata>

Listing 4.5: ISS Specification

<idata id="csim_impl">

%tmp(result) = %tmp($1) + %tmp($2);

\#if (%width($2) < %width($1))

if (%tmp($2) &

TWO_POWER_N(%width($2) - 1))

%tmp(result) += (uintmax_t)-1

<< %width($2);

\#endif

%tmp(overflow) = (((%tmp($1)

& %tmp($2)

& ~%tmp(result))

| (~%tmp($1)

& ~%tmp($2)

& %tmp(result)))

>> (%width(result) - 1))

& 0x1;

if (%tmp(overflow))

{

if (!(%tmp(result)

>> (%width(result)-1)

& 0x1))

{

%tmp(overflow_sign) = 1;

}

}

</idata>

Listing 4.6: CS Specification

Figure 4.2: Simulator Specification Languages

33

5 Proof Techniques

PROOF, n. Evidence having a shade more of plausibility than of unlikelihood.

The Devil’s Dictionary

In this chapter the proving techniques used to implement validations tools are described.

5.1 Program Checking

Program Checking is a very old technique first described by Blum and Kannan [10]. A checker
is a program which is able to verify if the output of another program is correct on a given
input. At first glance the checker may look like a re-implementation of the original program but
there are many problems which are much easier to prove than to solve. In a compiler a lot of
heuristics are applied to optimize non-functional requirements, i.e. performance and code size.
These heuristics often need to consider various contradicting optimization goals (low register
pressure, high Instruction Level Parallelism (ILP)) and are therefore difficult and error-prone to
implement. The result of the heuristic transformations may have correctness properties which
are easy to check, though. In such cases a program checker is a viable option to implement a
validator resulting in a small trusted code base.

5.2 Simulation Proofs

In this section we describe the flavor of simulation proofs used in this work. We assume two State
Transition Systems (STSs), p and C(p). The original problem is to show that C(p) (in target
language TL) is a correct compilation of the source program p (in language SL). Semantics of
p and C(p) is given by corresponding CASM models as described in chapter 4. This reduces
the problem to show that the CASM models are in a relation which is compatible to correct

compilation (w). In this section we define correct compilation as equivalence. This is adequate
to explain the technique but too restrictive in practice. We will refine the correct compilation

relation in section 6.1. Symbolic execution (see section 3.2) results in a first-order representation
of p and C(p). Figure 5.1 shows the overview.

35

5 Proof Techniques

p ∈ SL C(p) ∈ TL

JpKSL JC(p)KTL

first-order formulae first-order formulae

compile

SL semantics (ASM) TL semantics (ASM)

w

symbolic execution symbolic execution

Theorem Prover

Figure 5.1: Generic Simulation Proof

To prove the STSs JpKSL and JC(p)KTL equivalent it can be shown that both STSs induce
the same state transition for all initial states. Because of the symbolic execution technique the
initial state is a symbolic state. Showing that the symbolic state transition of the STSs on an
arbitrary initial state results in an equivalent final state is therefore enough.

Our proof technique assumes the same symbolic initial state for p and C(p). Technically
prefix pre is assigned to all CASM functions used by p and post to the ones used by C(p). The
initial state has time-stamp 1, therefore the first-order formula 5.1 is sufficient to assume equal
initial state for the STSs p and C(p). function is the set of CASM functions (i.e. their predicate
representation resulted from symbolic execution).

∀f ∈ function : pref(1, a, v0) ∧ postf(1, a, v1) =⇒ v0 = v1 (5.1)

The similar formula 5.2 is the first-order formulation for an identical final state. This is the
conjecture which remains to be shown by a theorem prover.

∀f ∈ function : pref(0, a, v0) ∧ postf(0, a, v1) =⇒ v0 = v1 (5.2)

5.2.1 Common Semantic Vocabulary

To prove the conjecture the implicitly encoded data-flow (resulted from symbolic execution)
must be formulated using a common semantic vocabulary. The chosen abstraction level has a
great impact on the performance of the validation system. The lowest level would be bit-level
formulation. Each operation is defined by its effects on single bits. The advantage of such a
formulation is that all calculations leading to bitwise equal results are recognized by the valida-
tion system without additional information. The disadvantage is the permanent rediscovering of
basic algebraic laws (i.e. the impacts on performance).

A high level of abstraction is a word-wise formulation, the approach chosen in this work. The
disadvantage of this approach is that semantically equal but syntactical different formulations
must be axiomatized. The main advantage is the gain in performance. Our experience has shown
that real-world compilers only use a limited set of equalities which have to be axiomatized (a

36

complete list can be found in appendix A). The common semantic vocabulary is also quite small
(43 operations) as the listing in appendix A shows. Two examples are given in the following
excerpt. Each item is the name of a predicate, in braces the arguments and a short description of
its semantic meaning.

• and (w, o1, o2, res) logical and operation on w-bit wide values o1 and o2. The result is
called res.

• mir_if (w, c, ai, ae, res) res contains the value ai if the w-bit wide value c does not equal
zero, ae otherwise. This predicate is used to model conditional control flow in mMIR.

• . . . (the full list is in appendix A)

The set of operations is designed according to the mMIR language of the compiler and is
therefore architecture independent. Each operation is implemented in CASM, prefixed with BV

(i.e. BVand corresponds to the semantic operation and).

IR conditional branches

The only surprising operation is the mir_if operation which is used to encapsulate conditional
branches of the mMIR language. In essence the problem is that control flow can not be easily
described using symbolic execution. A motivating example is given in figure 5.2. Assume a
translation with identical source and target language. Let listing 5.1 be the source program and
listing 5.4 the translation. Obviously the translation is erroneous (x and y have been swapped
in the condition). The validator tool is confronted with the task to find corresponding traces
in the set of pre and post traces. But the traces resulting from symbolic execution can not be
distinguished by inspection of the final (and initial state), though. Lines 7-9 in listings 5.2, 5.3,
5.5 and 5.6.

A translation validation tool would need to inspect the whole trace and identify symbols
which forked the control flow. This could be done easily, but identifying corresponding symbols
in pre and post traces (if there is more than 1 fork) seems to be a hard problem. Notably the
compiler may transform the expressions leading to forking symbols. Instead of tackling this
problem we use the semantic mir_if operation. This allows the formulation of a conditional
branch without an if-then-else statement (in CASM) and bind the conditional expression to the
program counter. Figure 5.3 shows a CASM fragment (listing 5.7) and its symbolic trace (list-
ing 5.8). The crucial difference in the trace is that the program counter PC is now a symbol (line
10). Validation tools now do not need to inspect the whole trace, conditional expressions are
part of the final state.

In our concrete setting we use mir_if to model mMIR and conditional branches modeled with
if-then-else in LIR. LIR code therefore may create multiple traces when executed symbolically,
but its source program (mMIR) creates exactly one trace. The validation tool therefore has
no problem to identify corresponding pairs of traces (as the correspondence is one to many).
The path condition of each LIR trace makes the value of forking (LIR) symbols concrete. The
theorem prover must be able to derive a concrete value (from the path condition) for mir_if’s

37

5 Proof Techniques

1 function (symbolic) x : -> Int

2 function (symbolic) y : -> Int

3 function (symbolic) PC : -> Int

4
5 ...

6
7 let c = BVand(1,x, BVnot(1,y)) in

8 if Int2Boolean(c) then

9 PC := 23

10 else

11 PC := 42

Listing 5.1: x ∧ ¬y

1 fof(0,hypotesis,x(1,sym2)).

2 fof(1,hypothesis,y(1,sym3)).

3 fof(2,hypothesis,not(sym3,sym5)).

4 fof(3,hypothesis,and(sym2,sym5,sym7)).

5 fof(’if’,hypothesis,sym7=1).

6 fof(4,hypothesis,stPC(1,sym8)).

7 fof(final0,hypothesis,x(0,sym2)).

8 fof(final1,hypothesis,y(0,sym3)).

9 fof(final2,hypothesis,PC(0,23)).

Listing 5.2: Trace If

1 fof(0,hypothesis,x(1,sym2)).

2 fof(1,hypothesis,y(1,sym3)).

3 fof(2,hypothesis,not(sym3,sym5)).

4 fof(3,hypothesis,and(sym2,sym5,sym7)).

5 fof(’else’,hypothesis,sym7=0).

6 fof(4,hypothesis,PC(1,sym8)).

7 fof(final0,hypothesis,x(0,sym2)).

8 fof(final1,hypothesis,y(0,sym3)).

9 fof(final2,hypothesis,PC(0,42)).

Listing 5.3: Trace Else

1function (symbolic) x : -> Int

2function (symbolic) y : -> Int

3function (symbolic) PC : -> Int

4
5...

6
7let c = BVand(1,y, BVnot(1,x)) in

8if Int2Boolean(c) then

9PC := 23

10else

11PC := 42

Listing 5.4: y ∧ ¬x

1fof(0,hypothesis,y(1,sym2)).

2fof(1,hypothesis,x(1,sym3)).

3fof(2,hypothesis,not(sym3,sym5)).

4fof(3,hypothesis,and(sym2,sym5,sym7)).

5fof(’if’,hypothesis,sym7=1).

6fof(4,hypothesis,PC(1,sym8)).

7fof(final0,hypothesis,x(0,sym3)).

8fof(final1,hypothesis,y(0,sym2)).

9fof(final2,hypothesis,PC(0,23)).

Listing 5.5: Trace If

1fof(0,hypothesis,y(1,sym2)).

2fof(1,hypothesis,x(1,sym3)).

3fof(2,hypothesis,not(sym3,sym5)).

4fof(3,hypothesis,and(sym2,sym5,sym7)).

5fof(’else’,hypothesis,sym7=0).

6fof(4,hypothesis,PC(1,sym8)).

7fof(final0,hypothesis,x(0,sym3)).

8fof(final1,hypothesis,y(0,sym2)).

9fof(final2,hypothesis,PC(0,42)).

Listing 5.6: Trace Else

Figure 5.2: Control Flow and Symbolic Execution w/o mir_if

1 function (symbolic) x : -> Int

2 function (symbolic) y : -> Int

3 function (symbolic) PC : -> Int

4
5 ...

6
7 let c = BVand(x, BVnot(1, y)) in

8 PC := mir_if(c, 23, 42)

Listing 5.7: x ∧ ¬y

1fof(0,hypothesis,x(1,sym2)).

2fof(1,hypothesis,y(1,sym3)).

3fof(2,hypothesis,not(sym3,sym5)).

4fof(3,hypothesis,and(sym2,sym5,sym7)).

5fof(4,hypothesis,mir_if(sym7,23,42,

6sym9)).

7fof(5,hypothesis,PC(1,sym10)).

8fof(final0,hypothesis,x(0,sym2)).

9fof(final1,hypothesis,y(0,sym3)).

10fof(final2,hypothesis,PC(0,sym9)).

Listing 5.8: Trace

Figure 5.3: Control Flow and Symbolic Execution with mir_if

38

conditional for the proof to succeed. This is done by providing a proper axiomization of the
common semantic vocabulary.

39

6 The Big Picture - Chain of Trust

This chapter presents our translation validation framework (see figure 6). The compilation is
performed in consecutive passes. Each pass is understood as a free-standing compilation ac-

source lexing parsing

SSA
...

instr.sel. ... linking binary

validator

validator

validator

validator

checking

constraints

...Witness Information

checking

... AST

... Machine Instructions

Figure 6.1: The Big Picture - Chain of Trust

41

6 The Big Picture - Chain of Trust

cepting an input (pre) and producing an output (post). The compiler dumps witness information
for each pass describing the performed transformations. A validation tool checks the (local)
correctness of each of these passes, based on pre, post and the witness information.

The validation framework assures that pre of any single pass equals post of the preceding
one. The correctness of the whole compilation can the be argued by following the chain back-

wards. Starting with a given binary it must be assured that linking was correct. If it has been
verified that linking was indeed correct, the problem is reduced to the question whether the pre-

IR (i.e. the input to the linker) is correct. Which is assured by a validator for the pass preceding
linking (and assuring that post of this preceding past equal pre of the linker pass). Eventually
the lexing and parsing pass is validated, and at this stage the validation framework is able to
associate the source code to the binary which ultimately answers the question whether the given
binary is a correct compilation of the given source code. It is so if all passes have been translated
correctly. This sequence of (locally) correct passes is called the chain of trust.

Some aspects of the transformation can not be locally validated, though. A prime example is
the correct translation of function calls. In most stages of the compilation functions are named

entities. Only in the linking stage addresses become known. The branch instructions at all call
sites must be patched (correctly).

During the (local) validation constraints are collected (e.g. a specific branch instruction is a
call to a specific named function). Constraints are maintained by the validation framework and
are used in later validators (e.g. the linking validator needs to verify that all call sites have been
patched). These constraints are essential to achieve (global) correctness of the whole compila-
tion.

6.1 Definition of Correct Compilation

Real world languages like C have properties which make the definition of a correct compiler
quite hard. There are 54 unspecified, 190 undefined, 112 implementation-defined and 15 locale-
specific behaviors listed in Annex J of the C99 (TC3 draft) specification [1].

The implementation-defined behavior includes such elementary things like the number of
bits in a byte. Even the order of evaluating function arguments (they are expressions) is un-
specified behavior. As they may have side-effects and even call further functions the order of
evaluation has impacts on the semantics of a C program.

As a result of this language properties a C program can only be compiled correctly with re-
spect to a specific compiler. A specific conforming compiler however will provide definitions for
all implementation-defined behavior. Theoretically it may (randomly) choose among different
conforming implementations of implementation-defined behavior. For such a compiler a correct
translation must be one of the (many) possible conforming behaviors. In the remainder of this
work we assume a concrete (deterministic) implementation of the C language (i.e. the validation
tools know the exact behavior of the compiler).

42

6.1.1 Resource Limitations

In contrast to a C program a concrete machine has resource limitations (i.e. program size and
available memory). An infinite number of C programs violate the constraints of any concrete
machine (i.e. all programs larger than the machines memory). A translation is still considered
correct if it fails solely due to resource limitations [30].

6.1.2 Observable Behavior

A correct compilation of a C program can be characterized as preserving the observable behav-

ior. Assuming a concrete implementation of the C language a precise semantics is associated
with any C program not invoking undefined behavior. The question of what a correct translation
is boils down to the question of what exactly observable behavior is. In this work we assume
typical embedded C programs, executed in a hosted environment though. The external observer

therefore is

• The hosting operating system (i.e. its system call interface)

• Memory mapped I/O regions (for programs directly accessing hardware)

The observable behavior of a program is any interaction of the program with the system call

interface and with memory mapped I/O. A translation of a C program is called correct if it re-
sults in the exactly same sequence of system calls (with exactly same arguments) and operations
to memory mapped I/O regions. This definition has the advantage of being as generic as pos-
sible, but due to its global scope hard to prove in concrete situations. On the other hand the
definition can easily be tightened by adding more external observable events (i.e. function entry
and exit, basic block entry and exit) which allows to give local correctness conditions for many
transformations.

6.1.3 Undefined Behavior

While undefined behavior of a C program (i.e. accessing arrays out of bound) is a major problem
in real-world applications (so called buffer overflows have security impacts) it barely affects the
correctness of its translation. By definition the behavior of such a program is undefined, hence
any behavior of the compiled program is conforming to the C standard (and therefore a correct
compilation).

6.1.4 Function Invocation

One common tightening is the addition of function invocations to the list of observable behavior.
This disallows arbitrary inlining optimizations by the compiler. The proof system otherwise
would always need to investigate whether deviating behavior could be explained by inlining (or
even worse, partial inlining). Function invocations act as a black box, locally having the same
semantic effect if invoked with the same arguments.

43

6 The Big Picture - Chain of Trust

6.2 Front-end

The front-end of a compiler includes lexical, syntactic and semantic analysis of a program’s
source representation. After these steps an intermediate representation is available often in form
of a decorated Abstract Syntax Tree (AST). Only after the AST has been created it is possible
to reason about semantics of the program (a stream of lexer token has no semantics). A verify-
ing compiler needs to rule out the possibility of errors in the front-end part as well. Semantic
correctness can not be checked, though, so program checking is a viable option. If the original
program representation can be reconstructed using the resulting AST as input its construction
was correct.

A C compiler front-end includes a preprocessing step performing text substitutions resulting
in a valid C compilation unit. Traditional C compilers also compute compile-time constants
and remove parentheses, braces and semicolons before building the AST. To reconstruct a pro-
gram’s representation all those transformations need to be reversible stored in the AST. LLVM’s
AST implementation keeps track of this information utilizing the clang::SourceRange class, the
current implementation is incomplete though 1.

6.3 Mid-end - Verification of Analyses

A program’s AST is subject to analyses and transformations. While certain transformations
have a clear semantics which can be used to verify their correctness (e.g. substitution of the
AST describing the arithmetic expression 1 * a by just a), other don’t. Consider dead function
elimination, and its semantics. The key insight is that this transformation does not change a
program semantics, iff the analysis results have been correct. A proof justifying the removal
of a function would need to make sure that it is indeed dead, thereby in a way performing the
analysis. We therefore propose a method to correctly perform analysis in the first place.

In a separate project a Domain Specific Language (DSL) called Hydra has been developed
which allows to describe analyses on a very high abstraction level. The Hydra specification
can be used in two different modes. In checking mode it takes as input an AST, the name of
an analysis and the analysis results computed by the compiler (witness information). Hydra
performs the specified analysis on the AST and checks if the compiler results are consistent with
its own results. This allows the compiler to produce weaker results (or no results at all when e.g.
skipping a pass).

In generating mode a specification of the AST and an analysis is used to synthesize source
code implementing the analysis. This allows the hydra specification to be used directly in the
compiler. Please note that the compiler can always use a different implementation (which may
be more resource efficient) as long as the results are always weaker than the results of the version
used in checking mode.

A more detailed description of Hydra is out-of-scope for this work. In the remainder of this
work we assume that correct analysis results are available throughout the compiler.

1
http://clang.llvm.org/docs/IntroductionToTheClangAST.html

44

http://clang.llvm.org/docs/IntroductionToTheClangAST.html

6.4 Back-end - Verification of Transformations

In contrast to the front-end most transformations performed in the back-end can be verified se-
mantically. Each back-end pass accepts an input language (pre) and produces an output language
(post). The languages pre and post have each defined semantics which allows to prove whether
the observable behavior is preserved or not.

For each pass the compiler produces 3 artifacts i) input IR ii) output IR iii) witness informa-
tion. The translation validation tool of each pass tests whether the given output IR is consistent
to the given input IR under the (pass-specific) transformations described by the witness infor-
mation. If the output IR is not consistent a compiler error is reported. Please note that the exact
type of error is not important, i.e. it is irrelevant if just the witness information is corrupt or a
real error occurred.

Additionally each pass may produce constraints which can only be checked in later stages
of the compilation. One example is spilling registers to local stack slots. To be correct all spill
locations must be pairwise non-overlapping. As the exact stack locations may only become
available in a later pass validating these constraints must be deferred.

6.5 Multiple Iterated Passes

Modern optimizing compilers commonly perform certain transformations until a fix-point is
reached. For example register allocation and VLIW scheduling are tightly coupled [29]. Com-
mon implementations come up with an initial schedule and try to allocate registers afterwards.
In case the register pressure is to high (spill code) a less tight schedule is tried until a satisfactory
result is found.

A compiler could implement this in an iterative fashion, i.e. it could have regions of code
for which a schedule and register allocation was found and other for which no solution has been
found yet. Each of these intermediate steps could be dumped and processed by the validation
tool. This would complicate implementation of the validator, as it would need to distinguish
such regions and either validate the transformation or skip non-transformed regions. For each
iteration it would either re-validate previously transformed regions (expensive in terms of CPU
time) or cache validation results.

We assume a compiler which only dumps its IR for the final solution and suppressed the IR
dumps for unsuccessful attempts. The compiler needs to try the transformations on intermediate
IR which are fully rolled back if any transformation fails. It therefore needs to build up internal
data structures to keep track of information regarding future transformation attempts (and can
not store them in its IR directly).

45

7 Correctness of Selected Back-end
Transformations

Das also war des Pudels Kern!

Faust

In this chapter validators for selected passes are presented. For each pass the IRs it operates on,
needed witness information, the criterion for local correctness and possible constraints are given.
The observable behavior of all back-end passes is tightened to include function invocations (see
section 6.1). Technically, basic blocks are ended on function calls (even if the function is known
to return in all cases).

A formal description of each validator could be given, but is of limited applicability for
compilers others than our research compiler. The validators need to be adapted to the concrete
implementation of the passes for each specific compiler. Passes also depend on the semantics
of the source (and IR) languages, e.g. in Java a stack overflow triggers an exception at run-time.
Validators for passes modifying the stack-size (e.g. register allocation due to spilling) must then
also validate that overflow detection is updated accordingly. In a language like C such behavior
is undefined and needs not be validated at all.

Figure 7.1 gives an overview and also shows the IR each pass operates on. MIR is the
compiler’s tree-ish internal representation used in the mid-end. Before instruction selection is
performed MIR is rewritten to mMIR, which is a variant of MIR. Instruction selection is the
first back-end pass producing an IR closely resembling machine code. The IR is now organized
in blocks of sequentially executed instructions operating on an infinite number of registers. Its
name cLIR comes from the fact that pipeline effects are not considered yet, thus causal. After
scheduling the VLIW bundles have been constructed and pipeline resources are considered. The
IR is now called sLIR. Only after linking the final binary representation is constructed, called
Linked Assembly Module (LASM).

7.1 Prolog and Epilog Insertion

This pass transforms function invocations into branching instructions supported by the hardware.
For each function prolog and epilog code is inserted to implement its activation record and

47

7 Correctness

from mid-end

Prolog and Epilog Insertio
n

Instru
ction Selection

If Conversio
n

Reg
Allocation, Scheduling, Spilli

ng

Softw
are Pipelining

Stack Finalization

Linking

LASM

MIR

mMIR cLIR cLIR sLIR sLIR

Figure 7.1: Covered Back-end Passes

preserve callee saved registers. Function arguments are mapped to argument registers and stack
slots according to the machine Application Binary Interface (ABI).

In MIR function arguments in the callee are represented by PARAMETER nodes (listing
7.1). This pass replaces all PARAMETER nodes by i) register copies (into a named register) if
the argument has been passed by register ii) a stack-relative load if the argument was passed
on stack (see listing 7.2). A MIR RETURNVAL node is converted into a RETURN node and an
instruction copying the value to be returned into the result register is inserted. The call site is
also rewritten by this pass (see listings 7.3 and 7.4). All arguments to the function are either
copied to hardware registers or stack slots (determined by the calling conventions). A potential
return value is copied from the hardware register to its named register. All calls are converted to
calls without any arguments.

Function foo

param A

param B

/* implementation of function */

returnval C

EndFunction

Listing 7.1: MIR function w/o epilog

Function foo

/* setup stack frame */

/* stored callee saved registers */

MOVE_REGISTER hwRegArg0 symRegVarA

MOVE_REGISTER hwRegArg1 symRegVarB

/* implementation of function */

MOVE_REGISTER symRegVarC hwRegRet

/* restore calle saved registers */

/* remove stack frame */

EndFunction

Listing 7.2: LIR function with epilog

48

...

res <- call func arg0 arg1

...

Listing 7.3: MIR call site

...

MOVE_IMMEDIATE arg0 hwRegArg0

MOVE_IMMEDIATE arg1 hwRegArg1

BRANCH_SUBROUTINE func

MOVE_REGISTER hwRegRet res

...

Listing 7.4: LIR call site

7.1.1 Constraints

• All named registers holding function arguments (copies of PARAMETERs) are live-in.

• The named register holding the return value (if any) is live-out.

• The liveness constraints are used during register allocation (see section 7.6).

• Stack locations used by arguments, validated as part of stack finalization (see section 7.7).

• The initial Control Flow Association (CFA) (see section 7.2.1) is build here as MIR calls

are translated into machine branching instructions.

7.1.2 The Validator

A validator tool for this pass must check that i) all function prologs have been inserted correctly
ii) all function epilogues have been inserted correctly iii) all function arguments (parameters)
have been rewritten to copy instructions iv) return values have been copied to the return register
v) each call site has been rewritten correctly and vi) no other changes have been made. All
the checks require the validator to exactly know the used calling-conventions. The copying of
arguments to registers and stack slots create constraints which affect later validation steps. The
validator can be implemented using simple program checking techniques (see section 5.1).

7.2 Instruction Selection

This pass is one of the most important back-end transformations as the tree-ish mMIR gets
lowered to the machine-like cLIR. While mMIR still operates on (named) variables cLIR uses an
infinite number of (named) registers. The validator tool must verify that the selected instructions
are semantically equivalent to their mMIR counterparts and that the mapping of (symbolic)
variables to (symbolic) registers is consistent.

As a preparatory step the MIR nodes are partitioned into trees with respect to dependencies
(true, anti, output) of registers and memory. Control flow modifying MIR instructions always
start a new tree as well. By construction the partitioned trees match either a side-effect free
expression, a function call, a conditional branch or an expression with a single side-effect at the
root node (e.g. pre/post increment load and store instructions). The validator needs to check i)
the partition is complete ii) no additional instructions were added and iii) the partition is correct
relative to the dependencies. This can easily be implemented by program checking techniques
(see section 5.1).

49

7 Correctness

The challenging part of instruction selection is whether the selected sequence of machine
instructions is a correct translation of the MIR tree. In this work we implemented a full semantic
validation of the selected instructions utilizing the simulation proof technique (5.2). Because the
IR is changed during this transformation a mapping of the state (mMIR → cLIR) needs to be
defined.

7.2.1 Mapping State Representation: mMIR → cLIR

To apply the simulation proof technique (5.2) the cLIR state (see section 4.3.1) needs to be
mapped to the mMIR state (see section 4.3.2). As only observable behavior is of interest this
mapping needs only to be defined for observable program state. For the instruction selection
the definition of observable behavior is tightened to include program state before and after each
matched mMIR tree.

Most LIR functions are not observable (although they indirectly affect observable behavior).
E.g. FUstate which holds intermediate results is not directly observable in the states before
and after mMIR trees and is therefore not part of the mapping. The same argument holds for
REG_Flag, REG_ModifyRegister and REG_GuardBits. pipeline and inval_pipeline_* are not
used by cLIR models, PE_unit_disabled can only be observed indirectly. PARG only contains
decoded FV and is not part of the mapping either. This only leaves a few functions for which a
mapping must be defined. MEM and MIRMEMORY is a simple one-to-one mapping (by design
of mMIR memory).

MIRHWLOOP and HWLOOP, MIRHWSTACK and HWSTACK as well as MIRPC and PC

are one-to-one mappings with the delicate difference of different addresses: mMIR operates on
unique node identifiers and cLIR instructions have addresses. The final value of those addresses
is only known after linking (see section 7.8), though. Unique instruction identifiers are therefore
used in cLIR as well.

A data-structure called CFA is used to map mMIR node identifiers to cLIR instruction identi-
fiers. Passes modifying LIR instructions must update the CFA accordingly. The CFA is handled
like any other constraint (see chapter 6).

The most important mapping is mMIR’s VALUE function which will be mapped to either
REG_DataRegister or REG_AddressRegister. Which of mMIR’s variables is mapped to which
register number is part of the compiler’s register allocation mapping. Both (mMIR and cLIR)
are in SSA form, the mapping is therefore one-to-one.

7.2.2 Semantic Validation

By construction of the mMIR trees, side-effects (memory and control flow) can only occur at
the root node. As a result only the last cLIR instruction of the selected sequence may be a
branch instruction. Because mMIR conditional branches are modeled using the semantic mir_if

operations (see section 5.2.1) the corresponding traces of pre and post are trivial to find (there is
only one mMIR trace). The simulation proof technique (see section 5.2) is then applied to show
that each trace of a cLIR instruction sequence is a correct translation of its corresponding mMIR
trace.

50

7.2.3 Plausible Register Allocation Mapping

By proving each mMIR tree in isolation only local correctness is shown. The register allocation
mapping (mapping of named variables to named registers) must be identical for each mMIR
tree of a specific C function and must fulfill certain correctness properties. The register alloca-

tion mapping must not map different mMIR variables to the same cLIR register as the validator
has no notion of variable lifetimes. When named and hardware registers share the same name-
space mMIR variables must not be assigned to hardware registers. If global register allocation
is performed the same global variable must be assigned to the same cLIR register consistently.
Hence a validator must check the witness information (i.e. register allocation mapping) for plau-
sibility. These properties can easily be checked by using the program checking technique (see
section 5.1).

7.2.4 Proof Preparation

Our research architecture can combine its registers to larger units (i.e. two 16 bit registers can
be combined to a single 32 bit register). The model of the register file describes the effects on
the atomic units only (i.e. a 32 bit register write is modeled as two 16 bit writes). Symbolic
traces and their first-order representation are therefore totally unaware of combined registers.
The register allocation mapping (and other parts of the research compiler) on the other hand
make use of the combined register notation. To close this gap we inject knowledge of combined
registers into the problem files before they are handed to the prover. For each occurrence of a
combined register the formulae

∀T,X : 32_bit_reg(T, idx,X) =⇒ 16_bit_reg(T, regl(idx), xlidx)∧

16_bit_reg(T, regh(idx), xhidx) ∧ ex(0, 15,X, xlidx) ∧ ex(16, 31,X, xhidx)

and

∀XL,XH,X1,X : 16_bit_reg(T, regl(idx),XL) ∧ 16_bit_reg(T, regh(idx),XH)∧

sb(16, 31, 0,XH,X1) ∧ sb(0, 15,X1,XL,X) =⇒ 32_bit_reg(T, idx,X)

where idx is the number of the combined register, xlidx and xhidx are fresh logical variables, are
inserted into the problem file. They describe the fact that xlidx and xhidx can be extracted from
(ex operation) respectively combined to (sb operations) the value of the combined register (X).
regl as well as regh are register file specific functions mapping the index number of a combined
register to the indices of its registers it is built from. The validator thus has (at least some)
knowledge of the concrete architecture.

7.2.5 Side Effects

For each observable side-effect (i.e. memory access) on one side (pre or post) the equiva-
lent effect must be observed on the other side as well. Because the memory model is the
same for LIR and mMIR, inserting of these clauses into the conjecture is very easy. Assume
MIRMEMORY(0, A, V) is observed (logical time-stamp is 0, i.e. final state) then the clause

51

7 Correctness

if (x == 0) {

y = 1;

} else {

y = 3;

}

Listing 7.5: C

mov.i 3, R0

b0:

mov.i 3, R0

br.cn R0!=0, b3

b1:

mov.i 1, R0

b3:

Listing 7.6: assembler

mov.i 3, R0

(R0==0) mov.i 1, R0

Listing 7.7: predicated

Figure 7.2: If-Conversion example

MEM(0, A, V) must be part of the conjecture and vice versa. The symbolic trace is scanned
using regular expressions to find occurrences of observed side-effects and the corresponding
function (e.g. MIRMEMORY and MEM) is substituted. More complex mappings than this sim-
ple one-to-one could be realized in this step. Thus the validator must have knowledge about the
mapping of (CASM) state functions (their predicate representation) onto their counterparts for
translations changing the IR. Because each mMIR tree has at most one side-effect (by construc-
tion) the order of side-effects is not important for the correctness of this pass.

7.2.6 Constraints

The register allocation mapping of each function is a global constraint. It must be consistent for
each mMIR tree of a specific C function.

7.2.7 Validator

The complete validator therefore has to verify that i) the mMIR partition is a complete, non-
overlapping cover of the MIR tree ii) without any additional nodes iii) the register allocation

mapping is plausible (see 7.2.3) iv) each mMIR tree is semantically equivalent to its corre-
sponding cLIR instruction sequence (simulation proofs) and that v) the same side-effects occur
(under the state mapping function).

7.3 If Conversion

If-conversion [3] is a technique converting conditional branches into predicated execution. A
small increase in code size (adding predicates) removes costs associated with mispredicted
branches. But the conversion of control dependencies into data dependencies also enlarges basic
blocks. Especially on VLIW architectures the scheduler may therefore better exploit ILP which
enables better loop optimizations [69]. Figure 7.2 illustrates the basic idea of if-conversion.

In our research compiler if-conversion is implemented on cLIR. Conditional branches de-
pend on the contents of a register.

The 4 basic patterns shown in figure 7.3 are optimized. Rectangles represent single basic
blocks, branches are denoted by arrows. Pattern 1 is the classic if-then-else diamond shape
without branches in the then and else block. The predicates added to the instruction in the else

52

if if

then

else

join

then

else

join

if if

then

join

then

join

if if

then*

else then*

else

if

then

else*

if

then

else*

normal instructions predicated instructions unrestricted control flow*

join join join join

1) 2)

3) 4)

Figure 7.3: Supported If-Conversion Patterns

block are the negation of the then block predicate. Two conditional branches are removed (last
instruction of if-block and last instruction of then-block). The result is one large basic block.
Pattern 2 has an empty else block. An earlier transformation assures (by inverting the branch
condition) that only this form occurs. The conditional branch in the if-block can be removed.
Pattern 3 and 4 handle the cases were branch instructions occur in either the then or else block
(unrestricted control flow). Only the block without branch instruction will then be converted into
predicated form. Application of pattern 3 removes a conditional branch in the if-block, but adds
a predicated unconditional one to the else-block. The unconditional branch of the then-block is
removed. Pattern 4 removes the conditional branch of the if-block and turns the unconditional
branch of the then block into a predicated unconditional one.

While the branch condition is evaluated exactly once (at the end of the if-block) predicates
are evaluated together with each instruction. The register contents of the evaluated register may
be changed, though. Therefore the register used by the conditional branch in the if-block will be
copied to a fresh register which will then be used to evaluate the predicates.

7.3.1 Constraints

If the unique identifier of subroutine branch instructions has been changed the CFA must be
updated.

7.3.2 Validator

The witness information consists of i) if-block, then-block, join-block ii) optional else-block
iii) unique identifier of branching instruction iv) condition on which is branched v) conditional

53

7 Correctness

register used by branching instruction vi) register containing the copy of the conditional register
and the vii) unique identifier of copy instruction.

The validator therefore has to verify i) if-conversion patterns have been identified correctly
(inspection of branching instructions and involved basic blocks) ii) only blocks identified to be
part of if-conversion patterns have been modified iii) no other blocks were added or removed iv)
a register copy instruction was inserted directly before the branch instruction v) which copies
the condition registers vi) into a fresh register not used anywhere else in the whole function vii)
predicates were added to the blocks according to the identified pattern (predicate condition and
register are known) viii) branching instructions were added, removed or changed according to
the pattern. This validator can be implemented by program checking, no simulation proof needs
to be performed.

7.4 VLIW Scheduling

This compiler pass is a further essential transformation of the back-end. It combines causal
instructions of the sequential stream of cLIR instructions into resource-dependency aware bun-
dles. A new compiler intermediate representation called sLIR is introduced to represent such
bundles. The target architecture of our research compiler has a non-interlocking pipeline. This
means that resource conflicts are not detected by the hardware and lead to undefined behavior
of the program instead of just performance penalties. From a verification point of view VLIW
scheduling for non-interlocked micro-processors is a correctness critical transformation.

The VLIW scheduler of the research compiler works on a basic block scope, no instructions
are moved between them. Alias analysis is used to reorder load and store operations.

A scheduled block is a correct transformation if it changes the state as the unscheduled
block would. The simulation proof technique (see section 5.2) depends on identical initial state,
though. Because sLIR has a notion of the pipeline (and cLIR does not) the initial state when
entering a sLIR block is not identical with the state when entering the cLIR block. The pipeline
state has to be considered as well.

A pipeline has a certain depth and that is the number of preceding bundles which may affect
the pipeline state. By extending each basic block to include exactly this number of preceding
bundles the pipeline state when entering a basic block can be reconstructed. Depending on the
number and size of predecessors (and their predecessors) of a basic block multiple extensions
are possible. We call all such extensions the snake blocks. Figure 7.4 illustrates the concept.
The pipeline depth in the example is 2 bundles. 3 paths can be constructed by extending the
basic block with 2 preceding bundles, each of which (may) result in a different pipeline stage
when entering the block. If a blocks predecessors are not statically known the first bundles of the
block must contain no instructions. Branching to statically unknown labels can not be validated
and such code is rejected.

The cLIR instructions used to form the bundles are then used to extend the corresponding
cLIR basic block. Assuming an identical state at the beginning of each of the snake blocks

the extended cLIR and the extended sLIR blocks must now result in identical final states. The
properties of symbolic execution ensure that dependency violations introduced by reordering the

54

cLIR sLIR

Snake 1 Snake 2 Snake 3

Figure 7.4: Snake Blocks

instructions will change the DFT of the transformed block and verification will fail. Memory
dependencies on the other hand are more problematic.

7.4.1 Memory Dependencies and Symbolic Execution

Performing symbolic execution leads to symbolic memory addresses (in the general case). Some
transformations reorder instructions which may include memory instructions. Reordering of
memory instructions is not safe in general when aliasing is possible (i.e. write before read con-
flicts). By inspection of the symbolic trace aliased memory addresses can not be recognized,
they are simply different symbols. Hence a validator would need to assume all symbolic mem-
ory addresses to be aliases, which would prevent any reordering. Clearly such a validator is not
desirable.

Symbols representing memory addresses can easily be recognized in the traces (second argu-
ment of the MEM and MIRMEMORY predicates). Those symbols are associated with a symbolic

expression. As result of the unification performed during the proof a canonical symbolic expres-

sion becomes available. This defining expression (see section 8.4) is identical for symbolic
values resulting from the semantically identical operations on identical input symbols. Identi-
cal symbolic memory addresses are therefore expressed by identical defining expressions. The
vanHelsing prover (see chapter 8) writes defining expressions to a separate file accompanying
each proof. The validator uses this file to identify aliasing memory addresses. Input symbols are
mapped to registers (or stack slots), for which the mapping to named program variables is avail-
able (by means of constraints, see section 7.2). Alias information of named program variables
has been computed by a front-end analysis and is also available as constraints.

55

7 Correctness

If the validator detects that a memory operation has been reordered (i.e. the addresses are not
aliased) by the transformation it can validate if the reordering is coherent to the available alias
information. The relative order of memory accesses is encoded in the logical time-stamps of the
MEM and MIRMEMORY predicates.

7.4.2 Resource Conflicts

The research target architecture has a pipeline without interlocking. Undetected resource con-
flicts thus lead to undefined behavior of the hardware. By construction of the CASM models
resource conflicts in the pipeline manifest as run-time errors (exploiting CASM’s property that
multiple updates to the same location from a parallel context are inconsistent).

7.4.3 The Validator

The validator has to verify that i) the basic block structure of post is identical to the one of pre

(no blocks added or removed) ii) for each basic block all corresponding pairs of pre and post

snake blocks are semantically equivalent iii) all identified reordered memory operations were
not aliased.

7.5 Software Pipelining

Software pipelining is a class of optimizations which aim to remove the scheduling barrier im-
posed by back-edges of loops. The idea is to initiate a number of parallel loop executions in the
prolog. The so called steady state then consists of the number of parallel executed loop itera-

tions. A epilog is needed to finish loop iterations started by the steady state but no finished yet.
Iterative modulo scheduling is one effective algorithm which allows to do so [42, 58]. Especially
for VLIW architectures a much higher degree of ILP can be exploited by the enlarged loop body
(kernel, steady state).

The sLIR to sLIR transformation is sketched in figure 7.5. A hardware loop (green) which
consists of a single basic block without branches is transformed. Additional code in the prolog
(proaddpost) initiates a number of parallel iterations (blue), which reduces the number of loop iter-
ations. The iteration counter has to be adopted (orange). A temporary register may be allocated
to calculate the new value (if the number of iterations isn’t a compile time constant). Finally
code is added to the epilog (epiaddpost) finishing the started loop iterations (dark blue). Optionally
the loop body may be unrolled (by a factor fu) which also affects the loop iteration counter.
This transformation is only performed if the minimum number of transformations is known and
unrolling is only performed (in this implementation) if the exact number of iterations is known.
The steady state will be executed at least one time (on the target machine hardware loops must
be executed at least once).

Our validator prototype uses a combination of program checking, simulation proofs (see
section 5.2) and an inductive argument to verify this transformation.

Let JK be the semantics of the enclosed expression, + denote sequential execution of sLIR
instruction sequences, propost, bdypost, epipost the prolog, loop body (steady state) respectively
the epilog of the post transformation program. Let proaddpost (blue in figure 7.5) and epiaddpost (dark

56

steady state

prolog

loop iteration adaption
loop instruction

epilog

Figure 7.5: Software Pipelining

blue in figure 7.5) be the additional code in the post prolog and epilog. Let propre, bdypre, epipre
be the prolog, loop body and epilog of pre. Finally let iterprologpost be the number of iterations

initiated in the prolog code and iterbdypost the number of iterations initiated by each execution of
post loop body (including unrolling).

Due to the nature of the transformation the states when entering the pre and post loops are
never identical. Without identical states our simulation proof technique can not be applied. The
pre loop always executes one full iteration, while the post loop still has unfinished iterations in-
flight. Intermediate results of these in-flight iterations are used in each execution of the post loop
body. The proof technique is based on the DFT encoded in the symbolic traces and for in-flight
intermediate results the DFT is unknown. However, it is known how to calculate the unknown
DFT, that is exactly what the software pipelining prolog (JproaddpostK) does. Let the initial post

state be the (symbolic) state when entering the post loop body, and the synchronized initial post

state be the very same state but assume that proaddpost was executed before. (In other words, the
operations to compute the current in-flight values are replayed.) Similar the synchronized final

post state is the state at the end of the post loop body, after epiaddpost was executed.

Now an inductive argument can be made to prove software pipelining using simulation
proofs. Equation 7.1 is the base case, for exactly one iteration of the post loop body. The
post prolog, body and epilog are executed exactly once. Pre loop body is executed exactly
iterprologpost + iterbdypost times, which is the guaranteed minimum loop execution time (a precondi-
tion for the transformation to be applied).

57

7 Correctness

Jproaddpost + bdypost + epiaddpostK = J

iter
prolog
post +iter

bdy
post

︷ ︸︸ ︷

bdypre + . . .+ bdypreK (7.1)

To finish the inductive argument it must be shown that an additional execution of the post

loop body is semantically equivalent to an increased number of executions of the pre loop body.
Now the synchronized states come into play as equation 7.2 shows. The post loop body is
executed twice and hence the pre loop body must be executed twice as well (plus the iterprologpost

to account for in-flight iterations).

J

synchronized
︷ ︸︸ ︷

proaddpost + bdypost+bdypost +

synchronized
︷ ︸︸ ︷

epiaddpost K = J

iter
prolog
post +2iter

bdy
post

︷ ︸︸ ︷

bdypre + . . .+ bdypreK (7.2)

It remains to be shown that proaddpost and epiaddpost have been correctly added to the prolog and
epilog blocks. The simulation proof shown in formula 7.3 ensures this.

Jpropost + bdypost + epipostK = Jpropre +

iter
prolog
post +iter

bdy
post

︷ ︸︸ ︷

bdypre + . . .+ bdypre+epipreK (7.3)

The post state may differ by additionally used registers (modulo register renaming), and a
different loop counter register. Finally the modification of the loop counter must be verified.
This can not be achieved by symbolic evaluation, but the correctness conditions are very simple,
so program checking (see section 5.1) is performed.

7.5.1 Validator

The witness information contains i) identifiers for involved basic blocks (prolog, loop body,
epilog) ii) additional instructions added to the prolog initiating loop iterations (proaddpost) iii) addi-

tional instructions added to the epilog finishing in flight loop iterations (epiaddpost) iv) identifier of

loop instruction v) identifiers for loop iteration adaption code (orange in figure 7.5) vi) iterprologpost

and iterbdypost vii) and modulo renamed registers.
The validator must verify that i) formulas 7.1, 7.2 and 7.3 hold (by simulation proofs) ii) cor-

rect insertion of iteration adaption code (program checking) iii) modification of loop instruction
(program checking) iv) additionally used registers (iteration adaption code, register renaming
caused by loop unrolling) are not used anywhere else in containing function v) reordered mem-
ory operations are coherent with alias information (see section 7.4) vi) and no other changes
were made.

7.6 Register Allocation & Spilling

Register allocation and spill code generation is another indispensable pass of a compiler back-
end. In our research compiler register allocation is a sLIR to sLIR transformation. Pre uses
virtual registers, although some registers are pre-allocated (i.e. function prolog and epilog, see
section 7.1) and each register is defined exactly once. Post only uses hardware registers and may

58

reg vregs
rred v0, v3, v5
rblue v1, v4
stack0 v2

v0

v1

v2

spill

v3 v4

v5

v0

v1v2

v3

v4
v5

BB

pre post

rred

rblue

stack0

Figure 7.6: Register Allocation and Live-In Live-Out Sets

use additional stack slots (for spilled registers). Each virtual register is mapped to one hardware
register for the scope of a whole function (i.e. no live range splitting). Spill code is added to the
basic block containing the use and def (i.e. no spill code motion). Each virtual register of pre is
therefore mapped to a hardware register of stack slot in post (this mapping is called the register

allocation map). Although the scope of the register allocator is the whole function, a basic block
local correctness criterion can mainly be used to prove its correctness.

The register allocation map must be proven to be correct, though. Program checking is a
viable option here. By inspection of the pre trace the def-use information for virtual registers
can be computed. This allows to create an interference graph. It can easily be checked if the
register allocation map is a correct coloring of this graph.

The idea is to identify the live-in and live-out set of each basic block. By inspection of the
pre and post traces the def-use set for each basic block can be computed. Using the Control Flow
Graph (CFG) (assumed to be available and correct see section 6.3) a simple backwards data-flow
analysis is used to calculate the liveness of pre and post registers. The initial state of a pre basic
block can be used to compute an equivalent initial state for the post basic block utilizing the
register allocation map. We tighten the observable behavior to include the live-in and live-out

sets of each basic block, which still allows a wide range of transformations to be applied by the
register allocator. Using the simulation proof technique 5.2 it must be shown that an equivalent
initial live-in state results in an equivalent final live-out state.

Figure 7.6 shows an example with interference graph, register allocation map and the live-in

and live-out set of a basic block (for pre and post). The example architecture has two registers
(red and blue). For the translation to be correct the live-out sets of pre and post must be equiv-
alent (considering the register allocation map). Also note that the register allocator may map
virtual register v0 (here mapped to register red) without any constraints, as long as the semantics
of the block is not changed and the live-out set is correct.

All side-effects to the memory observed by pre must be performed by post without being
reordered. Post may perform additional memory operations as long as the affected addresses
are spilled virtual registers according to the register allocation map. It is possible that a spilled
virtual register is used by a basic block but not in its live-in or live-out set (e.g. v0 in figure 7.6).

59

7 Correctness

1 fof(idclir620,hypothesis,stclirMEM(4,symclir368,symclir375)).%CREATE

2
3 symclir368=fadd_result(20,stclirREG_AddressRegister(14),csclirPARG(28,eFV_o))

Listing 7.8: Symbolic address (symclir368) & defining expression

7.6.1 Identifying Spill Code

To identify whether an additional memory access in post is a (valid) access to a spill location we
again rely on the defining expressions (see section 8.4). In listing 7.8 line 1 is an example of a
clause describing the first reading access (CREATE annotation, see section 3.2.3) to a memory
cell (function stclirMEM). The address is the (symbolic) value symclir368, while the value read
is the (symbolic) value symclir375. Line 3 of the listing shows the defining expression of the
memory address symclir368. It was calculated by a 20 bit addition of the address register 14 (the
stack pointer of the architecture) and the immediate field eFV_o of the instruction with unique
identifier 28. By consultation of the constraints (see section 6) the validator can check whether
instruction 28 references a spill slot (access is okay) or not (report error).

7.6.2 Integrated Rematerialization

Register allocators often perform various other trival, small, obvious optimzations on the fly. For
a validator these optimizations are of course troublesome, as their correctness must be shown as
well. This section describes an enhancement which enables the validation of rematerialization.

LLVM’s greedy allocator (the coalescer actually)1 utilizes trivial rematerialization2 to re-
move uses of a register which are the result of a register copy. The register copy can be replaced
by rematerializing the content of the source register. This reduces the lifespan of a register and
may reduce register pressure. Loading immediate constants into registers are perfect candidates
for rematerialization because load and copy instructions are easily interchanged on many archi-
tectures.

Our prototype register allocation validator has support for rematerialization of constant val-
ues. After the validator calculated the live-out sets a forward data-flow analysis is performed
propagating constant register values. When the problem file is generated, clauses are emitted
for registers with known constant values (stating the said register contains said constant value).
The register allocator may then rematerialize or copy the register, the resulting DFT will be the
same.

7.6.3 Constraints

• The register allocation is added to the constraints. For each basic block of a specific
function the register allocation must be identical.

• The liveness information created by the prolog and epilog insertion validator (see sec-
tion 7.1) is used.

1used version: 3.2
2TargetInstrInfo::isTriviallyReMaterializable()

60

7.6.4 The Validator

The validator must verify that i) the register allocation map is a correct coloring of the interfer-
ence graph (by constructing the graph from the traces) ii) calculate live-in and live-out sets for
each basic block (by inspection of the traces) and optionally constant register values iii) for each
pair of pre and post basic blocks the live-out sets are equivalent, given an equivalent live-in set
(equivalent with respect to the register allocation map iv) all memory side-effects of pre happen
in the same order in post (by inspection of the traces) v) all memory side-effects exclusively
happening in post affect spill memory only.

All spill locations, their defining expressions to be exact, are constrained to be otherwise
unused stack slots. This property will be verified in the stack finalization pass (see section 7.7).

7.7 Stack Finalization

This pass is responsible to allocate concrete stack slots for all stack allocations of a function.
Stack allocations are needed for callee-saved registers, stack-passed arguments, local variables
whose address is used and spilled registers. Those previous passes emitted stack slot constraints.
Our research compiler patches immediate fields of sLIR instructions in this pass.

Earlier passes created stack slot constraints of the generic form: instruction X references
stack object S of size Ss at offset So. The witness information produced by this pass contains
the stack offset o for all stack objects of each function. Our research compiler implements stack
slot coalescing, stack objects with disjunctive lifespans may therefore be allocated to the same
stack offsets. The same technique is used to reconstruct the interference graph and proves its
coloring discussed for register allocation (see section 7.6) can be applied to prove stack slot
allocation correct.

7.7.1 The Validator

The validator has to verify that i) stack slot coalescing is correct (by construction of the inter-
ference graph from the traces) ii) all stack allocations are non-overlapping iii) the immediate
fields of all instructions are patched correctly (collected stack constraints) iv) no other changes
are made.

7.8 Linking

The linker finally defines the layout of the binary, including the address of each function and the
addresses of global variables. We assume a static linker commonly used for embedded systems
which often don’t support dynamic linking at all. All instructions referencing functions or global
values must be patched (fix-ups, relocations). On some architectures the linker may even inject
instructions.

Instructions referencing function addresses have been generated during instruction selection.
The name of the called function is known in mMIR code. A constraint is emitted for each

61

7 Correctness

function invocation associating the function name with the unique identifier of the cLIR call
instruction. Global variables are handled identical.

The linker emits the chosen addresses of functions and global variables as witness informa-
tion, the validator can be implemented by program checking. There are additional correctness
issues to verify, i.e. different objects must not overlap, alignment and others. They all can be
verified by program checking, no semantic transformations are performed by a (correct) linker.

7.8.1 The Validator

The validator must verify that i) all global objects are assigned to unique, non-overlapping ma-
chine addresses ii) considering alignment constraints, validity (i.e. address mapped to actual
memory) and properties of the underlying memory (i.e. read-only, execute) iii) all relocations
(fix-ups) of instruction fields have been performed correct and consistent iv) no other changes
were made.

7.9 Summary

The investigated passes include instruction selection 7.2, register allocation 7.6 and VLIW
scheduling 7.4. These are the foundation passes of our research compiler’s back-end, with-
out these passes no machine code can be generated at all. The other passes deal with interesting
properties of our research architecture, namely predicated execution and optimization of hard-
ware loops.

Each of the passes can be verified using a combination of the simulation proof technique and
program checking (see chapter 5). We were able to develop local correctness criteria thereby
limiting the sizes of the simulation proofs to the size of a basic block. Global correctness is
achieved by creating constraints (and validating them in later passes). A high degree of paral-
lelism can be exploited when executing the proofs. All basic blocks (many thousands for larger
projects) of a program can be validated in parallel. Utilizing a large cluster even very large
programs can therefore be validated within minutes (depending on the longest running proofs).

62

8 vanHelsing: Prover and Debugger

With superposition based provers like Vampire [59, 41] and Eprover [62] there are two problems
with our application i) if the symbolic traces created from the (not trusted) IR dumps contain a
contradiction a spurious refutation will be found (interpreted as proof success) and ii) if the
translation was erroneous the prover states satisfiability, but gives no hint about the nature of the
problem. Problem i) can be solved by running the prover on the symbolic trace and axiom set
without the conjecture, they must be satisfiable. We are not aware of a solution of the second
problem, though. A domain expert has to manually check the problem to locate the reason why
the proof failed (and locate the compiler bug). This is a tedious and time-consuming task.

Using the same problem formulation SMT produces a model for erroneous translation (they
are satisfiable) which helps in identifying the bug in the compiler. For more complex problems
finding a model seems to be a very time consuming task (at least for the Z3 prover, see sec-
tion 10.2). For unsatisfiable problems no further information is given, while superposition based
provers create an evidence. (The problem can be formulated in a different fashion so a model
is found as evidence, losing the models for erroneous translations, though.) A missing evidence
weakens the strength of the argument that the compilation is proven to be correct (proof can not
be retraced independently). The other issue is that if the translation facts produced by the (not
trusted) compiler are unsatisfiable in itself, the whole problem will be spuriously unsatisfiable.

Due to the large size of our problems (often more than 10.000 predicates) our tool should
also provide a debug mode to analyze failing proofs. A representation of the encoded DFT as
graph helps to catch the interrelation of predicates and values, but also creates the connection to
the problem domain. vanHelsing can print a graph representation of the problem utilizing the
widely used DOT language [27]. Figure 8.1 shows the initial graph built from the example given
in listing 8.2. Function applications are printed as structured rectangular boxes. The first field
contains the name of the predicate, the following fields its arguments. By convention the last
argument represents the result. All arguments are linked to the referenced value nodes (printed

63

8 vanHelsing: Prover and Debugger

in ellipses). Unified values (that are equal values) are printed as list after the equal sign (there
are none).

8.1 Input Language

As input language the vanHelsing prover uses a subset of TPTP v6.0 [65]. This section specifies
the supported features and restrictions. A specification of the language in EBNF can be found
in appendix C.

As top-level elements TFF (type information for predicates and variables) and FOF (first-
order formula) are accepted. TFF formulas are accepted but ignored and vanHelsing assumes
integer types for all values. Nonetheless correct type information should be added to achieve
compatibility with other provers (i.e. Vampire). All TPTP formulas have the generic form
language(id, role, formula). with language being fof or tff. The role of a FOF
formula is one of axiom, hypothesis or conjecture (formula to be proven). The subset of accepted
FOF formulas is tailored for the problems of our application and all accepted elements are listed
below:

• Values / Variables – $true, 1, -4, sym2

The values $true and $false encode the boolean constants true and false. Integer constants
represent the corresponding integer value. Boolean and Integer constants are called well-

defined values (that is: their semantic value is known). All other values (e.g. sym2 are
supposed to be (unknown) integer values. Variables starting with an upper case letter are
all-quantor bound free variables used in patterns.

• Functor Application – pred(x,y,z)
A translation fact, encoded as a predicate. If a functor application may also be part of the
conjecture, the corresponding fact must eventually be derived for the proof to succeed.

• Equality – x = y

Should x and y both be well-defined (but different) values the problem contains a contra-
diction. If equality is used in the conjecture the values x and y must eventually be unified
for the proof to succeed.

• Inequality – x != y

Should x and y both be the same value the problems contains a contradiction. If inequality
is used in the conjecture the values x and y must not be unified for the proof to succeed.

• Implication – lhs => rhs

If lhs (the pattern) evaluates to true rhs (the action) will be performed. An action may
either be a function application, in that case a new fact will be added to the problem or
an equality, which triggers an unification. No unbound free variables must occur in the
action. An exemplary usage is the implication (add(A,B,X) & add(A,B,Y)) =>

X=Y). Implications drive the unification, as their rhs usually contains new equalities.

64

• Conjunction - formula1 & formula2

Informally introduced in above example, conjunction of terms is possible. Important ap-
plications of the conjunction is a conjecture consisting of multiple clauses and of course
in complex patterns of implications.

• Equivalence – lhs <=> rhs

The equivalence pattern will be translated into two implications (lhs => rhs and rhs
=> lhs).

8.2 Implementation

In this section we describe the algorithm and data structures used to implement vanHelsing as
well as implemented optimizations. The whole problem is represented as graph with 2 basic
node types, values and functors. Values are linked to functors using or defining them, and
functors are linked to all values they reference. Any path in the graph therefore is an alternating
sequence of value and functor nodes.

Each value is exactly stored once in the graph. When unifying two values the node with the
fewer edges will be removed from the graph. All its neighbors will be linked to the value it was
unified with.

We also remove duplicated functor nodes, that are functors of the same type connected to
exactly the same value nodes (in the same order). Initially there are no such nodes by construc-
tion. Whenever two value nodes are unified we test their linked functor nodes for duplicates.
Due to the structure of our problems a lot of duplicate functor nodes will be produced. The test
for duplicated functors can be performed efficiently utilizing the problem graph.

vanHelsing is a command line tool designed for batch processing and implemented in C++.
The current implementation uses 64 bit machine integers to represent integer values. Their range
is sufficient for our applications.

8.2.1 Unification Algorithm

The idea is to repeatedly match all patterns until the graph does not change any more (problem
becomes stable). Only when the problem is stable it is assured that no contradiction has been
derived. The fix-point unification algorithm is given in listing 8.1. This is a major difference to
superposition based theorem prover which report the first derived contradiction as proof.

When the number of unification reaches 0 we break the main loop (line 5). The patterns get
matched one additional time to assure that no contradicting unification was performed during
the last round (line 8). Due to the special structure of our problems (the conjecture consists of
equalities) it is sufficient to consider the conjecture only here. Either all unifications to prove the
conjecture have been derived or we report failure (line 14).

A so-called proof script is written into a separate file, containing all performed unification
(and which rules induced them). It is also in TPTP format, which allows a vanHelsing derived
proof to be validated using other provers.

65

8 vanHelsing: Prover and Debugger

1 while True:

2 nr_uni,contra = patternMatching()

3 if contra:

4 reportContradiction()

5 if nr_uni = 0:

6 break

7
8 nr_uni,contra = patternMatching()

9 if contra:

10 reportContradiction()

11
12 allconj = checkConjectures()

13 if not allconj:

14 reportFailure()

15
16 reportSuccess()

Listing 8.1: vanHelsing Unification Algorithm

8.2.2 The problem graph

We distinguish 2 types of value nodes. A well-defined value node is an integer constant, a string
or one of the boolean constants true and false. They are well-defined in the sense that their
semantic value is known.

A hash-map is used to implement efficient lookup of values by their name. This also decou-
ples patterns (which use variable names) from the problem graph. When a variable is referenced
by a pattern this hash-map is used to lookup the value node. This allows unification of value
nodes without considering the patterns.

8.2.3 Pattern Matching

As complex patterns are constructed using conjunction this is the only interesting case. The first
functor pattern is matched against the problem graph by looking up all functors of the name.
Each of the functors looked up binds the free variables of the pattern. When matching the next
pattern all the looked up functors would need to be tested against the current assignment of free
variables. The number of looked up functors can drastically be reduced by using term indexing
(described in the next section).

8.2.4 Optimization techniques

We improved the performance of the vanHelsing prover by many magnitudes using the following
optimizations.

Dead patterns

A rather obvious optimizations which does not try to match a function application pattern (e.g.
add(A,2,B)) if there are no terms (here predicated names add) it could match. This optimiza-
tion becomes effective if conjecture patterns inherit this property from their clauses. A generic
set of axioms can then be used for each problem as they don’t incur to the execution time.

66

Term Indexing

The unification process is driven by implications. Many of the axioms describe the syntactic
equivalence of the data-flow trees. They all have the generic form

pred(A,B,X) ∧ pred(A,B, Y) =⇒ X = Y

The first predicate is matched and concrete values are bound to the the free variables A and B.
Matching the second predicate can now be accelerated if A or B are well-defined (their value
is known). vanHelsing stores all functors of a specific type in a hash-map (for the first lookup)
and maintains hash-maps for functors with well-defined arguments. The current implementation
considered the first 3 arguments. This is the most important single optimization.

Functor freezing

We call a sort of functors frozen if no functor of their name has been modified in the current
round. A pattern is called frozen if it matches a functor which is frozen itself. The conjecture
pattern inherits its frozen status from its clauses. Initially there are no frozen functors, assuring
that each pattern is matched at least once. Frozen patterns may be skipped during the pattern
matching phase as they can not produce any new unifications. A functor sort must be unfrozen
when a new fact involving this sort is added to the problem.

8.3 Proof Debugger

A distinct feature of the vanHelsing prover is its capability to debug failing proofs. Exploiting
the regular structure of our problems it is possible to identify a subgraph relevant to each failing
conjecture.

The listing 8.3 shows a failing equality conjecture. Assuming that initially sym1 equals sym6

and sym4 equals sym8 (that is mapping MI) it should be shown that sym5 equals sym9 (MF).
The calculation resulting in sym7 exploits the fact that 1 plus 1 equals 2, which is unknown
to the prover. Figure 8.2 shows the failing proof graph. The DFT of both values (sym5 and
sym9) are constructed. One is colored red, the other yellow. Nodes being part of both DFTs are
colored orange. Figure 8.2 shows the resulting graph (unrelated nodes have been removed, i.e.
the unrelated functor and its values are not printed). Visual inspection quickly reveals that the
first different colors begin to appear with sym2 and sym7.

By adding the needed axiom shown in listing 8.4 the proof succeeds. The resulting graph is
shown in figure 8.3.

1 fof(id0,hypothesis,add(sym1,1,sym2)).

2 fof(id1,hypothesis,add(sym2,1,sym3)).

3 fof(id2,hypothesis,add(sym3,sym4,sym5)).

4
5 fof(id3,hypothesis,add(sym6,2,sym7)).

6 fof(id4,hypothesis,add(sym7,sym8,sym9)).

7
8 fof(id5,hypothesis,unrelated(sym10, sym11, sym12)).

Listing 8.2: Translation facts with 3 data-flows

67

8 vanHelsing: Prover and Debugger

sym2 =

add
sym7

sym8

sym9
unrelated

sym10

sym11

sym12

sym5 =

sym1 =

sym3 =

sym11 =

sym9 =

add

sym2

1

sym3

sym4 =

add

sym3

sym4

sym5sym7 =

add

sym1

1

sym2

sym12 =

sym10 = sym8 =

sym6 =
add

sym6

2
sym7

Figure 8.1: Initial Data Flow Trees

1 fof(ax1,axiom,(add(A,B,X) &

2 add(A,B,Y)) => X=Y).

3 fof(op1,hypothesis, sym1=sym6).

4 fof(op2,hypothesis, sym4=sym8).

5
6 fof(cj1,conjecture, sym5=sym9).

Listing 8.3: Missing an axiom

fof(ax2,axiom,(add(A,1,B) & add(B,1,C)

& add(A,2,D)) => C=D).

Listing 8.4: The missing axiom

sym5=sym9

add

sym6

1

sym2 sym2 =

sym9 =

add
sym7

sym8

sym9

add

sym6

2
sym7

sym5 =

add

sym3

sym8

sym5

add

sym2

1

sym3

sym7 =

sym8 = sym4

sym6 = sym1

sym3 =

Figure 8.2: A failing proof

sym9 = sym5

sym2 =

unrelated

sym10

sym11

sym12

sym8 = sym4

add

sym6

2
sym7

sym12 =
sym11 =

sym6 = sym1

sym10 =

add
sym7

sym8

sym9

sym7 = sym3

add

sym6

1

sym2

add

sym2

1
sym7

Figure 8.3: A succeeding proof

68

8.4 Defining Expressions

In our problems by convention the last argument of each predicate is the value computed by the
function. Therefore for each value an expression leading to its calculation can be computed by a
simple recursive algorithm. A function is part of the expression iff the value is its last argument.

Listing 8.5 shows the output for the input of listing 8.2 combined with listing 8.3. The
defining expression is a canonical representation and computed after initial equalities (i.e. lines
3 and 4 in listing 8.3 have been resolved). Different symbolic values, calculated by the same
expression operating on equal symbolic values therefore have syntactical equal defining expres-

sions. This property is used in validation tools which need to assure that memory operations are
not reordered. The problem is that a memory operation has the form memory(timestamp,

symbolic_address, symbolic_value). Pre and post traces have different symbols
for the (semantically) same addresses. By computing the defining expressions those different
symbols are canonized and corresponding addresses can be identified by string comparison.

sym10=sym10

sym9=add(add(sym6,2),sym8)

sym7=add(sym6,2)

sym5=add(add(add(sym6,1),1),sym8)

sym4=sym8

sym3=add(add(sym6,1),1)

sym2=add(sym6,1)

sym8=sym8

sym6=sym6

sym1=sym6

sym12=unrelated(sym10,sym11)

sym11=sym11

Listing 8.5: Defining Expressions

69

9 Instruction Set Simulation & Compiled
Simulation

This chapter describes how the formal CASM models of a micro-processor can be used to syn-
thesize efficient simulators. The empirical evidence (see section 10.1) shows that CASM can
serve as the only, unified model for micro-processors and thus eliminate redundant special pur-
pose specifications.

9.1 Instruction Set Simulation

In section 4.4 we showed the similarity of the CASM models with the simulator specifications
of ISS in our research toolchain. Elimination of those redundant specifications in the ADL was
the main motivation to develop the CASM compiler. By compilation of the CASM models the
core for an ISS can be synthesized re-using the semantic specification of the micro-processor.

An ISS commonly works like an interpreter. It processes a stream of instruction words (of
the micro-processor to be simulated) and applies their effect on a representation of the micro-
processor state. An ISS alone is of little use, because most programs rely on an environment to
operate in. System Simulators emulate the needed environment and are widely used. The main
interest is the to ability to execute C programs.

It is therefore sufficient to emulate a hosted C environment (to execute operating systems
one would need to emulate peripheral hardware). Our implementation is based on newlib 1,
which has a well defined system call layer. Other C libraries are similar, though. We have
implemented the following elementary C functions: open, close, read, write, fstat, lseek, isatty,

gettimeofday, unlink, lstat, exit. Additionally a mechanism to pass command line arguments to
the simulatee’s main function has been implemented (by customization of the _start function). A
customized linker script overrides the default implementations of the elementary functions with

1
http://sourceware.org/newlib/

71

http://sourceware.org/newlib/

9 Instruction Set Simulation & Compiled Simulation

.globl open

.ent open

open:

nop

nop

nop

syscall 0

/* return value in r2,r3 errono in r8 */

lui $9,%hi(errno)

addiu $9,$9,%lo(errno)

sw $8,0($9)

jr $ra

.end open

Listing 9.1: Elementary C Function Stub

our own when compiling the simulatee. Listing 9.1 shows the (MIPS assembly) implementation
of the open function. All elementary C functions invoke a special trap instruction (i.e. syscall

on MIPS).

The goal is to map those elementary C functions to corresponding calls of the host oper-
ating system. This is not possible if the syscall rule would be implemented in CASM. A so
called provider mechanism is implemented in CASM which allows rules to be implemented in
C. The CASM compiler includes header files and links with the provider implementation. Pro-

vided rules must interact with the CASM run-time, i.e. make use of the update set and lookup
mechanism.

We have developed implementations for our proprietary DSP micro-processor and for the
MIPS architecture. To realize an ISS the common semantic vocabulary must not only be eval-
uated symbolically, but also concrete (called BitVector Operations Library). We have chosen
MIPS because well-known benchmark suites like MiBench [35] are available to evaluate the
performance of this approach. An unmodified GCC toolchain (CodeSourcery MIPS 2012.03) is
used to compile and link programs for use with the simulator. Figure 9.1 gives an overview of
the architecture.

The system memory is also provided. This allows the ELF binary loader to efficiently initial-
ize data sections of the program. Two CASM functions are used to read instructions. The opcode
is read using the PMEM: Int ->RuleRef function, while instruction fields are accessed using the
PARG: Int * FieldValues ->Int. FieldValues is an enumeration of MIPS instruction fields (e.g.
RT, RS). The simulator run-time on-demand decodes instructions fetched using those two func-
tions. An evaluation of the synthesized ISS for the MIPS architecture is given in section 10.1.2.

9.2 Instruction Set Simulator Verification

Three specifications of the MIPS instruction set have been developed for this thesis. One is the
functional model of the MIPS instruction set. An example is given in listing 9.2. This specifica-
tion only models the effects of an instruction visible to the programmer, hence functional model.
A concrete implementation of a MIPS micro-processor uses a pipeline and the other two spec-

72

MIPS ELF binary
+

C library stubs

gcc Toolchain

compiled
CASM models

ELF loader

instruction decoderC library
stubs

Host C libraryHost
File System

BitVector
Operations

Library

Figure 9.1: Overview of ISS

rule write_reg(reg : Int, val : Int) =

if reg != 0 then

GPR(reg) := val

rule addiu(addr : Int) =

let rs = PARG(addr, FV_RS) in

let rt = PARG(addr, FV_RT) in

let imm = PARG(addr, FV_IMM) in

call(write_reg)(rt, BVadd_result(32, GPR(rs),

BVSignExtend(imm, 16, 32)))

Listing 9.2: ADDIU functional Model

ifications model the effects of the instruction on the pipeline. Listing 9.3 shows the pipelined
version of the instruction.

The pipelined instruction models still need a concrete pipeline which executes them. A
model implementing operand forwarding and a so called bubbling pipeline have been imple-
mented. A bubbling pipeline dynamically stalls and inserts nop if a data hazard is detected.

The functional model can be thought of a specification for a MIPS micro-processor and the
forwarding and bubbling model as concrete implementations. Because the models are written in
CASM one can immediately profit from the proof techniques and verify the correctness of the
implementations. By symbolic execution the data-flow of the pipelined models, under a concrete
pipeline implementation (i.e. forwarding, bubbling), can be validated against the data-flow of
the functional model.

For each MIPS instruction a template is instantiated (by replacing the macro @INSTRUC-

73

9 Instruction Set Simulation & Compiled Simulation

enum PipelineStages = {ID, EX, MEM, WB}

enum PipelinePhases = {begin, end}

rule addiu(addr:Int, stage:Int, phase:Int) =

{

if stage = ID and phase = end then

let rs = PARG(addr, FV_RS) in

let rt = PARG(addr, FV_RT) in

let imm = PARG(addr, FV_IMM) in

{

call(ID_READ_OP1)(rs)

IDOP2 := BVSignExtend(imm, 16, 32)

IDRESREG := rt

}

if stage = EX and phase = begin then

EXRES := BVadd_result(32, EXOP1, EXOP2)

if stage = WB and phase = begin then

call(write_reg)(WBRESREG, WBRES)

}

Listing 9.3: ADDIU pipelined Model

function (symbolic) SYMBOL : Int -> Int

function (symbolic) MEMORY : Int -> Int

function (symbolic) PARG : Int * FieldValues -> Int

rule initR = {|

BRANCH := undef

call(@INSTRUCTION@)(0)

program(self) := undef

|}

Listing 9.4: Template for functional Instruction Models

TION@), which is then used to create the data-flows. Listing 9.4 shows the template used to
execute functional models and listing 9.5 for pipelined models.

The traces created by symbolic execution of those 2 programs must result in semantically
equal expressions for observable state (i.e. register file, memory). This problem is very similar
to the translation validation problem and can be expressed by the same techniques.

This does not validate all aspects of the pipeline implementation and instruction models,
though. For each pipelined instruction model it has been shown that it correctly implements
the semantics, iff executed in the pipeline without interference of other instructions. Thus a
validation of the pipeline model itself is still needed.

Listing 9.6 shows the CASM program used to perform the pipeline validation (for functional
models, pipelined is similar but more complex). A special crafted instruction (binop, line 9) is
subsequently executed in each pipeline stage (and triggers data hazards). A correct pipeline
implementation (either forwarding or bubbling) must generate the same data-flow as the func-
tional model. If a concrete implementation passes this test its operand forwarding is most likely
correct. Please note that due the nature of symbolic execution this is not just a simple test.

74

function (symbolic) SYMBOL : Int -> Int

function (symbolic) MEMORY : Int -> Int

function (symbolic) PARG : Int * FieldValues -> Int

function PMEM : Int -> RuleRef initially {0 -> @@INSTRUCTION@}

rule initR = {|

call init_pipeline

PC := 0

CYCLES := 0

BRANCH := undef

call IF_stage

call execute_pipeline

call step_pipeline

call execute_pipeline

call step_pipeline

call execute_pipeline

call step_pipeline

call execute_pipeline

call step_pipeline

program(self) := undef

|}

Listing 9.5: Template for pipelined Instruction Models

Any (hidden, non-obvious) control flow branches (e.g. WRITE_REGISTER rule in line 6) are
taken (creating multiple traces) and verified. This validation therefore has 100% path coverage,
something which is very hard to achieve with ordinary testing.

Although not all aspects of the micro-processor specifications have been validated in this
work, it has been demonstrated how easy such a validation can be performed with CASM mod-
els. This is a big advantage of formal specifications compared to simulator specifications.

9.3 Compiled Simulation

Compiled Simulation [16] is a technique which aims to increase the simulation speed of single
applications by partial evaluation performed at compile time. The program to be simulated
(simulatee) and a model of the simulated machine are compiled to a single binary. Only those
parts of the state which are actually needed for the simulation are computed. In this section we
want to investigate the applicability of compiled simulation to CASM models.

Our prototype implementation transforms binary MIPS programs into CASM models on
a basic block level. Handling of computed goto and function pointers is currently not imple-
mented, but could easily be done by integrating the CASM based ISS (line 12 in listing 9.9). A
python script performs a simple basic block analysis of a MIPS binary and emits a representa-
tion using the CASM functions BASICBLOCK (mapping of a basic block number to a CASM
rule implementing this block), BASICBLOCK_SA (original address of first instruction of block),
PARG (branching instructions have target basic blocks in an additional virtual instruction field)
and PMEM (branching instructions have been replaced by models using target basic blocks).

75

9 Instruction Set Simulation & Compiled Simulation

1 function (symbolic) SYMBOL : Int -> Int

2 function (symbolic) GPR : Int -> Int

3 function PARG : Int * FieldValues -> Int

4
5 rule WRITE_REGISTER(reg, val) =

6 if reg != 0 then

7 GPR(reg) := val

8
9 rule binop(addr:Int) =

10 call(WRITE_REGISTER)

11 (PARG(addr, FV_RD), BVbinop(GPR(PARG(addr, FV_RS)),

12 GPR(PARG(addr, FV_RT))))

13
14 rule initR = {|

15 PARG(0, FV_RD) := SYMBOL(0)

16 PARG(0, FV_RS) := SYMBOL(1)

17 PARG(0, FV_RT) := SYMBOL(2)

18
19 PARG(1, FV_RD) := SYMBOL(3)

20 PARG(1, FV_RS) := SYMBOL(0)

21 PARG(1, FV_RT) := SYMBOL(0)

22
23 PARG(2, FV_RD) := SYMBOL(4)

24 PARG(2, FV_RS) := SYMBOL(3)

25 PARG(2, FV_RT) := SYMBOL(3)

26
27 call(binop)(0) // s0 := s1 binop s2

28 call(binop)(1) // s3 := s0 binop s0

29 call(binop)(2) // s4 := s3 binop s3

30
31 program(self) := undef

32 |}

Listing 9.6: Validation of Pipeline Model

Figure 9.2 gives an example for a modified branching instruction (listing 9.7) and the original
model (listing 9.8). A branch to an instruction address is signaled by setting the CASM function
BRANCH while a branch to a basic block address is signaled using the function BLOCK.

Our main rule of the simulator is given in listing 9.9. As long as the simulatee did not trap

and BLOCK contains a valid block identifier the rule implementing the referenced basic block
will be evaluated. Each such rule is a sequential composition of the instructions forming the
basic block.

Because all instructions are captured in a sequential execution context the internal state tran-
sition is hidden and can not be observed by the calling rule. As long as the resulting update set
is not changed, i.e. the semantics of the basic block is preserved, arbitrary optimizations may be
performed on the CASM program. Listing 9.10 shows an example of such a block. The succes-
sor block is written to BLOCK in line 8. The remaining lines of the rule call bb_call which loads
the given instruction into the pipeline and executes a cycle of the CPU. Note this rule is inlined
by the compiler, as well as bb_execute and step_pipeline.

The optimizer (see section 3.3) then applies the three optimizations redundant lookup, pre-
ceded lookup and redundant update elimination. Combined with constant folding and propaga-
tion these optimizations cover the partial evaluation done by CS tools. The effect of a preceded

76

rule bne(addr:Int,

stage:PipelineStages,

phase : PipelinePhases) =

if stage = ID and phase = end then

let rs = PARG(addr, FV_RS) in

let rt = PARG(addr, FV_RT) in

let offset = PARG(addr, FV_OFF) in

{|

call (ID_READ_OP1)(rs)

call (ID_READ_OP2)(rt)

if BVunequal(32,IDOP1,IDOP2)=1 then

BRANCH := BVadd_result(32, addr+4,

BVse(18, 32,

BVshift_result(18, 0, 0,

offset, 2)))

|}

Listing 9.7: Original BNE Model

rule bb_bne(addr:Int,

stage:PipelineStages,

phase : PipelinePhases) =

if stage = ID and phase = end then

let rs = PARG(addr, FV_RS) in

let rt = PARG(addr, FV_RT) in

let offset = PARG(addr, FV_BBOFF) in

{|

call (ID_READ_OP1)(rs)

call (ID_READ_OP2)(rt)

if BVunequal(32,IDOP1,IDOP2)=1 then

BLOCK := offset

|}

Listing 9.8: Modified BNE Model

Figure 9.2: Modifies branch instructions for CS

1 rule run_program dumps (BLOCK, BRANCH, GPR, LO, HI) -> trace =

2 {|

3 if BLOCK = undef and BRANCH = undef then

4 {

5 print "program stopped (BLOCK and BRANCH undef)"

6 call dump_machine_state

7 program(self) := undef

8 }

9 else if BLOCK = undef then

10 {

11 print "ERROR, BLOCK is undef, BRANCH=" + hex(BRANCH) +

12 " need to enter interpreter -> not implemneted!"

13 call dump_machine_state

14 program(self) := undef

15 }

16
17 debuginfo block "executing " + BLOCK + "@" + hex(BASICBLOCK_SA(BLOCK))

18 call (BASICBLOCK(BLOCK))

19
20 if trapped then

21 {

22 print "program stopped (trapped)"

23 call dump_machine_state

24 program(self) := undef

25 }

26 |}

Listing 9.9: Compiled Simulation Main Rule

77

9 Instruction Set Simulation & Compiled Simulation

1 rule bb_call(r: RuleRef, i: Int) = {|

2 pipeline(ID) := [r, i]

3 call bb_execute

4 call step_pipeline

5 |}

6
7 rule bb_42 = {|

8 BLOCK:=38

9 call bb_call (@sll, 0x8000132c)

10 call bb_call (@sll, 0x80001330)

11 call bb_call (@sll, 0x80001334)

12 call bb_call (@_syscall, 0x80001338)

13 call bb_call (@lui, 0x8000133c)

14 call bb_call (@addiu, 0x80001340)

15 call bb_call (@bb_jr, 0x80001344)

16 call bb_call (@sw, 0x80001348)

17 |}

Listing 9.10: An optimizable Basic Block

lookup optimization e.g. is comparable to map register file access to local variables. Redundant
update elimination will prevent the calculations of all unused updates to the flag register file (on
micro processors which can implicitly set flags). The combination of redundant and preceding
lookup elimination eliminates access to the pipeline function. Benchmark results are presented
in section 10.1.2.

A CASM specification can therefore with minimal further tool support be used to perform
compiled simulation. Because the optimization is performed on CASM code this approach is
fully portable across various architectures.

78

10 Evaluation

Measure what is measurable, and make measurable what is not so.

Galileo Galilei

The evaluation section of this work is split into three parts Section 10.1 covers performance
aspects of the CASM implementation. In section 10.2 we compare the performance of the
vanHelsing prover with other well-known tools in the ATP realm. And in section 10.3 we report
on the performance of the implemented validator prototypes.

10.1 CASM implementation

Evaluation of the CASM tools is split into three sections. Section 10.1.1 compares the CASM
interpreter and baseline compiler to other ASM implementations. In section 10.1.2 we measure
the performance of the ISS synthesized from the CASM models. And in section 10.1.2 we
finally benchmark the optimization implemented in the CASM compiler. This used benchmarks
are an application of the CS approach and therefore also document the ability to synthesize CS
tools from CASM models.

10.1.1 CASM and other ASM implementations

In this section we evaluate the quality of the CASM implementation (i.e. interpreter and baseline
compiler). For this purpose we compare it to other available implementations of ASM based
languages, namely CoreASM and AsmL. CoreASM is an interpreter written in Java while the
AsmL language is compiled to .NET code. A small suite of programs each stressing a different
implementation detail of ASM languages has been implemented for each language.

The bubblesort program (a very naive implementation of the well known sorting algorithm)
performs many steps with small update sets. It aims to benchmark the effectiveness of apply-
ing update sets to ASM functions. Fibonacci uses dynamic programming to calculate the well
known numbers. It benchmarks rule invocation (recursive) and has a moderate size of the update
set. Quicksort (the sorting algorithm) makes heavy use of sequential execution, although the up-
date sets are very small. The sieve program is an implementation of Eratosthenes famous prime

79

10 Evaluation

small data sets
trivial sieve quicksort gray fibonacci bubblesort

CASM 0.0865 0.0857 0.0842 0.0882 0.0854 0.0859
AsmL 0.1292
CASM-i 0.0048 0.10 0.0212 0.2287 0.0107 0.0466
CoreASM 1.3604 13.82 32.51 57.61 67.24 213.62

large date sets
sieve quicksort gray fibonacci bubblesort

CASM 0.0822 0.586 0.7702 3.0436 2.5458
AsmL 74.39 3.0628 24.3702 4.1752 5.2748
CASM-i 1.05 35.41 40.83 79.17 95.43
CoreASM

Table 10.1: Execution times CoreASM, AsmL, CASM

number sieve. This program heavily stresses the implementation of the update set, everything is
executed sequentially producing large update sets. The benchmark program gray calculates gray
codes for a given word length. It is the program with the most output and a mix of sequential
execution, rule invocation and numeric operations. Trivial is the trivial program, immediately
exiting without any operation. It is used to measure start-up overheads of the various implemen-
tations

The performance of the various implementations varies a lot. We use small data sets for the
interpreters and larger sets for the compilers to have measurable execution times.

For benchmarking we use the CASM compiler (rev. 1a092c) and gcc 4.7.2 (as shipped with
Ubuntu 12.10). We do not perform any CASM specific optimizations and disable optimizations
of the C compiler (-O0 flag). The CASM interpreter (CASM-i) is the same version as the
compiler.

The CoreASM engine version used is 1.5.6-beta using the command line driver Carma 0.7.3
(latest release). We executed CoreASM using Java 1.7 with the 64 bit Server VM (23.7-b01).

Microsoft’s AsmL implementation compiles to .NET code and is available under the MSR-
LA (free for research) license on http://asml.codeplex.com/. We downloaded version
80132 and followed their build instructions using Visual Studio C# 2005 Express Edition.

The benchmarks involving small data sets were executed on a Core i7-Q820 @1.73 GHz
with 8 GiB memory under 64 bit Ubuntu 12.10. For the large data sets a dual boot system (Core
i7-2600k @3.4 GHz, 8GiB memory) using 64 bit Windows 7 Enterprise SP1 and 64 bit Ubuntu
13.10 was used. We report on the average of 10 runs and started the AsmL binary once before
the benchmark to exclude overheads induced by the .NET framework 1.

Our own implementation of a CASM interpreter (CASM-i) is designed to have very low
start-up times and is used to execute small programs only. It is used in the compiler verification
project. The baseline compiler is a magnitude faster than the interpreter (up to 60 times) which
is a good indicator that the baseline compiler performs well.

1
http://msdn.microsoft.com/en-us/library/cc656914(v=vs.110).aspx

80

http://asml.codeplex.com/
http://msdn.microsoft.com/en-us/library/cc656914(v=vs.110).aspx

trivial

sieve
quickort

gray
fibonacci

bubbleort

10−1

100

101

102

103
1
5
.
7
3

1
6
1
.
2
9

3
8
6
.
1
1

6
5
3
.
2
7

7
8
7
.
3
6

2
,
4
8
6
.
8
5

5
.
5
5
·
1
0
−

2

1
2
.
7
3

6
0
.
4
2

5
3
.
0
1

2
6
.
0
1

3
7
.
4
9

1
.
8
2

9
0
5
.
1

5
.
2
3

3
1
.
6
4

1
.
3
7

2
.
0
7

F
ac

to
r CoreASM CASM-i AsmL

Figure 10.1: CASM relative Performance (Compiler is Baseline, smaller is better, log-scale)

When it comes to performance CoreASM is clearly inferior to the other implementations.
Programs compiled by our compiler perform up to 2500 times better and even our interpreter is
a magnitude faster. The focus of CoreASM are high level models though.

The AsmL results are varying a lot. For fibonacci performance is on par with the CASM
compiler (still 35% slower, though). But fibonacci is also the benchmark putting the least pres-
sure on ASM specifics. Its mostly recursive function invocation with a comparable small update
set. Bubblesort is slower by a moderate factor of 2 while sieve is slower by a factor of 900.
A detailed examination showed that AsmL has quadratic run-time for increased sizes of the
sieve. The main difference in the two programs is that bubblesort executes a large number of
machine steps each with a small update set, while sieve exactly executes one step. The update
set produced by sieve is quite large (the whole array) and a lot of updates need to be merged se-
quentially. This indicates that AsmL is not optimized for this case and agrees with the observed
behavior of quicksort (small sequential update sets) and gray (moderate sized sequential update
sets). Overall the performance of AsmL compiled programs is significantly lower than programs
compiled by the CASM compiler.

Figure 10.1 shows the relative performance (with CASM compiler being the baseline) of the
4 implementations, please note the logarithmic scaling of the y axis. Numeric values are found
in table 10.1. The CASM baseline compiler is by far the best performing ASM implementation.

10.1.2 Symbolic Execution

We developed a micro-benchmark to stress all important implementation aspects of symbolic
execution in the CASM interpreter. The size of the tests is much larger than the size of the

81

10 Evaluation

Engine Creation Expression Forking Start-up

CASM 2.14 s 3.54 s 2.82 s 0.009 s
CoreASM n/a n/a n/a 1.3 s

Table 10.2: Micro Benchmark Results

problems coming from translation validation. Hence we don’t expect scalability issues with the
implementation of symbolic execution.

This benchmark was executed on a Core i7 @ 1.73 GHz using a 64 bit Ubuntu 12.10 and
we report the average value of 5 runs. We compared start-up times to CoreASM 1.5.6-beta
using Carma engine 0.7.3. Each of the following tests stresses an implementation detail of the
symbolic ASM. Table 10.2 summarizes the results.

• Creation of symbols: The lazy initialization of symbols is an important feature of our im-
plementation. Each computation step of the ASM induces one predicate for each symbol
in use. The later a symbol is created the more predicates have to be emitted at creation
time (as the symbol existed in all previous states as well). To stress the lazy initialization
implementation a test program computing 1000 steps is used. In each step a new symbol
is created. This results in 1000 symbols and 1002000 predicates to describe the whole
state transition (1000 symbols in 1000 states plus initial and final state).

• Expression evaluation: Symbols are also created when evaluation expressions containing
symbolic values. This test program performs 100000 operations using 100000 different
symbols (in a single computation step). This results in 100000 predicates to be written to
the symbolic trace.

• Forking on symbolic conditions: When control flow branches on a symbolic condition
both traces need to be created. This can lead to a problem known as state explosion. An
application may be able to handle a certain amount of branching however. A test program
consisting of 11 nested if-then-else rules resulting in 2048 traces is executed. For our
applications we observed a much smaller number of traces (2-8).

• Start-up of interpreter: As the interpreter is intended to execute a large number of short
running programs the run-time overhead is of interest as well. A test program exe-
cuting the trivial CoreASM/CASM program (rule initR = program(self) :=

undef producing one update and then terminating) was executed to measure this start-up
overhead.

The empirical data show that the implementation of symbolic execution is efficient even for
very large traces. Especially the low start-up overhead (absolute and compared to CoreASM)
is very important for the intended application (execute many small CASM programs during
translation validation).

82

MIPS cycles seconds
BMIPS MIPS FMIPS BMIPS MIPS FMIPS

basicmath 550341866 333880341 328575616 2537,37 1323,53 132,62
bf.d 64946652 43557768 43556830 295,12 170,97 18,66
bf.e 64448155 43639002 43638063 292,23 172,02 18,62
crc 802657273 482047058 482020990 3600,91 1967,50 212,58
dijkstra 95287437 48939093 48859858 421,00 190,69 20,01
patricia 144287533 89624367 88147670 655,57 375,17 38,64
qsort 25761496 18442379 18255010 120,51 78,59 10,28
rawcaudio 59614091 34035944 34035911 265,53 138,41 14,82
rawdaudio 15208266 8664016 8663983 68,99 35,83 4,69
rijndael.d 42564700 38204264 38105252 203,91 158,03 16,10
rijndael.e 42567131 38381668 38282652 200,67 186,60 18,30
search 8757478 5776268 5689169 41,81 24,37 3,49
sha 13927633 12093339 12092840 66,36 49,94 5,79
susan 4820668 3420921 3401906 23,06 14,51 2,33

Table 10.3: Performance of FMIPS, MIPS and BMIPS ISSs

CASM synthesized ISS

To evaluate the performance of the synthesized ISSs we have created simulators based on the
MIPS models. We compare all three MIPS implementations, that is the functional models
(FMIPS), the models implementing a pipeline with operand forwarding (MIPS) and the bub-
bling pipeline (BMIPS). The most expensive operations in the CASM run-time are the ones
involving the update set. Because the simulated state of FMIPS is the smallest we expect those
models to deliver the best performance. MIPS and BMIPS are expected to have similar perfor-
mance, their state is similar in size. Execution of MIPS programs using the BMIPS simulator
will absolutely perform worse than MIPS. The reason is that pipeline bubbles are added when
data hazards occur. The number of executed MIPS cycles is therefore higher than the number of
cycles a pipeline with operand forwarding will need.

In table 10.3 we given the number of cycles and seconds each of the ISSs spent on the
benchmark programs taken from the MiBench [35] suite. MiBench’s small data sets have been
used for all but the search benchmark. In figure 10.2 the achieved relative performance in MIPS
instructions per seconds is presented.

The FMIPS ISS reaches up to 2.47 MHz which is a very good performance. (Brandner [15]
reports on approx. 3 MHz peak performance for an interpretative MIPS ISS.) Simulating the
whole pipeline (and the resulting update set operations) drastically reduces the performance for
the MIPS and BMIPS ISSs. Nonetheless the CASM run-time, i.e. the branded hash and linked

list update-set (see chapter 3) performs much better than the old python prototypes, which only
achieved up to 1 MHz (Lezuo and Krall [47]).

83

10 Evaluation

basicm
ath

bf.d
bf.e

crc
dijkstra

patricia

qsort
rawcaudio

rawdautio

rijndael.d

rijndael.e

search

sha
susan.e

0

1,000,000

2,000,000

2
,
4
7
7
,
5
7
2

2
,
3
3
4
,
2
3
5

2
,
3
4
3
,
6
1
2

2
,
2
6
7
,
4
8
0

2
,
4
4
1
,
7
7
2

2
,
2
8
1
,
2
5
4

1
,
7
7
5
,
7
7
9 2
,
2
9
6
,
6
2
0

1
,
8
4
7
,
3
3
1 2
,
3
6
6
,
7
8
5

2
,
0
9
1
,
9
4
8

1
,
6
3
0
,
1
3
4

2
,
0
8
8
,
5
7
3

1
,
4
6
0
,
0
4
5

2
5
2
,
2
6
5

2
5
4
,
7
6
8

2
5
3
,
6
8
5

2
4
5
,
0
0
4

2
5
6
,
6
4
2

2
3
8
,
8
9
0

2
3
4
,
6
6
5

2
4
5
,
9
0
6

2
4
1
,
8
0
8

2
4
1
,
7
5
3

2
0
5
,
6
8
9

2
3
7
,
0
2
3

2
4
2
,
1
5
7

2
3
5
,
7
6
2

2
1
6
,
8
9
4

2
2
0
,
0
6
8

2
2
0
,
5
3
9

2
2
2
,
9
0
4

2
2
6
,
3
3
5

2
2
0
,
0
9
4

2
1
3
,
7
7
0

2
2
4
,
5
0
9

2
2
0
,
4
4
1

2
0
8
,
7
4
2

2
1
2
,
1
2
5

2
0
9
,
4
5
8

2
0
9
,
8
7
9

2
0
9
,
0
4
8

H
z

FMIPS MIPS BMIPS

Figure 10.2: Performance of FMIPS, MIPS and BMIPS ISSs

CASM synthesized CS

We have applied our CS approach to a set of MiBench [35] programs using the functional MIPS
models. As our optimizations perform aggressive inlining we only want to optimize the kernel
of the applications to keep the increase in code size small. Our code generator can instrument
the code to collect profiling information measuring the total execution time of each CASM rule
(including time spent in invoked rules). Applying a simple heuristic all rules contributing at least
1% to the total run-time have been selected for optimization. Our assumption is that the effects
on code size by inlining are small but the achieved effect (in terms of performance gains) large.

Lookup and update elimination work best on large rules, so their impact should be high if the
frequently executed rules are large and low for small rules. Figure 10.3 depicts the contribution
of a rule’s execution time to total program execution time (bars) and their size in LOC (crosses)
for the rijndael program. (The rule contribution 100% to total program execution time is the
top-level rule, the second bar is a dispatching rule, all further bars correspond to basic blocks or
instructions.) Note that two of the most contributing rules each have 1000 LOC. We expect to
see a high impact of lookup and update elimination for the rijndael program. Figure 10.5 on the
other hand shows that the patricia program has many small rules and the first large rule does not
contribute much to total execution time. A high impact can not be expected. Figure 10.4 shows
the same diagram for the dijkstra program. Medium sized rules with moderate contribution. We
expect our optimizations to have an impact for this program.

We use 3 configurations of our compiler in this evaluation. Baseline is without CASM
specific optimizations and without optimizations of the C compiler (-O0). The configuration

84

0

50

100

%

contribution

0

200

400

600

800

1,000
LOC

Figure 10.3: Rule Contribution and Size - Rijndael

0

50

100

%

contribution

0

5

10LOC

Figure 10.4: Rule Contribution and Size - Dijkstra

0

50

100

%

contribution

0

10

20

30

40LOC

Figure 10.5: Rule Contribution and Size - Patricia

titled O0 has CASM specific, but no C compiler optimizations (-O0). O3 has CASM and full C
compiler optimizations (-O3). The benchmarks were executed on Xeon E5504 @ 2.00GHz with
8GiB memory (on the Infragrid cluster 2). We used gcc 4.4.7 on a Red Hat Enterprise Linux
Server release 6.4 for compilation. Due to the shared nature of the cluster we report on the best
of 10 runs here. MiBench’s small data sets have been used for all but the search benchmark.

Table 10.4 lists for each benchmark program the total number of rules and the number of
rules optimized as well as the total number of optimizations performed. We report on the number
of constant propagation (cp), lookup eliminations and update eliminations. As expected we see
a large number of optimizations performed in the rijndael program. Although patricia is doing
well in numbers the effects do not materialize due to the disadvantageous distribution of block
contribution to the total run-time.

2
http://hpc.uvt.ro/infrastructure/infragrid/

85

http://hpc.uvt.ro/infrastructure/infragrid/

10 Evaluation

rules optimizations
opt total cp lookup update

basicmath 30 4097 1440 236 22
bf 43 1226 8060 889 451
crc 17 3501 416 56 7
dijkstra 20 5455 494 52 1
patricia 23 5864 761 150 0
qsort 21 5393 720 65 1
rawcaudio 38 3293 656 65 1
rawdaudio 29 3293 656 65 1
rijndael 32 3431 42452 4394 2864
search 28 3239 2086 274 5
sha 26 3291 2840 381 3
susan 29 5337 7570 1192 224

Table 10.4: CASM Optimizations

w/o opt full opt
LOC casm sec sec

basicmath 136871 8.16 18.10
bf 48693 3.67 50.06
crc 109625 3.50 4.24
dijkstra 208337 5.78 6.73
patricia 180455 5.60 7.57
qsort 165011 5.08 6.60
rawcaudio 106716 3.23 4.69
rawdaudio 106716 3.30 4.10
rijndael 149435 4.82 218.23
search 122043 3.18 5.62
sha 104539 3.25 8.42
susan 187091 5.46 50.19

Table 10.5: CASM Compiler Statistics (compile time)

In table 10.5 the size of the test programs in LOC and the compilation times with and without
optimizations are listed.

In table 10.6 we summarize the output produced by the CASM compiler. Currently a single
C file is generated for each rule. We are currently working on merging smaller rules to reduce
the number of files. For rijndael we see the by far largest increase in code size with moderate
10%. The increase in the size of the binary is approximately 20%.

To assure that the observed behavior is not solely due to optimizations of the C compiler
we report on the effects of compiling optimized CASM programs with and without compiler
optimizations. Figure 10.6 shows the relative impact of CASM optimizations with and without

86

total LOC C binary MiB
C files w/o opt full opt w/o opt full opt

basicmath 4104 531769 +1357 29 35
bf 1233 179890 +10369 9.1 11
crc 3508 419546 +679 24 29
dijkstra 5462 691294 +866 38 46
patricia 5871 694523 +622 39 48
qsort 5400 641228 +1328 36 44
rawcaudio 3300 402138 +901 23 27
rawdaudio 3300 402138 +946 23 27
rijndael 3438 524481 +49198 26 32
search 3246 419649 +4660 23 28
sha 3298 408628 +5506 23 28
susan 5344 727943 +10029 28 46

Table 10.6: Generated Output Statistics

optimizations by the C compiler. The relative performance is clearly decreased but our opti-
mizations still account for a factor of 2 (rijndael) to at least 1% for patricia. (On a side note: by
using well-known compiled simulation techniques (e.g. [16]) the size of the basic blocks can be
enlarged from which our compiler would profit immediately.) In figure 10.7 the overall speedup
factors for the applications are shown along with absolute performance data. The speedup is rel-
ative from the non-optimized version to the fully optimized one. We are able to achieve factors
6 and above here. For rijndael (factor 5.44) more than 50% of this speedup is due to CASM
optimizations (the rest is due to the C compiler).

The MHz value relates the total number of simulated MIPS instructions to the absolute run-
time of the programs. A solid performance of more than 3 MHz simulation speed is achieved.
The numbers also indicate that the natural performance of the programs would be approximately
500 kHz. Search and susan show very low performance here. This is due to the very short
execution time of these two programs (5 and 4 seconds). The start-up time of the programs
is approximately 1 second (the initial memory state of the MIPS programs (data section) is
initialized by a CASM rule producing updates) therefore a significant reduction of simulation
speed is expected.

The experimental data show a huge performance increase achieved by the CASM compiler.
A speedup of more than factor 6 can be achieved. We showed that the C code generated by the
CASM compiler can be very efficiently optimized. Our novel optimizations lookup elimination
and update reduction can increase program performance up to 264%. This shows that they are
highly effective.

From a pure CS perspective this results are not competitive. Farfeleder [24] reports on
simulation speeds of 78 MHz up to 181 MHz for fully cycle-accurate simulation (which our
simulation is). By reducing the precision up to 566 MHz are achieved. The main reason that our
CS approach does not perform significantly better than synthesized ISS is in the increased size
of the update set. In the bf benchmark the average size of the update set produced by each rule

87

10
E

valuation

basicm
ath bf.d

bf.e
crc

dijkstra

patricia

qsort
rawcaudio rawdaudio rijndael.d rijndael.e search

sha
susan.e

0 1 2

1.2

2.08

2.1

1.97

1.54

1.09

1.28

1.72

1.67

2.64

2.62

1.23

1.7

1.28

1.07

1.46

1.54

1.61

1.3

1.01

1.08

1.42

1.4

2.08

2.05

1.05

1.27

1.04

Factor

O
0

O
3

F
igure

10.6:
Im

pact
of

C
A

S
M

O
ptim

izations

basicm
ath bf.d

bf.e
crc

dijkstra

patricia

qsort
rawcaudio rawdaudio rijndael.d rijndael.e search

sha
susan.e

0 2 4 6

3.14

4.89

5.03

6.23

4.27

2.8

3.04

4.77

4.54

5.44

5.46

2.46

3.4

1.85

Speedup (factor)

S
peedup

0 1 2 3

1.72

2.78

2.86

3.29

2.41

1.29

1.32

2.79

2.55

3.07

3.08

0.98

1.93

0.79

MHz

M
H

z

F
igure

10.7:
Im

provem
ents

and
T

otal
P

erform
ance

88

Size Run-time (seconds)
Set # files median total vanHelsing Vampire E Z3

isel.succ 1705 25 kiB 49 MiB 13.76 24.54 44.31a 42.41
regalloc.succ 454 412 kiB 239 MiB 49.11 54.79 491.98 55.34
vliw.succ 401 484 kiB 259 MiB 54.55 209.13 816.41 233.74
vliw.fail 27 905 kiB 22 MiB 4.38 17.54 88.72 81.21a

isel.fail 343 29 kiB 12 MiB 2.97 7.45 38.82 961.81a

asee text

Table 10.7: Benchmark Set and Performance

is increased from 3,4 (a single instruction) to 28,9 (a basic block). This increases in size also
increases the cost of the lookup and merge operations and thereby eliminates the performance
gained by the optimizations. An optimization which aims to keep the update set as small as
possible is discussed in section 11.2. The second cause is that the current implementation of
the CASM analysis framework misses many possibilities to optimize redundant updates (can
be seen in figure 10.4, often only 0 or 1 update is eliminated). Experiments demonstrate that
exploiting the full potential of update redundancy would drastically increase the performance
for CS. More details will be published in Paulweber’s master thesis [56].

The important aspect however is the fact that the CS tool is synthesized from a unified

processor specification. The issues negatively affecting performance have been identified and
we expect a significant boost in performance from a complete implementation.

10.2 vanHelsing Prover

In this section we compare the performance of our vanHelsing prover compared with Vampire,
Eprover and Z3 (on problems coming from translation validation).

We have compiled 5 sets of benchmarks from three different back-end passes of our com-
piler. The problems within all sets have a common structure, which is different between the
sets. Instruction selection (isel) problems are the most complex, because the transformation has
the largest impact on the data-flow. Register allocation (regalloc) problems are of modest com-
plexity, depending on the amount of spill code inserted. Without spilling the data-flow does not
change at all, but if registers were spilled the changes are intrusive. VLIW scheduling (vliw)
problems are most simple. Instructions are reordered, the data-flow will not be changed at all.
Normally the problems emitted by our compiler can be proven, i.e. isel.succ, regalloc.succ and
vliw.succ. During development we also collected a set of problems which can not be proven
(incorrect witness information, missing axiomization), i.e. isel.fail and vliw.fail. Interestingly
we noticed that Z3 does not scale well with respect to performance on the failing problem sets.

The problems emitted by the validators can be directly used by Vampire and vanHelsing.
Eprover does not support types, they are removed by a script as a preprocessing step. We used
the tptp2x program part of TPTP to convert the problems into smt format used by Z3.

89

10 Evaluation

isel.succ isel.failvliw.succ vliw.failregalloc.succ

0

5

10

15

20
1 11 111
.7
8

2
.53
.8
3

4

1
.1
23
.2
2

1
3
.0
7

1
4
.9
7

2
0
.2
6

1
0
.0
2

3
.0
8

3
2
3
.9
5

4
.2
8

1
8
.5
5

1
.1
3

F
ac

to
r

vanHelsing
Vampire
eprover

Z3

Table 10.8: Relative Performance (Factor), smaller is better

Table 10.7 contains the number of problems in the set, average file size (median) as an
indicator of the complexity of each problem, the total size of the set and the time each prover
needs to process the whole problem set. We report on the best of 3 runs of vanHelsing (version
aa115e4), Vampire (1.8 rev. 1362), Eprover (E 1.8-001 Gopaldhara) and Z3 (4.3.1). The tests
were performed on a Core i7 @ 1.73 GHz using a 64 bit Ubuntu 12.10. Eprover has been
executed in silent mode and failed to prove one problem of the isel.succ set. Vampire is a very
fast prover and has won the FOF section of the CASC [64] competition for many years now.
vanHelsing always performs better than Vampire (roughly factor 2), which itself always is the
second fastest prover. Eprover’s performance is generally worse (factor of up to 20). Z3 in
general performs similar to Vampire, but has a hard time when the problem has no proof (is
sat). We used hard timeouts (-T:3 -t:3) of 3 seconds (vanHelsing needs less than 3 seconds
for all 343 problems in the set), but Z3 failed on all problems of the vliw.fail set and only
found the solution on 28 problems of isel.fail. Increasing the timeout to 240 second results in
finding 309 (of 343) models for the isel.fail set, but still no solution for any of the problems in
vliw.fail. Figure 10.8 shows the relative performance for all provers on each of the problem sets,
normalized to vanHelsing’s total run-time.

The empirical data clearly demonstrate that the simple problem structure produced by our
translation validation approach enables the use of a much simpler and therefore more effective
specialized prover like vanHelsing. Even the current implementation performs much better than
widely used and highly optimized off the shelf provers like Vampire and Z3.

10.3 Translation Validation

In this section we report on the performance of 3 prototype validators which have been imple-
mented as part of this thesis. The tests were performed on a Core i7 @ 1.73 GHz using a 64
bit Ubuntu 12.10 using all 8 available cores to utilize the parallelism. We report the Wall-clock

90

preprocessing execution
MIR CASM 11 s 7 s
LIR CASM 146 s 6 s
vanHelsing 19 s
total 156 s 33 s
validation 244 s

Table 10.9: Instruction Selection Time Spent (8 cores)

time.

10.3.1 Instruction Selection

Our research compiler dumps the mMIR and cLIR as described in sections 4.3.1 and 4.3.2.
To ease implementation the compiler also creates a first-order representation of the equalities
for the initial state and the conjecture to be proven (using the register allocation mapping, see
section 7.2). In a productive version the validator needs to calculate this (as part of the trusted
code base).

The dumped CASM fragments are then combined with the machine model (which has been
created by the casm_gen tool, see section 4.1). We use the C preprocessor to implement this,
which is not very efficient and will be changed in a productive version. A specialized CASM
main rule then drives the generation of the symbolic traces.

The research compiler is still in development and the number of applications which can
successfully be compiled is therefore limited. We chose the largest well-known supported appli-
cation as our benchmark program, the AES (rijndael) reference implementation, consisting of 3
source files (rijndael-alg-ref.c, rijndael-api-ref.c and rijndael_main.c).

The compiler matches 1904 mMIR trees in the instruction selection pass. This results in the
same number of symbolic mMIR traces (1904), but, due to branches, 2116 cLIR traces. The
validator combines them into single problem files and adds the initial equalities, conjecture and
the axiom set. Those 2116 problem files are then handed to the vanHelsing prover. To assure
the correctness of the proofs our prototype implements an additional validation step. The proof

script created by vanHelsing is validated against the conjecture (using the Vampire prover),
which assures that the proof actually shows the conjecture. vanHelsing’s proof script is also
checked to have no contradiction with the original problem file (again using Vampire). Those
two steps (no contradiction unified from original problem file and proof script is a witness for
the conjecture), validated by a third-party prover, give us a very high confidence in the proofs
(and the implementation of the vanHelsing prover). The total execution time of the validator
(including the validation step) is 7 minutes and 20 seconds. Table 10.9 breaks this down to the
single tasks performed.

The research compiler was not developed with creation of witness information in mind and
is very eager to free its internal data structures as quickly as possible. The prototype witness
generation code therefore can’t access some mapping information and the witness information

91

10 Evaluation

is wrong in a small number of cases. This results in the proofs to fail. We have investigated
those proofs and by manually adding the missing information they can be proven successfully.

It can clearly be seen that most of the time is spent validating the results and in preprocessing
the LIR CASM fragments. Validation is not mandatory in a productive implementation and the
use of GCC to preprocess the CASM fragments is not optimal. A productive tool would reduce
the times spent in preprocessing dramatically. The validation core task (symbolic execution and
proving) only needs 33 s (8 cores) for a 841 LOC (excluding header files) C program.

10.3.2 Register allocation

The register allocation prototype was implemented for the MIPS architecture using the LLVM
toolchain (version 3.2, basic register allocator). We chose a different compiler for three reasons i)
to demonstrate that our approach can be applied to various compilers, ii) to have a more complex
register allocator which performs some other optimizations on-the-fly (i.e. rematerialization) and
iii) to be able to compile larger programs than it is currently possible with the research compiler.

Dumps of llc’s IR were obtained using the command-line options -print-before=virtregmap

and -print-after=virtregrewriter. To include the register allocation mapping (VirtRegMap) into
the dumps a small modification of the method VirtRegRewriter::runOnMachineFunction must
be made. Those dump files are then processed by a python script which translated each C
function (pre and post transformation) into CASM code and extracts the CFG and function live-
in, live-out registers. Each function is then split into their basic blocks and those blocks are
combined with CASM models of the MIPS architecture (i.e. instruction set models, register file
and memory). The blocks are then symbolically executed to create the trace files.

On the traces a def-use analysis is performed to ultimately calculate liveness (backwards
analysis) and constness (fix-point analysis). The current prototype relies on the correctness
of the compiler provided CFG and function live-in, live-out registers. However a productive
implementation would have a correct CFG available in our proposed framework, and live-in,
live-out register would be known due to the prolog and epilog insertion pass (see section 7.1).

For each live-in register a formulae is emitted stating equivalence with the value in the allo-
cated register (or stack slot, if spilled). For all registers which hold a constant value a formulae
stating that fact is emitted as well (the compiled may now rematerialize at will). The live-out
registers are finally used to create the conjecture for the problem file. A register may be live-out
but without a definition in this block. In this case the symbolic trace will contain no informa-
tion about it and it must be excluded from the conjecture. Memory side-effects are added to the
conjecture as well, the details are described in section 7.6.

Axioms are then added and the problem file is passed to the vanHelsing prover. A validation
phase utilizing the Vampire prover is performed again (see instruction selection validator in
section 10.9). Validation of register allocation of the bzip2 program, part of SPECINT2000,
(including the validation step) needs 15 minutes and 19 seconds. Table 10.10 breaks this down
to the single tasks performed.

We can successfully prove all problem files.
The majority of time is consumed by the validation step (again using Vampire instead of

vanHelsing). While validation is a good thing during development a productive tool would not
need to perform this step. The remaining time is spent in preprocessing of the problem files (38

92

preprocessing execution
CASM 10 s 55 s
liveness, constness 16 s
problem files 12 s 149 s
total 38 s 204 s
validation 643 s

Table 10.10: Register Allocation Time Spent (8 cores)

preprocessing execution
CASM 102 s 411 s
vanHelsing 11 s 35 s
total 113 s 446 s
validation 107 s

Table 10.11: VLIW Scheduling Time Spent (8 cores)

s) which evenly distribute to creation of the CASM files (10 s), performing the analysis (very
simple, inefficient python implementations, 16 s) and generating initial state formulae and the
conjecture (12 s). Creation of the symbolic traces needs 55 s, and the majority is spent proving
the problem files (149 s). The bzip2 source code is 4639 LOC C code (excluding header files).

10.3.3 VLIW Scheduling

The prototype implementation for the VLIW scheduler is based on our research compiler again.
We modified the compiler to dump the results of its own snake block analysis along the sLIR
CASM models for each function. An productive version of the validator would need to calculate
the snake blocks as part of the trusted code base. From this representation we create CASM
code for each of the sLIR snake blocks and also their cLIR counterparts.

This per snake blocks CASM programs are then executed to generate the trace files. For
this validator the initial conditions and conjectures are trivial to compute, the observable states
(i.e. registers and memory) must match exactly. To handle predicated execution the wrapper for
predicated execution of cLIR code is used (see section 4.3.2).

We report on the validation of the rijndael reference implementation, which consists of
683 snake blocks. The validation of the 841 LOC sources needs 11 minutes and 32 seconds.
Table 10.11 breaks this down to the single tasks.

102 seconds are spent to create the CASM representation of the snake blocks, which is
implemented as a python script for this prototype. Symbolic execution takes the majority of the
time (411 s), but as a side-effect also validates that no resource conflicts exist in the bundles
(they would trigger a conflicting update). Creation of the problem files is straight forward (11 s)
and vanHelsing very efficiently handles this kind of proofs (35 s). The validation step (which is
not needed for a productive implementation) is again based on the Vampire prover.

93

10 Evaluation

16 problem files fail to be proven, we provide an analysis in the next section, to demonstrate
the effectiveness of vanHelsing’s proof debugging facilities.

10.3.4 Analyzing a Translation Failure

We observed 16 failing proofs during validation of the VLIW scheduling pass on the rijndael

source code. The smallest failing problem file has 9280 lines of first-order formulae and a quite
large conjecture. Vampire also fails to find a proof, but the only output it prints is satisfiable.

fof(cj0,conjecture,$true

& stslirREG_Flag(0,1053,symclir1309)

& stslirREG_Flag(0,1054,symclir1314)

& stslirREG_Flag(0,1055,0)

& stslirREG_AddressRegister(0,14,symclir1326)

& stslirREG_AddressRegister(0,284,symclir1339)

& stslirREG_AddressRegister(0,285,symclir1384)

& stslirREG_DataRegister(0,282,symclir1296)

& stslirREG_DataRegister(0,351,symclir1304)

& stslirREG_GuardBits(0,175,symclir1321)

& stslirHWSTACK(0,symclir1367)

& stslirMEM(0,symclir1332,symclir1337)

& stslirMEM(0,symclir1345,symclir1347)

& stslirMEM(0,symclir1353,symclir1349)

& stslirMEM(0,symclir1372,symclir1375)

& stslirMEM(0,symclir1381,symclir1377)

& stclirREG_Flag(0,1053,symslir1318)

& stclirREG_Flag(0,1054,symslir1323)

& stclirREG_Flag(0,1055,0)

& stclirREG_AddressRegister(0,14,symslir1296)

& stclirREG_AddressRegister(0,284,symslir1354)

& stclirREG_AddressRegister(0,285,symslir1368)

& stclirREG_DataRegister(0,282,symslir1305)

& stclirREG_DataRegister(0,351,symslir1313)

& stclirREG_GuardBits(0,175,symslir1330)

& stclirHWSTACK(0,symslir1357)

& stclirMEM(0,symslir1302,symslir1337)

& stclirMEM(0,symslir1353,symslir1359)

& stclirMEM(0,symslir1365,symslir1361)

& stclirMEM(0,symslir1374,symslir1376)

& stclirMEM(0,symslir1382,symslir1378)).

Listing 10.1: Failing conjecture

Utilizing vanHelsing’s debugging facilities (-F command line switch) creates 4 DOT graph
files containing the clauses of the conjecture which can not be shown. 4 of the memory side-
effects clauses can not be proven. A corresponding pair of failing clauses is shown in the collage
(figure 10.8). vanHelsing has colored values which were not unified in orange, which is a great
help to start with. The graphs can be zoomed (e.g. using the xdot tool3). Inspection of the or-
ange node (enlarged in center of figure 10.8) shows that it is the value of a memory location,
the address symbol has been unified (with symbols from the sLIR and cLIR traces). The defi-
nition of the orange symbol (enlarged at the top) reveals the symbol was initially read from the
REG_AddressRegister function (at logical time 1 and register number 285). The graph of the
corresponding failing clause (right side) is higher than the graph on the left side, which already

3
https://github.com/jrfonseca/xdot.py

94

https://github.com/jrfonseca/xdot.py

indicates a problem. Inspecting the marked area (enlarged at bottom) shows that the (also not
unified) symbol of the right graph was initially read from an instruction field (at logical time 1
and instruction with id 25).

The problem so far seems to be that a value written into memory is read from a register (on
cLIR side) but from an instruction field (on sLIR side). From the graph we learned the identifier
of the involved instruction (25) and can now inspect the cause. It turns out that an immediate
move and a store instruction have been combined into a bundle. The architecture allows this,
as the immediate move writes to the register file a pipeline stage before the store reads its data
source registers. In the witness information used to create the cLIR CASM code those two
instructions end up swapped, i.e. the store operation is executed before the move. It therefore
stores the old register contents to the memory, while the sLIR code (correctly) reads the moved
immediate value. This is exactly what we learned by inspection of the failing proofs graphs. The
15 other failing proofs turned out to be caused by the very same bug.

While this bug was just caused by an erroneous witness information it must not have gone
unnoticed by the validator, a real data dependency bug in the scheduler would show exactly the
same behavior. Finding and isolating this bug demonstrates the effectiveness of our validation
tools.

95

10 Evaluation

Figure 10.8: Visual debugging a VLIW Scheduling Bug

96

11 Future Work

Die Wissenschaft fängt eigentlich erst da an interessant zu werden, wo sie aufhört.

Justus von Liebig

This chapter sketches interesting ideas which came up but have not been further investigated in
this thesis.

11.1 CASM Object Model

The CASM language currently operates on one global state. To create composable models,
it would be advantageous to have objects. Rules would then operate on their object’s state.
An open research question however is the composition of objects, especially considering the
transactional semantics of ASM. When will modification of an object’s state be visible from
other objects? One idea is to have a top-level rule (as in the current implementation) which
orchestrates all existing objects. The global state would then be updated when the top-level
rule concludes (returns). Following this approach objects would implement namespaces for the
global state and not be independent STS. It remains to be shown whether this approach is good
suited to model complex hardware or if independent STS (and a different object model or a
different mechanism) is desirable.

11.2 Update Placement Optimization for the CASM Compiler

The CASM run-time needs to merge collected updates when leaving a pseudo state. For cor-
rectly detecting conflicting updates this merging is needed for each pseudo state. Most updates
will never conflict, though, and in many cases this property can be analyzed statically. The idea
is to initially put updates into the lowest possible pseudo state which would reduce the number
of merged updates significantly (and thus directly boost performance as update set operations
are very expensive). By placing the updates in the lowest pseudo state the size of the update set
would decrease, the main reason why our CS is not performing well.

97

11 Future Work

11.3 Translation Validation of the CASM Compiler

The CASM compiler performs the optimizations directly on the AST itself. Because the AST
is shared between the compiler and interpreter the translation validation approach presented in
this thesis could directly be applied to the CASM compiler itself. The modified rules would just
need to be symbolically executed by the interpreter before and after the transformation.

11.4 Synthesization of the Compiler Specification

The approach proposed by in this thesis removes a lot of redundancy from the ADL by modeling
the architecture in CASM. Because the CASM models capture the semantics of each instruction,
it should be possible to derive the compiler specification (matcher tree patterns). The naïve
approach would be to guess a tree pattern for a mMIR input and validate whether the pattern is a
valid translation (i.e. perform instruction selection validation). Accumulating correctly guessed
patterns would finally result in a complete compiler specification. Brandner [13] has shown
that the completeness of a generated compiler specification can be shown automatically. So at
least a criterion to stop the search for patterns can be given. A realistic implementation however
should use a better algorithm and also the quality of the generated compiler specification must
be measured. Brandner’s results [14] on deriving tree patterns from a micro-instruction based
ADL may be directly applicable to our ADL. As the benefit of such a synthesization a large
redundant and tedious to write part of the ADL (the tree patterns) could be removed.

98

12 Conclusion

Everything that has a beginning has an end, Neo.

Agent Smith, The Matrix Revolutions

We have presented the CASM language, a statically typed implementation of Abstract State Ma-
chine. Due to its parallel execution semantics CASM is well-suited to specify micro-processors.
This has been demonstrated by modeling a proprietary micro-processor and two variants of
MIPS implementations (forwarding and bubbling). A compiler for CASM has been developed
which allows synthesization of efficient Instruction Set Simulation based on the instruction set
specification (up to 2.47 MHz). The highly efficient optimizer (increasing performance up to
264%) can be used to synthesize Compiled Simulation tools. Thus we were able to remove
two highly redundant (ISS and CS) specifications from our research compiler’s Architecture
Description Language and have CASM as the unified specification.

Due to the formal nature of ASM the micro-processor specifications have a concise (for-
mal) meaning. By using a set of common semantic vocabulary to specify compiler IRs and the
instruction set, simulation proofs can be performed on these specifications. Technically we rep-
resent these common semantic operations as traces of first-order logic predicates. These traces
are created by our novel method of direct symbolic execution (of ASM).

Based on this formal foundation a translation validation framework is defined. Each com-
piler pass is validated in isolation, applying a local correctness criterion. Certain properties of
a translation must be validated during later passes (so called constraints). Our proposed frame-
work validates each single pass of the compiler and makes sure that the output of the preceding
pass is used as input to the succeeding one (chain of trust). In addition it collects the constraints

and provides them to later passes which ultimately validate these properties.
The focus of this thesis is on the compiler back-end. We have discussed validators for

all back-end passes of our research compiler and implemented prototypes for the crucial ones
(instruction selection, register allocation and VLIW scheduling). All those validators operate
on individual basic blocks which limits the complexity of the proofs and allows a high degree
of parallelization. To evaluate the effectiveness of our approach we applied our validators to
realistic industrial programs (AES implementation and bzip2) and are able to achieve convincing
validation times (some minutes).

99

12 Conclusion

An additional contribution is the vanHelsing tool, a highly specialized first-order prover
which handles the problems arising from translation validation very efficiently. A distinct fea-
ture of vanHelsing is its capability to provide graphical debugging aids which allow to quickly
investigate translation error and pinpoint the issue. We have demonstrated this ability on a real-
istic bug by identifying the causing instructions without manual inspection of the problem file
(more than 9000 lines).

We hope that the tools, techniques and results presented in this thesis act as a stimulation to
launch translation validation projects for industrial compilers.

100

Bibliography

[1] Iso/iec jtc1/sc22/wg14. 9899:tc3: Programming languages-c. Technical report,
2007. URL: http://www.open-std.org/jtc1/sc22/wg14/www/docs/

n1256.pdf.

[2] Kunal Agrawal, Jeremy T. Fineman, and Jim Sukha. Nested parallelism in transactional
memory. In Proceedings of the 13th ACM SIGPLAN Symposium on Principles and Practice

of Parallel Programming, PPoPP ’08, pages 163–174, New York, NY, USA, 2008. ACM.
doi:10.1145/1345206.1345232.

[3] J. R. Allen, Ken Kennedy, Carrie Porterfield, and Joe Warren. Conversion of control depen-
dence to data dependence. In Proceedings of the 10th ACM SIGACT-SIGPLAN symposium

on Principles of programming languages, POPL ’83, pages 177–189, New York, NY, USA,
1983. ACM. doi:10.1145/567067.567085.

[4] Matthias Anlauff. XASM- an extensible, component-based abstract state machines
language. In Yuri Gurevich, PhilippW. Kutter, Martin Odersky, and Lothar Thiele,
editors, Abstract State Machines - Theory and Applications, volume 1912 of Lec-

ture Notes in Computer Science, pages 69–90. Springer Berlin Heidelberg, 2000.
doi:10.1007/3-540-44518-8_6.

[5] Jürgen Avenhaus, Jörg Denzinger, and Matthias Fuchs. Discount: A system for distributed
equational deduction. In RTA, pages 397–402, 1995.

[6] Leo Bachmair and Harald Ganzinger. Resolution theorem proving. In Handbook of Auto-

mated Reasoning, pages 19–99. 2001.

[7] Mike Barnett, Wolfgang Grieskamp, Lev Nachmanson, Wolfram Schulte, Nikolai Till-
mann, and Margus Veanes. Towards a tool environment for model-based testing with
AsmL. In Formal Approaches to Software Testing, FATES 2003, volume 2931 of LNCS,
pages 264–280. Springer, 2003.

[8] John Bergin and Stuart Greenfield. Teaching parameter passing by exam-
ple using thunks in C and C++. SIGCSE Bull., 25(1):10–14, March 1993.
doi:10.1145/169073.169083.

101

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1256.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1256.pdf
http://dx.doi.org/10.1145/1345206.1345232
http://dx.doi.org/10.1145/567067.567085
http://dx.doi.org/10.1007/3-540-44518-8_6
http://dx.doi.org/10.1145/169073.169083

BIBLIOGRAPHY

[9] Yves Bertot, Pierre Castéran, Gérard (informaticien) Huet, and Christine Paulin-Mohring.
Interactive theorem proving and program development : Coq’Art : the calculus of inductive

constructions. Texts in theoretical computer science. Springer, Berlin, New York, 2004.
URL: http://opac.inria.fr/record=b1101046.

[10] Manuel Blum, Sampath Kannan, Comp Sci, and Comp Sci. Designing programs that check
their work, 1989.

[11] Egon Börger and Joachim Schmid. Composition and submachine concepts for sequential
ASMs. In Computer Science Logic (Proceedings of CSL 2000), volume 1862 of LNCS,
pages 41–60. Springer-Verlag, 2000.

[12] Robert S. Boyer, Bernard Elspas, and Karl N. Levitt. SELECT - a formal system for
testing and debugging programs by symbolic execution. In Proceedings of the interna-

tional conference on Reliable software, pages 234–245, New York, NY, USA, 1975. ACM.
doi:10.1145/800027.808445.

[13] F. Brandner. Completeness of automatically generated instruction selec-
tors. In Application-specific Systems Architectures and Processors (ASAP),

2010 21st IEEE International Conference on, pages 175–182, 2010.
doi:10.1109/ASAP.2010.5540994.

[14] Florian Brandner, Dietmar Ebner, and Andreas Krall. Compiler generation from structural
architecture descriptions. In Proceedings of the 2007 International Conference on Com-

pilers, Architecture, and Synthesis for Embedded Systems, CASES ’07, pages 13–22, New
York, NY, USA, 2007. ACM. doi:10.1145/1289881.1289886.

[15] Florian Brandner, Andreas Fellnhofer, Andreas Krall, and David Riegler. Fast and accurate
simulation using the LLVM compiler framework. In RAPIDO ’09: 1st Workshop on Rapid

Simulation and Performance Evaluation: Methods and Tools, 2009.

[16] Florian Brandner, Nigel Horspool, and Andreas Krall. DSP instruction set simulation.
In Shuvra S. Bhattacharyya, Ed F. Deprettere, Rainer Leupers, and Jarmo Takala, edi-
tors, Handbook of Signal Processing Systems, pages 945–974. Springer New York, 2013.
doi:10.1007/978-1-4614-6859-2_29.

[17] Giuseppe Del Castillo. The ASM workbench - A tool environment for computer-aided
analysis and validation of abstract state machine models. In Proceedings of the 7th Inter-

national Conference on Tools and Algorithms for the Construction and Analysis of Systems,
TACAS 2001, pages 578–581, London, UK, UK, 2001. Springer-Verlag.

[18] Lori A. Clarke. A program testing system. In Proceedings of the 1976 an-

nual conference, ACM ’76, pages 488–491, New York, NY, USA, 1976. ACM.
doi:10.1145/800191.805647.

[19] Alberto Coen-Porisini, Giovanni Denaro, Carlo Ghezzi, and Mauro Pezzé. Using symbolic
execution for verifying safety-critical systems. SIGSOFT Softw. Eng. Notes, 26(5):142–
151, September 2001. doi:10.1145/503271.503230.

102

http://opac.inria.fr/record=b1101046
http://dx.doi.org/10.1145/800027.808445
http://dx.doi.org/10.1109/ASAP.2010.5540994
http://dx.doi.org/10.1145/1289881.1289886
http://dx.doi.org/10.1007/978-1-4614-6859-2_29
http://dx.doi.org/10.1145/800191.805647
http://dx.doi.org/10.1145/503271.503230

[20] Maulik A. Dave. Compiler verification: A bibliography. SIGSOFT Softw. Eng. Notes,
28(6):2–2, November 2003. doi:10.1145/966221.966235.

[21] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In Proceedings of

the Theory and Practice of Software, 14th International Conference on Tools and Algo-

rithms for the Construction and Analysis of Systems, TACAS’08/ETAPS’08, pages 337–
340, Berlin, Heidelberg, 2008. Springer-Verlag.

[22] Roozbeh Farahbod. CoreASM language user manual. URL: http://coreasm.svn.
sourceforge.net/viewvc/coreasm/engine-carma/trunk/doc/user_

manual/CoreASM-UserManual.pdf.

[23] Roozbeh Farahbod, Vincenzo Gervasi, and Uwe Glässer. CoreASM: An extensible ASM
execution engine. Fundamenta Informaticae, 77:1–33, 2007.

[24] Stefan Farfeleder, Andreas Krall, and Nigel Horspool. Ultra fast cycle-accurate compiled
emulation of inorder pipelined architectures. J. Syst. Archit., 53(8):501–510, August 2007.
doi:10.1016/j.sysarc.2006.11.003.

[25] Stefan Farfeleder, Andreas Krall, Edwin Steiner, and Florian Brandner. Effective
compiler generation by architecture description. In Proceedings of the 2006 ACM

SIGPLAN/SIGBED Conference on Language, Compilers, and Tool Support for Em-

bedded Systems, LCTES ’06, pages 145–152, New York, NY, USA, 2006. ACM.
doi:10.1145/1134650.1134671.

[26] Nicu G. Fruja and Robert F. Stärk. The hidden computation steps of Turbo Abstract State
Machines. In Abstract State Machines — Advances in Theory and Applications, 10th In-

ternational Workshop, ASM 2003, pages 244–262. Springer-Verlag, 2003.

[27] Emden R. Gansner and Stephen C. North. An open graph visualization system and its
applications to software engineering. SOFTWARE - PRACTICE AND EXPERIENCE,
30(11):1203–1233, 2000.

[28] Angelo Gargantini, Elvinia Riccobene, and Patrizia Scandurra. Model-driven language
engineering: The asmeta case study. In Proceedings of the 2008 The Third International

Conference on Software Engineering Advances, ICSEA ’08, pages 373–378, Washington,
DC, USA, 2008. IEEE Computer Society. doi:10.1109/ICSEA.2008.62.

[29] J. R. Goodman and W.-C. Hsu. Code scheduling and register allocation in large basic
blocks. In Proceedings of the 2Nd International Conference on Supercomputing, ICS ’88,
pages 442–452, New York, NY, USA, 1988. ACM. doi:10.1145/55364.55407.

[30] Gerhard Goos and Wolf Zimmermann. Verifying compilers and ASMs. In Proceedings of

the International Workshop on Abstract State Machines, Theory and Applications, ASM
’00, pages 177–202, London, UK, 2000. Springer-Verlag.

[31] Yuri Gurevich. Evolving algebras 1993: Lipari guide, pages 9–36. Oxford University
Press, Inc., New York, NY, USA, 1995.

103

http://dx.doi.org/10.1145/966221.966235
http://coreasm.svn.sourceforge.net/viewvc/coreasm/engine-carma/trunk/doc/user_manual/CoreASM-UserManual.pdf
http://coreasm.svn.sourceforge.net/viewvc/coreasm/engine-carma/trunk/doc/user_manual/CoreASM-UserManual.pdf
http://coreasm.svn.sourceforge.net/viewvc/coreasm/engine-carma/trunk/doc/user_manual/CoreASM-UserManual.pdf
http://dx.doi.org/10.1016/j.sysarc.2006.11.003
http://dx.doi.org/10.1145/1134650.1134671
http://dx.doi.org/10.1109/ICSEA.2008.62
http://dx.doi.org/10.1145/55364.55407

BIBLIOGRAPHY

[32] Yuri Gurevich. Sequential abstract-state machines capture sequential algorithms. ACM

Trans. Comput. Logic, 1(1):77–111, July 2000. doi:10.1145/343369.343384.

[33] Yuri Gurevich, Benjamin Rossman, and Wolfram Schulte. Semantic
essence of AsmL. Theor. Comput. Sci., 343(3):370–412, October 2005.
doi:10.1016/j.tcs.2005.06.017.

[34] Yuri Gurevich and Nikolai Tillmann. Partial updates. Theoretical Computer Science,
336(2):311–342, 2005.

[35] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and R. B. Brown.
Mibench: A free, commercially representative embedded benchmark suite. In Proceed-

ings of the Workload Characterization, 2001. WWC-4. 2001 IEEE International Work-

shop, WWC ’01, pages 3–14, Washington, DC, USA, 2001. IEEE Computer Society.
doi:10.1109/WWC.2001.15.

[36] Dominik Inführ. AST interpreter for CASM. 2013. URL: http://publik.tuwien.
ac.at/files/PubDat_227295.pdf.

[37] Christoph Kern and Mark R. Greenstreet. Formal verification in hardware design:
A survey. ACM Trans. Des. Autom. Electron. Syst., 4(2):123–193, April 1999.
doi:10.1145/307988.307989.

[38] Sarfraz Khurshid, Corina S. Pasareanu, and Willem Visser. Generalized symbolic execu-
tion for model checking and testing. In In Proceedings of the Ninth International Confer-

ence on Tools and Algorithms for the Construction and Analysis of Systems, pages 553–
568. Springer, 2003.

[39] James C. King. Symbolic execution and program testing. Commun. ACM, 19(7):385–394,
July 1976. doi:10.1145/360248.360252.

[40] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock, Philip
Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael Norrish, Thomas
Sewell, Harvey Tuch, and Simon Winwood. seL4: Formal verification of an OS kernel.
In ACM SYMPOSIUM ON OPERATING SYSTEMS PRINCIPLES, pages 207–220. ACM,
2009.

[41] Laura Kovács and Andrei Voronkov. First-Order Theorem Proving and Vampire. In CAV,
pages 1–35, 2013.

[42] M. Lam. Software pipelining: An effective scheduling technique for vliw machines.
In Proceedings of the ACM SIGPLAN 1988 Conference on Programming Language De-

sign and Implementation, PLDI ’88, pages 318–328, New York, NY, USA, 1988. ACM.
doi:10.1145/53990.54022.

[43] Xavier Leroy. Formal verification of a realistic compiler. Commun. ACM, 52:107–115,
2009. doi:10.1145/1538788.1538814.

104

http://dx.doi.org/10.1145/343369.343384
http://dx.doi.org/10.1016/j.tcs.2005.06.017
http://dx.doi.org/10.1109/WWC.2001.15
http://publik.tuwien.ac.at/files/PubDat_227295.pdf
http://publik.tuwien.ac.at/files/PubDat_227295.pdf
http://dx.doi.org/10.1145/307988.307989
http://dx.doi.org/10.1145/360248.360252
http://dx.doi.org/10.1145/53990.54022
http://dx.doi.org/10.1145/1538788.1538814

[44] Raya Leviathan and Amir Pnueli. Validating software pipelining optimizations. In Pro-

ceedings of the 2002 international conference on Compilers, architecture, and synthesis

for embedded systems, CASES ’02, pages 280–287, New York, NY, USA, 2002. ACM.
doi:10.1145/581630.581676.

[45] Roland Lezuo, Gergö Barany, and Andreas Krall. CASM: Implementing an Abstract State
Machine based Programming Language. In Stefan Wagner and Horst Lichter, editors,
Software Engineering 2013 Workshopband, 26. Februar - 1. März 2013 in Aachen, vol-
ume 215 of GI Edition - Lecture Notes in Informatics, pages 75–90, February 2013. (6.
Arbeitstagung Programmiersprachen (ATPS’13)).

[46] Roland Lezuo and Andreas Krall. A unified processor model for compiler verification and
simulation using ASM. In Proceedings of the Third international conference on Abstract

State Machines, Alloy, B, VDM, and Z, ABZ’12, pages 327–330, Berlin, Heidelberg, 2012.
Springer-Verlag. doi:10.1007/978-3-642-30885-7_24.

[47] Roland Lezuo and Andreas Krall. Using the CASM language for simulator synthesis and
model verification. In Proceedings of the 2013 Workshop on Rapid Simulation and Per-

formance Evaluation: Methods and Tools, RAPIDO ’13, pages 6:1–6:8, New York, NY,
USA, 2013. ACM. doi:10.1145/2432516.2432522.

[48] Roland Lezuo, Philipp Paulweber, and Andreas Krall. CASM - Optimized Compilation of
Abstract State Machines. LCTES ’07, New York, NY, USA, 2014 (to appear). ACM.

[49] Z Manna, Anuchit Anuchitanukul, Nikolaj Bjorner, Anca Browne, Edward Chang, Michael
Colon, Luca de Alfaro, Harish Devarajan, Henny Sipma, and Tomas Uribe. STeP: The
Stanford Temporal Prover. Technical report, Stanford, CA, USA, 1994. URL: http://
theory.stanford.edu/~zm/papers/step.ps.Z.

[50] William McCune. Otter 3.3 reference manual. CoRR, cs.SC/0310056, 2003.

[51] William McCune and Larry Wos. Otter - the CADE-13 competition incarnations. Journal

of Automated Reasoning, 18:211–220, 1997. doi:10.1023/A:1005843632307.

[52] Tom Mens. A state-of-the-art survey on software merging. Software Engineering, IEEE

Transactions on, 28(5):449–462, 2002.

[53] George C. Necula. Translation validation for an optimizing compiler. In Pro-

ceedings of the ACM SIGPLAN 2000 conference on Programming language design

and implementation, PLDI ’00, pages 83–94, New York, NY, USA, 2000. ACM.
doi:10.1145/349299.349314.

[54] Robert Nieuwenhuis and Albert Rubio. Paramodulation-based theorem proving. In Hand-

book of Automated Reasoning, pages 371–443. 2001.

[55] Lawrence Paulson, Tobias Nipkow, and Markus Wenzel. The isabelle reference manual.
Technical report, 1995.

105

http://dx.doi.org/10.1145/581630.581676
http://dx.doi.org/10.1007/978-3-642-30885-7_24
http://dx.doi.org/10.1145/2432516.2432522
http://theory.stanford.edu/~zm/papers/step.ps.Z
http://theory.stanford.edu/~zm/papers/step.ps.Z
http://dx.doi.org/10.1023/A:1005843632307
http://dx.doi.org/10.1145/349299.349314

BIBLIOGRAPHY

[56] Philipp Paulweber. Masterthesis. 2014 (to appear).

[57] A. Pnueli, M. Siegel, and F. Singerman. Translation validation. pages 151–166. Springer,
1998.

[58] B. Ramakrishna Rau. Iterative modulo scheduling: An algorithm for software
pipelining loops. In Proceedings of the 27th Annual International Symposium on

Microarchitecture, MICRO 27, pages 63–74, New York, NY, USA, 1994. ACM.
doi:10.1145/192724.192731.

[59] Alexandre Riazanov and Andrei Voronkov. The design and implementation of VAMPIRE.
AI Commun., 15:91–110, August 2002.

[60] J. Schmid. Compiling abstract state machines to C++. Journal of Universal Computer

Science, 7(11):1068–1087, 2001.

[61] Joachim Schmid. Introduction to AsmGofer, 2001. URL: http://www.tydo.de/
AsmGofer.

[62] Stephan Schulz. E - a brainiac theorem prover. AI Commun., 15(2,3):111–126, August
2002.

[63] Richard Stallman and GCC Developer Community. GNU Compiler Collection Internals.
Free Software Foundation, 2010.

[64] G. Sutcliffe and C. Suttner. The State of CASC. AI Communications, 19(1):35–48, 2006.

[65] Geoff Sutcliffe, Stephan Schulz, Koen Claessen, and Allen Van Gelder. Using the TPTP
language for writing derivations and finite interpretations. In Proceedings of the Third

international joint conference on Automated Reasoning, IJCAR’06, pages 67–81, Berlin,
Heidelberg, 2006. Springer-Verlag. doi:10.1007/11814771_7.

[66] Jürgen Teich, Philipp W. Kutter, and Ralph Weper. Description and simulation of micro-
processor instruction sets using ASMs. In Proceedings of the International Workshop on

Abstract State Machines, Theory and Applications, ASM ’00, pages 266–286, London,
UK, 2000. Springer-Verlag.

[67] Christoph Weidenbach, Dilyana Dimova, Arnaud Fietzke, Rohit Kumar, Martin Suda, and
Patrick Wischnewski. SPASS version 3.5. In RenateA. Schmidt, editor, Automated De-

duction – CADE-22, volume 5663 of Lecture Notes in Computer Science, pages 140–145.
Springer Berlin Heidelberg, 2009. doi:10.1007/978-3-642-02959-2_10.

[68] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. Finding and understanding bugs
in C compilers. In Proceedings of the 32nd ACM SIGPLAN conference on Programming

language design and implementation, PLDI ’11, pages 283–294, New York, NY, USA,
2011. ACM. doi:10.1145/1993498.1993532.

106

http://dx.doi.org/10.1145/192724.192731
http://www.tydo.de/AsmGofer
http://www.tydo.de/AsmGofer
http://dx.doi.org/10.1007/11814771_7
http://dx.doi.org/10.1007/978-3-642-02959-2_10
http://dx.doi.org/10.1145/1993498.1993532

[69] Han-Saem Yun and Jihong Kim. Power-aware modulo scheduling for high-performance
VLIW processors. In Proceedings of the 2001 international symposium on Low power

electronics and design, ISLPED ’01, pages 40–45, New York, NY, USA, 2001. ACM.
doi:10.1145/383082.383091.

[70] Wolf Zimmermann and Thilo Gaul. On the construction of correct compiler back-ends:
An ASM approach. Journal of Universal Computer Science, 3:504–567, 1997.

107

http://dx.doi.org/10.1145/383082.383091

A Common Semantic Vocabulary and
Axiomatization

... has caused more and bloodier wars than anything else in the history of creation.

Douglas Adams on the poor babel fish

The following listing contains all semantic operations used to model the (integer parts only) of
the MIPS instruction set and a proprietary DSP micro-processor. Each item is the name of a
predicate, in braces the arguments and a short description of its semantic meaning.

• ex (from, to, val, res) extracts bits from to to from val and puts them into res

• ze (old, new, val, res) zero-extends val from a old-bit vector to a new-bit vector and puts
into res.

• se (old, new, val, res) sign-extends val from a old-bit vector to a new-bit vector and puts
into res.

• sb (from, to, tmpl, val, res) sets bits from to to in tmpl to val and puts results in res.

• or (w, o1, o2, res) logical or of width w.

• and (w, o1, o2, res) logical and of width w.

• xor (w, o1, o2, res) logical xor of width w.

• max (w, o1, o2, res) the maximum of the signed w-bit wide values o1 and o2 is put into
res.

• max_select (w, o1, o2, res) res is 0 is o1 is max (see above), 1 otherwise

• min (w, o1, o2, res) the minimum of the signed w-bit wide values o1 and o2 is put into res.

• min_select (w, o1, o2, res) res is 0 is o1 is min (see above), 1 otherwise

• saturate (w, ov, os, val, res) saturates w-bit wide value val depended on overflow condition
(ov = 1) and whether overflow was towards negative values (os = 1).

109

A Vocabulary and Axioms

• equal (w, o1, o2, res) res = 1 if w-bit wide values o1 and o2 are equal, 0 otherwise.

• unequal (w, o1, o2, res) res = 1 if w-bit wide values o1 and o2 are not equal, 0 otherwise.

• gez (w, o1, res) res = 1 if signed w-bit wide value o1 is greater or equal zero, 0 otherwise.

• gtz (w, o1, res) res = 1 if signed w-bit wide value o1 is greater than zero, 0 otherwise.

• lez (w, o1, res) res = 1 if signed w-bit wide value o1 is less or equal zero, 0 otherwise.

• ltz (w, o1, res) res = 1 if signed w-bit wide value o1 is less than zero, 0 otherwise.

• testbit (w, o1, o2, res) res 0 1 if bit o2 is 1 in w-bit wide value o1, 0 otherwise.

• add_result (w, o1, o2, res) res contains result of unsigned addition of w-bit wide values o1

and o2.

• add_overflow (w, o1, o2, res) res = 1 if above addition overflows, 0 otherwise.

• add_overflowsign (w, o1, o2, res) res = 1 if above addition overflows towards negative
values, 0 otherwise.

• shift_result (w, r, s, val, nrbits, res) res contains the results of a shift operation. If r = 1 a
right shift is performed, left otherwise. A right shift may be arithmetic (s = 1) or logical.
val will be shifted nrbits bits.

• shift_overflow (w, r, s, val, nrbits, res) res = 1 if above shift overflows, 0 otherwise.

• shift_overflowsign (w, r, s, val, nrbits, res) res = 1 if above shift overflows towards negative
values, 0 otherwise.

• rotate (w, r, val, nrbits, res) res contains results of a nrbits rotation of a w-bit wide value
val. If r = 1 the rotation direction is right, left otherwise.

• abs_result (w, val, res) res contains the absolute value of the signed w-bit wide value val.

• abs_overflow (w, val, res) res = 1 if above operation overflows, 0 otherwise.

• negate_result (w, val, res) res contains the negation of the signed w-bit wide value val.

• negate_overflow (w, val, res) res = 1 if above operation overflows, 0 otherwise.

• not (w, val, res) logical negation of w-bit wide value val.

• clz (w, val, res) counts leading zero bits of the w-bit wide value val, puts results in res.

• clz (w, val, res) counts leading one bits of the w-bit wide value val, puts results in res.

• multiply_fract (w, op1, op2, res) res contains result of fractional multiplication of w-bit
wide values op1 andop2.

110

• multiply_result (w, s1, s2, op1, op2, res) res contains the lower half of the result of a
multiplication of w-bit wide values op1 and op2. If s1 (s2) = 1 op1 (op2) is treated as
signed value.

• multiply_result_hi (w, s1, s2, op1, op2, res) res contains the upper half of the result of a
multiplication of w-bit wide values op1 and op2. If s1 (s2) = 1 op1 (op2) is treated as
signed value.

• multiply_overflow (w, s1, s2, o1, o2, res) res = 1 if above multiplication overflows, 0
otherwise.

• multiply_overflowsign (w, s1, s2, o1, o2, res) res = 1 if above multiplication overflows
towards negative values, 0 otherwise.

• divide_result (w, s1, s2, o1, o2, res) res contains the results of the division of the w-bit
wide value op1 by the w-bit wide value op2. If s1 (s2) = 1 op1 (op2) is treated as signed
value.

• divide_remainder (w, s1, s2, o1, o2, res) res contains the remainder of the above division.

• mir_if (w, c, ai, ae, res) res contains the value ai if the w-bit wide value c does not equal
zero, ae otherwise. This predicate is used to model conditional control flow in mMIR.

The following listing contains the axiomatization of the semantic operations used in the
validator prototypes.

∀A0, A1, A2,X0,X1 :

fex(A0, A1, A2,X0) ∧ fex(A0, A1, A2,X1) =⇒ (X0 = X1)

∀A0, A1, A2,X0,X1 :

fze(A0, A1, A2,X0) ∧ fze(A0, A1, A2,X1) =⇒ (X0 = X1)

∀A0, A1, A2,X0,X1 :

fse(A0, A1, A2,X0) ∧ fse(A0, A1, A2,X1) =⇒ (X0 = X1)

∀A0, A1, A2, A3,X0,X1 :

fsb(A0, A1, A2, A3,X0) ∧ fsb(A0, A1, A2, A3,X1) =⇒ (X0 = X1)

∀A0, A1, A2,X0,X1 :

for(A0, A1, A2,X0) ∧ for(A0, A1, A2,X1) =⇒ (X0 = X1)

111

A Vocabulary and Axioms

∀A0, A1, A2,X0,X1 :

fand(A0, A1, A2,X0) ∧ fand(A0, A1, A2,X1) =⇒ (X0 = X1)

∀A0, A1, A2,X0,X1 :

fxor(A0, A1, A2,X0) ∧ fxor(A0, A1, A2,X1) =⇒ (X0 = X1)

∀A0, A1, A2,X0,X1 :

fmax(A0, A1, A2,X0) ∧ fmax(A0, A1, A2,X1) =⇒ (X0 = X1)

∀A0, A1, A2,X0,X1 :

fmax_select(A0, A1, A2,X0) ∧ fmax_select(A0, A1, A2,X1)

=⇒ (X0 = X1)

∀A0, A1, A2,X0,X1 :

fmin(A0, A1, A2,X0) ∧ fmin(A0, A1, A2,X1) =⇒ (X0 = X1)

∀A0, A1, A2,X0,X1 :

fmin_select(A0, A1, A2,X0) ∧ fmin_select(A0, A1, A2,X1)

=⇒ (X0 = X1)

∀A0, A1, A2, A3,X0,X1 :

fsaturate(A0, A1, A2, A3,X0) ∧ fsaturate(A0, A1, A2, A3,X1)

=⇒ (X0 = X1)

∀A0, A1, A2,X0,X1 :

fequal(A0, A1, A2,X0) ∧ fequal(A0, A1, A2,X1) =⇒ (X0 = X1)

∀A0, A1, A2,X0,X1 :

funequal(A0, A1, A2,X0) ∧ funequal(A0, A1, A2,X1) =⇒ (X0 = X1)

∀A0, A1,X0,X1 :

fgez(A0, A1,X0) ∧ fgez(A0, A1,X1) =⇒ (X0 = X1)

112

∀A0, A1,X0,X1 :

fgtz(A0, A1,X0) ∧ fgtz(A0, A1,X1) =⇒ (X0 = X1)

∀A0, A1,X0,X1 :

flez(A0, A1,X0) ∧ flez(A0, A1,X1) =⇒ (X0 = X1)

∀A0, A1,X0,X1 :

fltz(A0, A1,X0) ∧ fltz(A0, A1,X1) =⇒ (X0 = X1)

∀A0, A1,X0,X1 :

ftestbit(A0, A1,X0) ∧ ftestbit(A0, A1,X1) =⇒ (X0 = X1)

∀A0, A1, A2,X0,X1 :

fadd_result(A0, A1, A2,X0) ∧ fadd_result(A0, A1, A2,X1)

=⇒ (X0 = X1)

∀A0, A1, A2,X0,X1 :

fadd_overflow(A0, A1, A2,X0) ∧ fadd_overflow(A0, A1, A2,X1)

=⇒ (X0 = X1)

∀A0, A1, A2,X0,X1 :

fadd_overflowsign(A0, A1, A2,X0)∧

fadd_overflowsign(A0, A1, A2,X1 =⇒ (X0 = X1)

∀A0, A1, A2,X0,X1 :

fsub_result(A0, A1, A2,X0) ∧ fsub_result(A0, A1, A2,X1)

=⇒ (X0 = X1)

∀A0, A1, A2, A3, A4,X0,X1 :

fshift_result(A0, A1, A2, A3, A4,X0)∧

fshift_result(A0, A1, A2, A3, A4,X1) =⇒ (X0 = X1)

∀A0, A1, A2, A3, A4,X0,X1 :

fshift_overflow(A0, A1, A2, A3, A4,X0)∧

fshift_overflow(A0, A1, A2, A3, A4,X1) =⇒ (X0 = X1)

113

A Vocabulary and Axioms

∀A0, A1, A2, A3, A4,X0,X1 :

fshift_overflowsign(A0, A1, A2, A3, A4,X0)∧

fshift_overflowsign(A0, A1, A2, A3, A4,X1) =⇒ (X0 = X1)

∀A0, A1, A2, A3,X0,X1 :

frotate(A0, A1, A2, A3,X0) ∧ frotate(A0, A1, A2, A3,X1)

=⇒ (X0 = X1)

∀A0, A1, A2,X0,X1 :

fabs_result(A0, A1,X0) ∧ fabs_result(A0, A1,X1) =⇒ (X0 = X1)

∀A0, A1, A2,X0,X1 :

fabs_overflow(A0, A1,X0) ∧ fabs_overflow(A0, A1,X1)

=⇒ (X0 = X1)

∀A0, A1, A2,X0,X1 :

fabs_diff(A0, A1, A2,X0) ∧ fabs_diff(A0, A1, A2,X1)

=⇒ (X0 = X1)

∀A0, A1,X0,X1 :

fnegate_result(A0, A1,X0) ∧ fnegate_result(A0, A1,X1)

=⇒ (X0 = X1)

∀A0, A1,X0,X1 :

fnegate_overflow(A0, A1,X0) ∧ fnegate_overflow(A0, A1,X1)

=⇒ (X0 = X1)

∀A0, A1,X0,X1 :

fnot(A0, A1,X0) ∧ fnot(A0, A1,X1) =⇒ (X0 = X1)

∀A0, A1,X0,X1 :

fclz(A0, A1,X0) ∧ fclz(A0, A1,X1) =⇒ (X0 = X1)

∀A0, A1,X0,X1 :

fclo(A0, A1,X0) ∧ fclo(A0, A1,X1) =⇒ (X0 = X1)

114

∀A0, A1, A2,X0,X1 :

fmultiply_fract(A0, A1, A2,X0)∧

fmultiply_fract(A0, A1, A2,X1) =⇒ (X0 = X1)

∀A0, A1, A2, A3, A4,X0,X1 :

fmultiply_result(A0, A1, A2, A3, A4,X0)∧

fmultiply_result(A0, A1, A2, A3, A4,X1) =⇒ (X0 = X1)

∀A0, A1, A2, A3, A4,X0,X1 :

fmultiply_result_hi(A0, A1, A2, A3, A4, X0)∧

fmultiply_result_hi(A0, A1, A2, A3, A4,X1) =⇒ (X0 = X1)

∀A0, A1, A2, A3, A4,X0,X1 :

fmultiply_overflow(A0, A1, A2, A3, A4,X0)∧

fmultiply_overflow(A0, A1, A2, A3, A4,X1) =⇒ (X0 = X1)

∀A0, A1, A2, A3, A4,X0,X1 :

fmultiply_overflowsign(A0, A1, A2, A3, A4,X0)∧

fmultiply_overflowsign(A0, A1, A2, A3, A4,X1) =⇒ (X0 = X1)

∀A0, A1, A2, A3, A4,X0,X1 :

fdivide_result(A0, A1, A2, A3, A4,X0)∧

fdivide_result(A0, A1, A2, A3, A4,X1) =⇒ (X0 = X1)

∀A0, A1, A2, A3, A4,X0,X1 :

fdivide_remainder(A0, A1, A2, A3, A4,X0)∧

fdivide_remainder(A0, A1, A2, A3, A4,X1) =⇒ (X0 = X1)

∀A0, A1, A2, A3,X0,X1 :

fmir_if(A0, A1, A2, A3,X0) ∧ fmir_if(A0, A1, A2, A3,X1)

=⇒ (X0 = X1)

∀A0, A1, A2,X0,X1 :

fbinop(A0, A1, A2,X0) ∧ fbinop(A0, A1, A2,X1) =⇒ (X0 = X1)

115

A Vocabulary and Axioms

∀A0, A1,X0,X1 :

fcons(A0, A1,X0) ∧ fcons(A0, A1,X1) =⇒ (X0 = X1)

∀A0, A1,X0,X1 :

fpush(A0, A1,X0) ∧ fpush(A0, A1,X1) =⇒ (X0 = X1)

∀A0, Y 1, Y 2,X1,X2 :

fpop(A0,X1,X2) ∧ fpop(A0, Y 1, Y 2)) =⇒ ((X1 = Y 1) ∧ (X2 = Y 2))

∀A,A1, A2,D,E :

fex(0, 15, A,A1) ∧ fex(16, 31, A,A2)∧

fsb(16, 31, 0, A2,D) ∧ fsb(0, 15,D,A1, E) =⇒ (A = E)

∀A,W1,W2, B,W3 :

fsb(0, 7, 0, A,W1) ∧ fsb(8, 15,W1, B,W2) ∧ fsb(0, 15, 0,W2,W3)

=⇒ (W2 = W3)

∀A,B,C :

fse(16, 32, A,B) ∧ fex(0, 19, B,C) =⇒ (A = C)

∀A,B,C :

fse(16, 32, A,B) ∧ fex(0, 31, B,C) =⇒ (A = C)

∀A,W,X :

fadd_result(W,A, 0,X) =⇒ (X = A)

∀W,A,B,X1,X2 :

fadd_result(W,A,B,X1) ∧ fadd_result(W,X1, 0,X2) =⇒ (X1 = X2)

∀W,X, Y,Z1, Z2 :

fadd_result(W,X, 2, Y) ∧ fadd_result(W,Y, 1, Z1)∧

fadd_result(W,X, 3, Z2) =⇒ (Z1 = Z2)

∀W,A,X : fsub_result(W,A, 0,X) =⇒ (X = A)

116

∀W,A,B,X1,X2 :

fxor(W,A,B,X1) ∧ fxor(W,B,A,X2) =⇒ (X1 = X2)

∀A,B,C,D,E, F :

fadd_result(20, A,B,C) ∧ fex(0, 15, C,D)∧

fadd_result(20, A,B,E) ∧ fex(0, 15, E, F) =⇒ (D = F)

∀W,A,B,X1,X2 :

fadd_result(W,A,B,X1) ∧ fadd_result(W,B,A,X2) =⇒ (X1 = X2)

∀B,A : fequal(A,B, 0, 1) =⇒ (B = 0)

∀B,A : fequal(A,B, 0, 0) =⇒ (B 6= 0)

∀B,A : funequal(A,B, 0, 1) =⇒ (B 6= 0)

∀B,A : funequal(A,B, 0, 0) =⇒ (B = 0)

∀A,C,D,E : fmir_if(A, 0, C,D,E) =⇒ (D = E)

∀A,C,D,E : fmir_if(A, 1, C,D,E) =⇒ (C = E)

∀W,X,Xn,Z :

fnot(W,X,Xn) ∧ fadd_result(W, 1,Xn,Z)

=⇒ fnegate_result(W,X,Z)

∀A,X, Y : fze(A,A,X, Y) =⇒ (X = Y)

∀A,X, Y : fse(A,A,X, Y) =⇒ (X = Y)

117

B The CASM Language

A EBNF grammar definition of the CASM language.

〈specification〉 ::= 〈header〉 〈body_elements〉

〈header〉 ::= ’casm’ 〈identifier〉

〈body_elements〉 ::= 〈body_elements〉 〈body_element〉
| 〈body_element〉

〈body_element〉 ::= 〈provider〉
| 〈enum〉
| 〈function_definition〉
| 〈derived〉
| 〈init〉
| 〈rule〉

〈init〉 ::= ’init’ 〈identifier〉

〈provider〉 ::= ’provider’ 〈identifier〉

〈enum〉 ::= ’enum’ 〈identifier〉 ’=’ ’{’ 〈identifier_list〉 ’}’

〈derived〉 ::= ’derived’ 〈identifier〉 ’(’ 〈param_list〉 ’)’ ’=’ 〈expression〉
| ’derived’ 〈identifier〉 ’(’ 〈param_list〉 ’)’ ’ :’ 〈type〉 ’=’ 〈expression〉
| ’derived’ 〈identifier〉 ’=’ 〈expression〉
| ’derived’ 〈identifier〉 ’ :’ 〈type〉 ’=’ 〈expression〉
| ’derived’ 〈identifier〉 ’(’ ’)’ ’=’ 〈expression〉
| ’derived’ 〈identifier〉 ’(’ ’)’ ’ :’ 〈type〉 ’=’ 〈expression〉

119

B The CASM Language

〈function_definition〉 ::= ’function’ ’(’ 〈identifier_list〉 ’)’ 〈identifier〉 〈function_signature〉 〈initializers〉
| ’function’ ’(’ 〈identifier_list〉 ’)’ 〈identifier〉 〈function_signature〉
| ’function’ 〈identifier〉 〈function_signature〉 〈initializers〉
| ’function’ 〈identifier〉 〈function_signature〉

〈identifier_list〉 ::= 〈identifier〉 ’,’ 〈identifier_list〉
| 〈identifier〉
| 〈identifier〉 ’,’

〈function_signature〉 ::= ’:’ ’->’ 〈type〉
| ’ :’ 〈type_identifier_starlist〉 ’->’ 〈type〉

〈param〉 ::= 〈identifier〉 ’:’ 〈type〉
| 〈identifier〉

〈param_list〉 ::= 〈param〉 ’,’ 〈param_list〉
| 〈param〉 ’,’

| 〈param〉

〈type_identifier_starlist〉 ::= 〈type〉 ’*’ 〈type_identifier_starlist〉
| 〈type〉

〈type〉 ::= 〈identifier〉
| 〈identifier〉 ’(’ 〈type_list〉 ’)’

| 〈identifier〉 ’(’ 〈number〉 ’..’ 〈number〉 ’)’

〈type_list〉 ::= 〈type〉 ’,’ 〈type_list〉
| 〈type〉 ’,’

| 〈type〉

〈tuple_list〉 ::= 〈identifier〉 ’,’ 〈tuple_list〉
| 〈identifier〉 ’,’

| 〈identifier〉

〈initializers〉 ::= 〈initially〉 ’{’ 〈initializer_list〉 ’}’

| 〈initially〉 ’{’ ’}’

〈initializer_list〉 ::= 〈initializer_list〉 ’,’ 〈initializer〉
| 〈initializer_list〉 ’,’

| 〈initializer〉

〈initializer〉 ::= 〈atom〉
| 〈atom〉 ’->’ 〈atom〉

120

〈atom〉 ::= 〈function〉
| 〈value〉
| 〈bracket_expression〉

〈value〉 ::= 〈ruleref 〉
| 〈number〉
| 〈strconst〉
| 〈listconst〉
| 〈number_range〉
| ’self’

| ’undef’

| ’true’

| ’false’

〈number〉 ::= ’+’ 〈intconst〉
| ’-’ 〈intconst〉
| 〈intconst〉
| ’+’ 〈floatconst〉
| ’-’ 〈floatconst〉
| 〈floatconst〉
| ’+’ 〈rationalconst〉
| ’-’ 〈rationalconst〉
| 〈rationalconst〉

〈ruleref 〉 ::= ’@’ 〈identifier〉

〈number_range〉 ::= ’[’ 〈number〉 ’..’ 〈number〉 ’]’

| ’[’ 〈identifier〉 ’..’ 〈identifier〉 ’]’

〈listconst〉 ::= ’[’ 〈expression_list〉 ’]’

| ’[’ ’]’

〈expression_list〉 ::= 〈expression〉 ’,’ 〈expression_list〉
| 〈expression〉 ’,’

| 〈expression〉

〈expression〉 ::= 〈expression〉 ’+’ 〈expression〉
| 〈expression〉 ’-’ 〈expression〉
| 〈expression〉 ’!=’ 〈expression〉
| 〈expression〉 ’=’ 〈expression〉
| 〈expression〉 ’<’ 〈expression〉
| 〈expression〉 ’>’ 〈expression〉
| 〈expression〉 ’<=’ 〈expression〉

121

B The CASM Language

| 〈expression〉 ’>=’ 〈expression〉
| 〈expression〉 ’*’ 〈expression〉
| 〈expression〉 ’/’ 〈expression〉
| 〈expression〉 ’%’ 〈expression〉
| 〈expression〉 ’div’ 〈expression〉
| 〈expression〉 ’or’ 〈expression〉
| 〈expression〉 ’xor’ 〈expression〉
| 〈expression〉 ’and’ 〈expression〉
| ’not’ 〈expression〉
| 〈atom〉

〈bracket_expression〉 ::= ’(’ 〈expression〉 ’)’

〈function〉 ::= 〈identifier〉
| 〈identifier〉 ’(’ ’)’

| 〈identifier〉 ’(’ 〈expression_list〉 ’)’

〈rule〉 ::= ’rule’ 〈identifier〉 ’=’ 〈statement〉
| ’rule’ 〈identifier〉 ’(’ ’)’ ’=’ 〈statement〉
| ’rule’ 〈identifier〉 ’(’ 〈param_list〉 ’)’ ’=’ 〈statement〉
| ’rule’ 〈identifier〉 ’dumps’ 〈dumpspec_list〉 ’=’ 〈statement〉
| ’rule’ 〈identifier〉 ’(’ ’)’ ’dumps’ 〈dumpspec_list〉 ’=’ 〈statement〉
| ’rule’ 〈identifier〉 ’(’ 〈param_list〉 ’)’ ’dumps’ 〈dumpspec_list〉 ’=’ 〈statement〉

〈dumpspec_list〉 ::= 〈dumpspec〉 ’,’ 〈dumpspec_list〉
| 〈dumpspec〉

〈dumpspec〉 ::= ’(’ 〈identifier_list〉 ’)’ ’->’ 〈identifier〉

〈statement〉 ::= 〈assert〉
| 〈assure〉
| 〈diedie〉
| 〈impossible〉
| 〈debuginfo〉
| 〈print〉
| 〈update〉
| 〈case〉
| 〈call〉
| 〈kw_seqblock〉
| 〈seqblock〉
| 〈kw_parblock〉
| 〈parblock〉
| 〈ifthenelse〉
| 〈let〉
| 〈push〉

122

| 〈pop〉
| 〈forall〉
| 〈iterate〉
| ’skip’

| 〈identifier〉
| ’objdump’ ’(’ 〈identifier〉 ’)’

〈assert〉 ::= ’assert’ 〈expression〉

〈assure〉 ::= ’assure’ 〈expression〉

〈diedie〉 ::= ’diedie’

| ’diedie’ 〈expression〉

〈impossible〉 ::= ’impossibe’

〈debuginfo〉 ::= ’debuginfo’ 〈identifier〉 〈debug_atom_list〉

〈debug_atom_list〉 ::= 〈atom〉 ’+’ 〈debug_atom_list〉
| 〈atom〉

〈print〉 ::= ’print’ 〈debug_atom_list〉

〈update〉 ::= 〈function〉 ’:=’ 〈expression〉

〈case〉 ::= ’case’ 〈expression〉 ’of’ 〈case_label_list〉 ’endcase’

〈case_label_list〉 ::= 〈case_label〉 〈case_label_list〉
| 〈case_label〉

〈case_label〉 ::= 〈case_label_default〉
| 〈case_label_number〉
| 〈case_label_ident〉
| 〈case_label_string〉

〈case_label_default〉 ::= default ’:’ 〈statement〉

〈case_label_number〉 ::= 〈number〉 ’:’ 〈statement〉

〈case_label_ident〉 ::= 〈identifier〉 ’:’ 〈statement〉

〈case_label_string〉 ::= 〈strconst〉 ’:’ 〈statement〉

〈call〉 ::= ’call’ ’(’ 〈expression〉 ’)’ ’(’ 〈expression_list〉 ’)’

| ’call’ ’(’ 〈expression〉 ’)’

| ’call’ 〈identifier〉 ’(’ 〈expression_list〉 ’)’

| ’call’ 〈identifier〉

123

B The CASM Language

〈kw_seqblock〉 ::= ’seqblock’ 〈statements〉 ’endseqblock’

〈seqblock〉 ::= ’{Š’ 〈statements〉 ’Š}’

〈kw_parblock〉 ::= ’parblock’ 〈statements〉 ’endparblock’

〈parblock〉 ::= ’{’ 〈statements〉 ’}’

〈statements〉 ::= 〈statements〉 〈statement〉
| 〈statement〉

〈ifthenelse〉 ::= ’if’ 〈expression〉 ’then’ 〈statement〉
| ’if’ 〈expression〉 ’then’ 〈statement〉 ’else’ 〈statement〉

〈let〉 ::= ’let’ 〈identifier〉 ’=’ 〈expression〉 ’in’ 〈statement〉
| ’let’ 〈identifier〉 ’:’ 〈type〉 ’=’ 〈expression〉 ’in’ 〈statement〉

〈push〉 ::= ’push’ 〈expression〉 ’into’ 〈identifier〉

〈pop〉 ::= ’pop’ 〈identifier〉 ’from’ 〈identifier〉

〈forall〉 ::= ’forall’ 〈identifier〉 ’in’ 〈expression〉 ’do’ 〈statement〉

〈iterate〉 ::= ’iterate’ 〈statement〉

124

C vanHelsing Input Language

A EBNF grammar definition of the vanHelsing input language.

〈top_level〉 ::= 〈tptp_file〉
| ǫ

〈tptp_file〉 ::= 〈tptp_file〉 〈tptp_input〉
| 〈tptp_input〉

〈tptp_input〉 ::= 〈tff_annotated〉
| 〈fof_annotated〉

〈name〉 ::= 〈atomic_word〉
| 〈integer〉

〈tff_annotated〉 ::= ’tff’ ’(’ 〈name〉 ’,’ 〈formulae_role〉 ’,’ 〈tff_formula〉 ’)’ ’.’

〈tff_formula〉 ::= 〈tff_typed_atom〉

〈tff_typed_atom〉 ::= 〈tff_untyped_atom〉 ’:’ 〈tff_top_level_type〉
| ’(’ 〈tff_typed_atom〉 ’)’

〈tff_untyped_atom〉 ::= 〈functor〉
| 〈system_functor〉

〈tff_top_level_type〉 ::= 〈tff_atomic_type〉
| 〈tff_mapping_type〉
| ’(’ 〈tff_top_level_type〉 ’)’

〈tff_atomic_type〉 ::= 〈atomic_word〉
| 〈defined_type〉

125

C vanHelsing Input Language

| 〈atomic_word〉 ’(’ 〈tff_type_arguments〉 ’)’

| 〈variable〉

〈tff_type_arguments〉 ::= 〈tff_atomic_type〉
| 〈tff_type_arguments〉 〈tff_atomic_type〉

〈tff_mapping_type〉 ::= 〈tff_unitary_type〉 ’>’ 〈tff_atomic_type〉

〈tff_unitary_type〉 ::= 〈tff_atomic_type〉
| ’(’ 〈tff_xprod_type〉 ’)’

〈tff_xprod_type〉 ::= 〈tff_unitary_type〉 ’*’ 〈tff_atomic_type〉
| 〈tff_xprod_type〉 ’*’ 〈tff_atomic_type〉

〈fof_annotated〉 ::= ’fof’ ’(’ 〈name〉 ’,’ 〈formulae_role〉 ’,’ 〈fof_formula〉 ’)’ ’.’

〈fof_formula〉 ::= 〈fof_logic_formula〉

〈fof_logic_formula〉 ::= 〈fof_binary_formula〉
| 〈fof_unitary_formula〉

〈fof_binary_formula〉 ::= 〈fof_binary_nonassoc〉
| 〈fof_binary_assoc〉

〈fof_binary_nonassoc〉 ::= 〈fof_unitary_formula〉 〈binary_connective〉 〈fof_unitary_formula〉

〈fof_binary_assoc〉 ::= 〈fof_or_formula〉
| 〈fof_and_formula〉

〈fof_or_formula〉 ::= 〈fof_unitary_formula〉 ’Š’ 〈fof_unitary_formula〉
| 〈fof_or_formula〉 ’|’ 〈fof_unitary_formula〉

〈fof_and_formula〉 ::= 〈fof_unitary_formula〉 ’&’ 〈fof_unitary_formula〉
| 〈fof_and_formula〉 ’&’ 〈fof_unitary_formula〉

〈fof_unitary_formula〉 ::= 〈fof_quantified_formula〉
| 〈fof_unary_formula〉
| 〈atomic_formula〉
| ’(’ 〈fof_logic_formula〉 ’)’

〈fof_quantified_formula〉 ::= 〈fol_quantifier〉 ’[’ 〈fof_variable_list〉 ’]’ ’:’ 〈fof_unitary_formula〉

〈fof_variable_list〉 ::= 〈variable〉
| 〈fof_variable_list〉 ’,’ 〈variable〉

〈fof_unary_formula〉 ::= ’~’ 〈fof_unitary_formula〉
| 〈fol_infix_unary〉

126

〈fol_infix_unary〉 ::= 〈term〉 ’!=’ 〈term〉
| 〈term〉 ’=’ 〈term〉

〈fol_quantifier〉 ::= ’!’

| ’?’

〈term〉 ::= 〈function_term〉
| 〈variable〉

〈function_term〉 ::= 〈plain_term〉
| 〈defined_term〉

〈plain_term〉 ::= 〈constant〉
| 〈functor〉 ’(’ 〈arguments〉 ’)’

〈constant〉 ::= 〈functor〉

〈defined_term〉 ::= 〈defined_atom〉
| 〈defined_atomic_term〉

〈defined_atom〉 ::= 〈number〉
| 〈distinct_object〉

〈number〉 ::= 〈integer〉

〈defined_plain_term〉 ::= 〈defined_constant〉
| 〈defined_functor〉 ’(’ 〈arguments〉 ’)’

〈defined_constant〉 ::= 〈defined_functor〉

〈defined_functor〉 ::= 〈atomic_defined_word〉

〈defined_atomic_term〉 ::= 〈defined_plain_term〉

〈defined_atomic_formula〉 ::= 〈defined_plain_formula〉

〈defined_plain_formula〉 ::= 〈defined_plain_term〉

〈defined_infix_formula〉 ::= 〈term〉 〈defined_infix_pred〉 〈term〉

〈defined_infix_pred〉 ::= ’=’

〈atomic_formula〉 ::= 〈plain_atomic_formula〉
| 〈defined_atomic_formula〉

〈atomic_defined_word〉 ::= 〈dollar_word〉

127

C vanHelsing Input Language

〈plain_atomic_formula〉 ::= 〈plain_term〉

〈distinct_object〉 ::= 〈double_quoted〉

〈arguments〉 ::= 〈term〉
| 〈arguments〉 ’,’ 〈term〉

〈binary_connective〉 ::= ’=’

| ’=>’

| ’<=’

| ’<~>’

| ’~Š’
| ’~&’

〈functor〉 ::= 〈atomic_word〉

〈atomic_word〉 ::= 〈single_quoted〉
| 〈lower_word〉

〈variable〉 ::= 〈upper_word〉
| 〈upper_word〉 ’:’ 〈dollar_word〉

〈defined_type〉 ::= 〈dollar_word〉

〈system_functor〉 ::= 〈atomic_system_word〉

〈atomic_system_word〉 ::= 〈dollar_dollar_word〉

〈formulae_role〉 ::= 〈lower_word〉

128

D Colophon

Image Copyrights

The chapter heading image for chapter 2 is used with the friendly permission of Marc Hennekes,
the author of http://www.mandree.de/auf-den-schultern/. The chapter head-
ing image for chapter 8 (Satanic Rites of Dracula) is licensed under CC-BY-3.0 by ONTV from
http://ontv.deviantart.com/art/Satanic-Rites-of-Dracula-100391613.
The chapter heading image for chapter 3 has been created by the author and Phillip Paulweber.
The other images are public domain (from wikipedia.org for chapters 1 and 6 and from opencli-
part.org for chapter 9).

Version Information

Official Discordian Document Number: f870053 Di 18. Mär 13:28:22 CET 2014

129

http://www.mandree.de/auf-den-schultern/
http://ontv.deviantart.com/art/Satanic-Rites-of-Dracula-100391613

E Curriculum Vitae

Personal Data

Name Roland Lezuo
Date of Birth 18-10-1979
Place of Birth Innsbruck, Austria
Address Burggasse 35/1, 1070 Wien
Email roland.lezuo@tuwien.ac.at

Professional Experience

2001 - 2003 Cura Marketing GmbH, Innsbruck
Web Development

2004 - 2006 RISE Schwechat, Schwechat
Firmware Development, Austrian eHealth set-top boxes

Software Development, Austrian Citizen Card

2008 - 2010 Secure Business Austria, Wien
Firmware Development, Smartcard Reader

Software Architect, German eHealth set-top boxes

Firmware Development, Road Tolling Equipment

Software Development, Austrian eHealth

2010 - 2013 Vienna University of Technology
Project Assistant, Correct Compilers for Correct Application

Specific Processors (C3Pro)

131

E Curriculum Vitae

Education

1994 - 1999 HTL (Higher Technical Institute for electrical engineering),
Innsbruck
Reifeprüfung and Diploma with excellent success

1999 - 2002 Computer Science, Fernuniversität in Hagen
„Diplomvorprüfung II“ passed on 25.3.2002

2002 - 2004 Bachelor’s programme Computer Engineering, TU Wien
2004 - 2007 Master’s programme Computer Engineering, TU Wien

Diploma Thesis: "Porting the CACAO Virtual Machine to

POWERPC64 and Coldfire", with distinction

2010 - current Doctoral programme in Engineering Sciences , TU Wien
PhD Thesis: Scalable Translation Validation

List of Publications

• Roland Lezuo and Felix Breitenecker. A Programmed Solution to ARGESIM Com-
parison C 6 ‘Emergency Department’ with DSOL, a Java- based Suite. In Simulation

News Europe SNE 16/1, page 33, München, 2006, ARGESIM and ASIM.
url: http://www.sne-journal.org/publications/?tx_pubdb_pi1
%5Bpubid%5D=52&tx_pubdb_pi1%5Bppid%5D=87

• Roland Lezuo and Andreas Krall. A unified processor model for compiler verifica-
tion and simulation using ASM. In Proceedings of the Third international conference

on Abstract State Machines, Alloy, B, VDM, and Z, ABZ’12, pages 327–330, Berlin,
Heidelberg, 2012. Springer-Verlag. doi:10.1007/978-3-642-30885-7_24

• Roland Lezuo, Gergö Barany, and Andreas Krall. CASM: Implementing an Abstract
State Machine based Programming Language. In Stefan Wagner and Horst Lichter,
editors, Software Engineering 2013 Workshopband, 26. Februar - 1. März 2013 in

Aachen, volume 215 of GI Edition - Lecture Notes in Informatics, pages 75–90,
February 2013. (6. Arbeitstagung Programmiersprachen (ATPS’13))

• Roland Lezuo and Andreas Krall. Using the CASM language for simulator synthesis
and model verification. In Proceedings of the 2013 Workshop on Rapid Simulation

and Performance Evaluation: Methods and Tools, RAPIDO ’13, pages 6:1–6:8, New
York, NY, USA, 2013. ACM. doi:10.1145/2432516.2432522

• Roland Lezuo, Philipp Paulweber, and Andreas Krall. CASM - Optimized Com-
pilation of Abstract State Machines. LCTES ’07, New York, NY, USA, 2014 (to
appear). ACM

• Roland Lezuo and Andreas Krall. Simulation Proofs by Direct Symbolic Execution
of Abstract State Machines (under submission).

• Roland Lezuo, Ioan Dragan and Andreas Krall. vanHelsing: Tool and Proof Debug-
ger for Expression Equivalence Problems (under submission).

132

http://www.sne-journal.org/publications/?tx_pubdb_pi1%5Bpubid%5D=52&tx_pubdb_pi1%5Bppid%5D=87
http://www.sne-journal.org/publications/?tx_pubdb_pi1%5Bpubid%5D=52&tx_pubdb_pi1%5Bppid%5D=87
http://dx.doi.org/10.1007/978-3-642-30885-7_24
http://dx.doi.org/10.1145/2432516.2432522

	Title
	Abstract
	Kurzfassung
	Acronyms
	Contents
	Introduction
	Related Work
	Compiler Verification
	Abstract State Machines
	First-Order Theorem Provers

	CASM - Efficient Abstract State Machines
	CASM - An Implementation of ASM
	Direct symbolic execution of ASM
	Efficient Compilation of CASM

	Semantics and Compilers
	ADL for Retargetable Compilers
	Compiler Overview
	Semantics of Compiler IR
	A unified Machine Model

	Proof Techniques
	Program Checking
	Simulation Proofs

	The Big Picture - Chain of Trust
	Definition of Correct Compilation
	Front-end
	Mid-end - Verification of Analyses
	Back-end - Verification of Transformations
	Multiple Iterated Passes

	Correctness of Selected Back-end Transformations
	Prolog and Epilog Insertion
	Instruction Selection
	If Conversion
	VLIW Scheduling
	Software Pipelining
	Register Allocation & Spilling
	Stack Finalization
	Linking
	Summary

	vanHelsing: Prover and Debugger
	Input Language
	Implementation
	Proof Debugger
	Defining Expressions

	Instruction Set Simulation & Compiled Simulation
	Instruction Set Simulation
	Instruction Set Simulator Verification
	Compiled Simulation

	Evaluation
	CASM implementation
	vanHelsing Prover
	Translation Validation

	Future Work
	CASM Object Model
	Update Placement Optimization for the CASM Compiler
	Translation Validation of the CASM Compiler
	Synthesization of the Compiler Specification

	Conclusion
	Bibliography
	Vocabulary and Axioms
	The CASM Language
	vanHelsing Input Language
	Colophon
	Curriculum Vitae

