
Teaching Beginners Prolog
How to Teach Prolog

2. Fassung

Ulrich Neumerkel

Institut für Computersprachen

Technische Universität Wien

A-1040 Wien, Austria

http://www.complang.tuwien.ac.at/ulrich

ulrich@mips.complang.tuwien.ac.at

I The “magic” of Prolog — Common obstacles

II How to read programs

III Course implementation — Programming environment

1

Part I
Common obstacles

• The “magic” of Prolog

Prolog appears as magic if one tries to learn Prolog

by looking at execution traces

using side effects

— Which introductory book does not cover them?

• Previous skills and habits

• Prolog’s syntax

• Naming of predicates and variables

• List differences

2

Syllabus
Two apparently conflicting goals:

• Training (project oriented)

Larger projects do not work well

• Teaching (concept oriented)

Basics:

• Basic reading skills for understanding Prolog programs

• Avoiding common mistakes, develop coding style

Previous skills to build on

• Programming skills

• Mathematical skills

• Language skills

3

Previous (counterproductive) programming skills
The self-taught programmer

Bad programming habits

Severe handicap: Edit-Compile-Run-Dump-Debug

“Let the debugger explain what the program is doing”

• How do you make sure that your programs have no errors?

• Do you use assertions frequently?

• Do you write down assertions/consistency checks before you write the
actual code?

• How do you test? How do you ensure that results are correct?

• How can the program falsify your claim of correctness?

Prolog shows no mercy upon the illiterate programmer.

4

Previous programming skills
Procedural languages

difference to Prolog not that large when knowing

• structured programming (proponents Dijkstra et al.) :

– to avoid bad habits: Verify, don’t run (& don’t debug)

unclear: how to ensure accurateness of spec?

– never visualize execution

– avoid anthropomorphisms — computer language 6= language
linguistic analogy not helpful

• invariants, pre- postconditions

• testable assertions — e.g. Eiffel

seldom taught along with practical programming

• C’s assert.h (Even in C you can do better!)

5

Programming and Mathematical skills

Beginners have lots of problems understanding Prolog
because they never learned structured programming.

Mathematical skills

• mathematical logic as prerequisite

• calculational skills (e.g. manipulating formulæ)

• unification

6

Language skills

• Only helpful skill to build on.

• Many difficulties of Prolog can be clarified by reading programs in
plain English.

• E.g. quantification problems in negation:

female(Female) ←
\+male(Female).

Everything/everyone, really everything/everyone that/who is
not male is female.
Therefore: Since a chair/a hammer/the summer isn’t male it is
female etc.

7

Language skills cont.

female(Female) ←
person(Female),
\+male(Female).

Napoleon is a person (defined) but we haven’t defined Napoleon
as being male, so we assume he is female.

• Detect defaulty data structure definitions

is tree(Element). % Everything is a tree.
is tree(node(L, R)) ←

is tree(L),
is tree(R).

8

Prolog’s Syntax, Difficulties
Minor typos make a student resort to bad habits

Comma vs. period
Prolog’s syntax is not robust: “male(john).” is a goal or fact,
depending on the context.

father of(Father, Child) ←
child of(Child, Father),
male(Father), % !

male(john).
...
Happens to 84% of students.

9

Prolog’s syntax — increasing robustness

1. Redesign Prolog’s syntax. (Prolog II)

2. Take a subset of existing syntax. (GUPU)

make spacing and indentation significant

(a) Each head, each goal goes into a single line.

(b) Goals are indented. Heads are not indented.

(c) Only comma can separate goals (i.e. no disjunction)

(d) Different predicates are separated by blank lines.

a ← !,
c.

=⇒ a ←
!, % Don’t play down the cut! !!
c.

⇒ more helpful error messages possible

10

Names of predicates
key to understanding
assignments for finding the right names

Misnomers

• action oriented prescriptive names

append/3, reverse/2

use past participle instead, sometimes noun

• leave the argument order open

child/2, length/2

• pretend too general or too specific relation

reverse/2, length/2

• tell the obvious: body list//1

11

Finding a good predicate name

1. Start with intended types

type1 type2 type 3 type4(Arg1, Arg2, Arg3, Arg4)

“child of a person” : person person/2

2. If name too general, refine

person person ⇒ child person/2

list list/2 ⇒ list reversedlist/2

3. Emphasize relation between arguments

• shortcuts like prepositions

child of/2

• past participles alone.

list reversed/2

12

Example of name finding
“length of a list”

• number list/2 ⇒length list/2

• list number/2 ⇒ list length/2

• Argument order not important

• Traditional names often too general (length/2)

Shorter names
Omit less important arguments at the end
shortened name ends with an underscore

country (Country, Region, Population, ...)
Type definitions

Convention: is type(Type) or type(Type)

• documentation purpose

• serve as template for predicates defined over data structures

13

O’Keefe-rules

• unsuitable (for beginners)

• deal with procedural aspects

• inputs and outputs

atom chars vs. atom to chars

14

Variable names
Lack of type system makes consistent naming essential

• for lists: [Singularform|Pluralform] , e.g. [X|Xs]

• naming void variables in the head

e.g. Xs instead of

member(X,[X|]).

• state numbering (e.g. list differences)

15

Understanding differences

− misleading name: “difference list”

− misunderstanding: “difference lists” are not lists

Student statement: “My Prolog doesn’t have difference lists”

+ instead : list difference, difference of lists, differential list (?)

− differences too early

+ use grammars first

more compact, less error-prone, less typing

amazingly powerful

compact string notation

− differences presented as incomplete data structures — “holes”

+ motivate differences with ground lists

+ differences are not specific to lists

+ differences and state

16

Part II
Reading of programs

Algorithm = Logic + Control

Common misinterpretation

Prolog program = Pure Prolog + Control predicates

Inpure parts required?

Separation of declarative and procedural aspects is not helpful.

Family of related reading techniques

Focus on distinct (abstract) parts/properties of the program

• informal reading in English

• declarative reading

• (almost) procedural reading

• termination reading

• resource consumption

17

Informal reading
use English to

• focus the student’s attention on the meaning of program

• avoid operational details

• clarify notions

• clarify language ambiguities

• clarify confusion of “and” and “or”

ancestor of(Ancestor, Person) ←
child of(Person, Ancestor).

Someone is an ancestor of a person if he is the parent of that
person.
Alternatively: Parents are ancestors.

18

ancestor of(Ancestor, Descendant) ←
child of(Person, Ancestor),
ancestor of(Person, Descendant).

Someone is an ancestor of a descendant if he is the parent of
another ancestor of the descendant.

Alternatively: Parents of ancestors are ancestors

Reading complete predicates is often too clumsy:

Someone is an ancestor of a descendant, (either) if he is the
parent of that descendant, or if he is the parent of another
ancestor of the descendant. (unspeakable)

Alternatively: Parents and their ancestors are ancestors. (too
terse)

Informal reading is intuitive but limited to small programs.
⇒ Extend informal reading to read larger programs

19

Declarative reading of programs

• consider only parts of program at a time

• cover the uninteresting/difficult parts (like this)

• shortens sentences to be read aloud

Analysis of clauses
Read single clause at a time.
Add remark: But there may be something else.
ancestor of(Ancestor, Person) ←

child of(Person, Ancestor).
ancestor of(Ancestor, Descendant) ←

child of(Person, Ancestor),
ancestor of(Person, Descendant).

Someone is an ancestor of a person if he is the parent of that
person. (But there may be other ancestors as well).

Alternatively: At least parents are ancestors.

20

ancestor of(Ancestor, Person) ←
child of(Person, Ancestor).

ancestor of(Ancestor, Descendant) ←
child of(Person, Ancestor),
ancestor of(Person, Descendant).

Someone is an ancestor of a descendant if he’s the parent of
another person being an ancestor of the descendant. But ...

At least parents of ancestors are ancestors.

Erroneous clauses
For error location it is not necessary to see the whole program
ancestor of too general(Ancestor, Person) ←

child of too general(Ancestor, Person).
ancestor of too general(Ancestor, Descendant) ←

child of too general(Person, Ancestor),
ancestor of too general(Person, Descendant).

21

Analysis of the rule body

• goals restrict set of solution

• cover goals to see generalized definitions

father(Father) ←
male(Father),
child of(Child, Father).

Fathers are at least male.

(But not all males are necessarily fathers)

father toorestricted(franz) ←
male(franz),
child of(Child, franz).

Body is irrelevant to see that definition is too restricted.

22

Searching for errors

If erroneous definition is

1. too general. Use: Analysis of clauses to search too general clause

2. too restricted. Use: Analysis of the rule body

Reading method leads to analgous writing style.

23

Procedural reading of programs

• special case of the declarative reading

• uncover goals in strict order

• look at variable dependence

– first occurrence of variable

variable will always be free

– further occurrence

connected to goal/head

24

1. ancestor of(Ancestor, Descendant) ← % ⇐=
child of(Person, Ancestor),
ancestor of(Person, Descendant).

⇒ Head does not exclude anything.

2. ancestor of(Ancestor, Descendant) ←
child of(Person, Ancestor), % ⇐=
ancestor of(Person, Descendant).

⇒ Ancestor can influence child of/2.

⇒ Descendant doesn’t influence child of/2.

⇒ Person will be always free.

3. ancestor of(Ancestor, Descendant) ←
child of(Person, Ancestor),
ancestor of(Person, Descendant). % ⇐=

⇒ Descendant only influences ancestor of/2.

25

Termination

• often considered weak point of Prolog

• nontermination is a property of
a general purpose programming language

• only simpler computational models guarantee termination

(datalog, categorical programming languages)

• floundering is also difficult to reason about

• pretext to stop declarative thinking, usage of debuggers etc.

• ← Goal. terminates if ← Goal, fail. terminates (and fails)

Idea:

• termination reading special case of procedural reading

• consider simpler predicate

• if simpler predicate terminates (& fails), the original predicate termi-
nates as well

26

Termination reading

• cover all irrelevant clauses

– cover all facts

– non recursive parts

append([], Xs, Xs).
append([X|Xs], Ys, [X|Zs]) ←

append(Xs, Ys, Zs).

• cover variables that are handed through (Ys)

append([], Xs, Xs).
append([X|Xs], Ys, [X|Zs]) ←

append(Xs, Ys, Zs).

• cover head variables (approximation)

append([], Xs, Xs).
append([X |Xs], Ys, [X |Zs]) ←

append(Xs, Ys, Zs).

27

Resulting predicate:

appendtorso([X|Xs], [Z|Zs]) :-
appendtorso(Xs, Zs).

• if appendtorso/2 terminates, append/3 will terminate

• appendtorso/2 never succeeds

• only a safe approximation

← append([1|], , [2|]).

← appendtorso([1|], [2|]).

appendtoro/2 does not terminate while append/3 does

• The misunderstanding of append/3

rôle of fact append([], Xs, Xs)

often called “end/termination condition”

But: append([], Xs, Xs) has no influence on termination!

28

Reasoning about termination: append3/4

append3A(As, Bs, Cs, Ds) ←
append(As, Bs, ABs),
append(ABs, Cs, Ds).

append3B(As, Bs, Cs, Ds) ←
append(As, BCs, Ds),
append(Bs, Cs, BCs).

Which one terminates for merging and splitting?

29

Procedural reading of append3A/4

append3A(As, Bs, Cs, Ds) ←
append(As, Bs, ABs), % ⇐= terminates only if As is known
append(ABs, Cs, Ds).

Result:
terminates only if As is known (no open list)

⇒ reject append3A/4

• only a part of the predicate was read

(the second goal was not read)

• it was not necessary to imagine Prolog’s precise execution

• no “magic” of backtracking, unifying etc.

• no stepping thru with a debugger — a debugger shows irrelevant
details (inferences of the second goal)

30

Procedural reading of append3B/4

append3B(As, Bs, Cs, Ds) ←
append(As, BCs, Ds), % ⇐= terminates if As or Ds known
append(Bs, Cs, BCs).

append3B(As, Bs, Cs, Ds) ←
append(As, BCs, Ds),
append(Bs, Cs, BCs). % ⇐= if Bs or BCs (=Ds) known

Result:

1. terminates if As and Bs are known (more than merging)

2. terminates if Ds is known (= splitting)

31

Fair enumeration of infinite sequences

• termination reading is about termination/non-termination only

• in case of non-termination, fair enumeration still possible

• much more complex in general

• order of clauses significant

• e.g. unfair if two independent infinite sequences

list list(Xs, Ys) ←
length(Xs,),
length(Ys,).

• explicit reasoning about alternatives (backtracking)

• use one simple fair predicate (e.g. one length/2) instead

• learn the limits, but don’t go to them

32

Resource consumption

• analytical vs. empirical

• Do not try to understand precise execution!

• prefer measuring over tracing

• abstract measures often sufficient

E.g. inference counting, size of data-structures

– inference counting

list double(Xs, XsXs) ←
append(Xs, Xs, XsXs).

← length(XsXs, N), list double(Xs, XsXs).

When counting, ignore facts (similar to termination reading)

33

Rename 2nd argument, delay unification

list double(Xs, XsXs) ←
append(Xs, Ys, XsXs),
Xs = Ys.

← list double(Xs, XsXs).

Requires N and not N/2 inferences (+ unification costs)

– size of data structures

(If everything else is the same)

size of data structures approx. proportional to execution speed

34

Reading of definite clause grammars

Comma is read differently:

nounphrase −→ % A noun phrase consists of
determiner, % a determiner followed by
noun, % a noun followed by
optrel. % an optional relative clause.

Declarative reading of grammars

Context free grammars are the declarative formalism per se but
still it is helpful to consider generalizations:

nounphrase −→ % A noun phrase (at least)
determiner, % starts with a determiner
noun, % —
optrel. % ends with an optional relative clause

35

Procedural reading of grammars

Take implicit argument (list) into account

seq([]) −→
[].

seq([X|Xs]) −→
[X],
seq(Xs).

seq3(Xs, Ys, Zs) −→
seq(Xs),
seq(Ys),
seq(Zs).

append3(As, Bs, Cs, Ds) ←
phrase(seq3(As, Bs, Cs), Ds).

splitting and joining works

36

Part III
Course implementation

• 2nd year one semester course

2hrs/week (students claim: 9× 5hrs work)

• nine weeks (example groups) about 70 small assignments

Course contents

• Basic elements (facts, queries, rules)

• Declarative reading (first only with datalog)

• Procedural reading (—””—)

• Termination (—””—)

• Terms

• Term arithmetic

• Lists

37

• Grammars

• List differences (after grammars)

• State & general differences (make/next/done)

• Limits of pure Prolog (unfairness etc.)

• Meta-logical & control

most important part: error/1 (terminate execution with an error mes-
sage)

(nonvar/1, var/1, error/1, cut)

• Negation

• Term analysis

• Arithmetic

38

Topics not covered
(*): covered in an advanced course (3hrs)

1. setof(Template, Goal, Solutions) (*)

“answer substitutions” vs. “list of solutions” confusing — quantification tricky

2. meta interpreters (*) — program = data too confusing

instead use pure meta interpreters “in disguise” (e.g. regular expressions)

3. meta call (*)

4. explicit disjunction (*) — meaning of alternative clauses must be understood first

5. if then else (*) — leads to defaulty programming style

if used, restrict condition to var/nonvar and arithmetical comparison

6. data base manipulation (*) — difficult to test — if used, focus on setof/3-like usage

7. advanced control (*) — reasoning about floundering difficult

8. constraints (*)

9. extra logical predicates

10. debuggers, tracers — reason for heavy usage of cuts

39

GUPU Programming Environment

Gesprächsunterstützende Programmierübungsumgebung

conversation supporting programming course environment

Guided tour: http://www.complang.tuwien.ac.at/ulrich/gupu

• specialized for Prolog courses

• uses a subset of Prolog

• focuses on clean part of Prolog

i.e. no side effects allowed

• side effect free interaction

• comfortable querying and testing

• Only two (nonoverlapping) windows:

– example texts to be edited

– help texts with simple mark up links

40

(no window to execute or test)

41

1. Beispiel ### || Bitte lesen Sie zuerst die Beschreibung dieser
Stellen Sie eine Frage (mit <). || Programmierumgebung in Anhang A und B!

|| Auf dieser Seite können Sie allgemeine Hinweise
Beachten Sie bitte den Unterschied zwischen einer || lesen. Um einen Hinweis zu lesen, mit dem
Anfrage wie z.B. || Cursor vor einen Hinweis und DO drücken.
:- ocean(Ozean). || \Hinweis{init9495last} (Vom WS)
und einer < Frage. Siehe Anhang A. Verwenden Sie die ||
< Fragen nur, wenn Sie Hilfe brauchen. Siehe auch || \Hinweis{Tastatur} (Allgemein)
\Hinweis{Tastatur}. || \Hinweis{Reservierung} (Allgemein)

|| \Hinweis{Übungsmodus} (Allgemein)
2. Beispiel ### || \Hinweis{Maschinenwahl}
Schreiben Sie eine kleine Datenbasis (mit zumindest || \Hinweis{ÜberlasteteMaschinen}
10 Personen), die familiäre Beziehungen beschreibt: || \Hinweis{Konsistenzprüfung}
(In den folgenden Beispielen werden einige komplexere || \Hinweis{Bewertungsmodus}
Verwandtschaftsbeziehungen definiert, formulieren Sie || \Hinweis{KompakteListen}
daher bitte eine Datenbasis, die komplex genug ist. || \Hinweis{Suffix}

|| ad Bsp.26 \Hinweis{Zahlenpaare}
-- Hier können Sie die Funktionstasten zum raschen || ad Bsp.29 \Hinweis{Datenstrukturdefinition}
Kopieren von Funktoren verwenden. Siehe Anhang B. -- || \Hinweis{AufbauendeLVAs} (SommerS.95)

|| \Hinweis{Wozu_Prolog}
kind_von(joseph_I, leopold_I). || ad Bsp.28 \Hinweis{appendnachsuffix}
kind_von(karl_VI, leopold_I). || ad Bsp.53 \Hinweis{Instanzierungsmuster} Erkl.
kind_von(maria_theresia, karl_VI). || ad Bsp.57 \Hinweis{Frosch} Die ganze Geschichte
kind_von(joseph_II, maria_theresia). || ad Bsp.58 \Hinweis{Variablen_in_DCGs}
kind_von(joseph_II, franz_I). || ad Bsp.62 \Hinweis{Mögliche_Instanzierungen}
kind_von(leopold_II, maria_theresia). || ad Bsp.67 \Hinweis{Diagonalen}
kind_von(leopold_II, franz_I). || \Hinweis{PrologAllgemein}
kind_von(marie_antoinette, maria_theresia). ||
kind_von(franz_II, leopold_II). || Abgabetermine sind nun mittwochs 24h00.

|| 1. Abgabetermin ist Mittwoch 22. März.
:- kind_von(Kind, Elternteil). ||
:- männlich(Mann). ||
! ! Prädikat :männlich/1: nicht oder in nicht geladenem Beisp\||
iel definiert. \Hinweis{laden} ||

||
----- n599 server 100% 20:18 Freie Zeit xterm (GUPU) --%%-Emacs: init.hlp (Hinweise)--All---

42

Interaction

1. edit text

2. press DO to save, compile, test

3. comments (from system or lecturer) are written back into text

child of(karl VI, leopold I).
child of(maria theresia, karl VI).
! child of(maria¿∗Àtheresia, karl VI).
! Argumentliste eines Funktors unterbrochen, ...
child of(joseph II, maria theresia).

← append(Xs, Xs, Xs).
< @@@ % Xs = [].
< @@@ ! Ausführung dauert zu lang, Antwort unvollständig
< Why the loop here?
∗> Compare it to ← append(Xs, Xs, Zs), Xs = Zs.

43

Program text, assertions
child of(karl VI, leopold I).
child of(maria theresia, karl VI).
child of(joseph II, maria theresia).
child of(joseph II, franz I).
child of(leopold II, maria theresia).
child of(marie antoinette, maria theresia).
← child of(Child, Parent).
6← child of(joseph II, friedrich II).

44

Assertions

• ← Goal. should succeed

• 6← NGoal. should not succeed (:/-), avoids talking about negation

• tested upon saving

• timeouts for “infinite loops”

• immediate feedback

• supports a more specification oriented programming method:

1. formulate test cases (= specification)

2. write predicate

3. testing is now “for free”

Querying predicates
Two rôles of ← Goal.

• assertion (tested upon saving)

• query

45

Answer substitutions
child of(karl VI, leopold I).
child of(maria theresia, karl VI).
child of(joseph II, maria theresia).
child of(joseph II, franz I).
child of(leopold II, maria theresia).
child of(marie antoinette, maria theresia).
← child of(Child, Parent).
@@@ % Parent = leopold I, Child = karl VI.
@@@ % Parent = karl VI, Child = maria theresia.
@@@ % Parent = maria theresia, Child = joseph II.
@@@ % Parent = franz I, Child = joseph II.
@@@ % Parent = maria theresia, Child = leopold II.
@@@ ? Weitere Lösungen mit SPACE
6← child of(joseph II, friedrich II).

46

Answer substitutions cont.

• displayed in chunks

• locates most backtracking problems

• infinite sequences can be inspected

• redundant answer substitutions labeled

• answer substitutions inserted into program text

• easy to (re-)use answer substitutions for new goals

• timeouts

47

Example domains

1. The family database

− recursion maybe better with recursive terms

− infinite loops in the first week (timeouts)

− doesn’t compute something “real”

+ motivation, identification with own db (= often own family)

+ mapping Prolog to English much simpler if domain well known
(e.g. uncle John ...)

+ clarify notions taken for granted (e.g., siblings)

+ data incompleteness

+ various degrees of inconsistency, integrity constraints

+ recursion not that difficult with procedural reading technique

48

2. Maps

3. Stories Mapping small fairy tales into Prolog.

4. (simplified) grammars of programming languages

5. RNA-analysis (along D.B.Searls NACLP89)

+ very pure

+ backtracking mechanism, efficiency issues

+ execution imposssible to understand step-by-step

no procedural cheating possible

+ constraining variables

+ reordering parsing

6. Analyzing larger text

E.g. extracting the words used etc.

49

