
ISO/IEC DTR 13211–1:2006

New built-in flags, predicates, and functions

proposal

Editor: Paulo Moura
pmoura@di.ubi.pt

November 17, 2008

Introduction

This proposal specifies a set of built-in predicates and flags to be added to Part
1 of the International Standard for Prolog, ISO/IEC 13211. When evaluating
this proposal, please comment each predicate individually by presenting your
arguments for either accepting or rejecting its inclusion in the next revision of
the Part 1 standard.

This proposal is written as an extension to the ISO/IEC 13211–1 Prolog stan-
dard, adopting a similar structure. Specifically, this proposal either adds new
sections and clauses to, or modifies the reading of existing clauses on ISO/IEC
13211–1.

This draft proposal may contain in several places informative text, type-set
in italics. Such informative text is used for editorial comments deemed useful
during the development of this draft and may not be included in the final version.

Contributors

This list includes so far the people present at the ISO meeting collocated with
the ICLP’06 and people participating on the mailing list discussions.

• Bart Demoen (Belgium)
• Jan Wielemaker, (Netherlands)
• Joachim Schimpf (UK)
• Jonathan Hodgson (USA)
• Katsuhiko Nakamura (Japan)
• Klaus Daessler (Germany)
• Mary Kroening (USA)
• Michael Covington (USA)

1

1 SCOPE 2

• Neng-Fu Zhou (USA)
• Paulo Moura (Portugal)
• Pierre Deransart (France)
• Péter Szabó (Hungary)
• Péter Szeredi (Hungary)
• Rémy Haemmerlé (France)
• Richard O’Keefe (NZ)
• Roberto Bagnara (Italy)
• Roger Scowen (UK)
• Ulrich Neumerkel (Austria)

1 Scope

This proposal is designed to promote the applicability and portability of Prolog
by adding to ISO/IEC 13211–1:1995 a set of built-in predicates and flags that
are either common practice and implemented in most Prolog systems or are
needed to clarify implementation-dependent behavior. As such, this proposal
includes specifications for:

a) A set of flags allowing a programmer to query a system about the floating-
point arithmetic implementation and to declare the default encoding for
Prolog text

b) Commonly used term testing predicates already available in most Prolog
systems that are missing from ISO/IEC 13211–1:1995

c) Commonly used meta-predicates which should be available as built-in
predicates in order to provide adequate performance

d) A set of built-in predicates for list processing, providing functionality simi-
lar to the atomic processing built-in predicates present on ISO/IEC 13211–
1:1995

e) Commonly used evaluable functors that are missing from ISO/IEC 13211–
1:1995

NOTE — This part of ISO/IEC 13211 will eventually merge with ISO/IEC
13211–1:1995 resulting in a new version of the Part 1 standard.

6 Syntax

6.3.4.4 The operator table

The infix operator ‘><’ (bitwise exclusive or) is added to the operator table
with the same specification as the bitwise or and and bitwise and operators:

7 LANGUAGE CONCEPTS AND SEMANTICS 3

Priority Specifier Operators(s)
500 yfx + - /\ \/ ><

The prefix operator ‘+’ (unary plus) is added to the operator table with the
same specification as the unary minus or the bitwise complement operators:

Priority Specifier Operators(s)
200 fy + - \

7 Language concepts and semantics

7.1 Types

7.1.6 Related terms

7.1.6.9 Pair

P is a pair if it is a compound term ’-’(Key, Value) where Key and Value are
terms.

NOTE — In Prolog text and this part of ISO/IEC 13211 a pair ’-’(Key,
Value) is normally written as Key-Value or (Key)-(Value) depending on
whether or not Key and Value are operators.

7.4 Prolog text

7.4.2 Directives

7.4.2.10 encoding/1

A directive encoding(E) specifies that the Prolog text being prepared for exe-
cution uses the encoding E. When used, this directive shall be the first term, on
the first line, in a Prolog text with no extra layout characters (6.5.4) before the
:-/1 directive operator. Moreover, a single layout character shall be used be-
tween the directive operator and the directive functor. No layout characters or
comments shall appear between the directive opening and closing parenthesis.

7.10 Input/ouput

7.10.3 Standard Streams

Added user error alias.

Three streams are predefined and open during the execution of every goal: the
standard input stream has the alias user input, the standard output stream
has the alias user output, and the standard error output stream has the alias
user error.

7 LANGUAGE CONCEPTS AND SEMANTICS 4

NOTES

3 Prolog implementation on systems that do not support an error output
stream shall redirect output to the standard output stream.

7.10.3.11 Options on stream creation

7.10.3.11 Options on stream creation

An implementation may optionally support the following stream-options:

bom(Bool) — If Bool (7.1.4.2) is true then a Unicode encoding Byte Order
Mark shall be written when opening a text stream for writing in mode write
or is probed for when opening the text stream for reading. This option shall
be ignored when opening a stream in mode append. If Bool is false then a
Unicode encoding Byte Order Mark shall not be written when opening the text
stream for writing.

When no bom(Bool) stream-option is specified, the default value shall be true
when the text stream is opened for reading and false when the text stream is
opened for writing.

encoding(Encoding) — Encoding is an atom representing the text encoding
that shall be used when opening the stream for writing or the text encoding of
the stream opened for reading.

When opening the text stream for reading with the default bom(Bool) stream-
option value or by explicitly specifying the bom(true) stream-option, if a Byte
Order Mark is detected, it will be used to set the corresponding Unicode text
stream encoding, overriding any encoding(Encoding) that might be also spec-
ified.

NOTES

1 These stream-options imply the stream-option type(text).

2 The set of supported text encodings is implementation-defined.

7.10.3.13 Stream properties

An implementation may optionally support the following stream properties:

bom(Bool) — If present and if Bool (7.1.4.2) is true, a Unicode encoding Byte
Order Mark was detected while opening the text stream for reading or a Byte
Order Mark was written while opening the text stream for writing.

7 LANGUAGE CONCEPTS AND SEMANTICS 5

encoding(Encoding) — Encoding used for the text stream.

NOTE — These stream properties imply the stream property type(text).

7.11 Flags

7.11.2 Flags defining float type F

7.11.2.1 Flag: float mantissa digits

Possible values: the default value only

Default: implementation defined

Changeable: No

Description: The value of this flag is the number of significant digits on the
mantissa of a normalized floating point number (in base 10), an implementation
defined integer value.

7.11.2.2 Flag: float epsilon

Possible values: the default value only

Default: implementation defined

Changeable: No

Description: The value of this flag is the distance from 1.0 to the next largest
floating point number, an implementation defined value. Thus, it allows the
programmer to query an implementation about the relative accuracy when per-
forming arithmetic with floating point numbers.

7.11.2.3 Flag: float min exponent

Possible values: the default value only

Default: implementation defined

Changeable: No

Description: The value of this flag is smallest possible value of the exponent of
a normalized floating point number, an implementation defined integer value.

7 LANGUAGE CONCEPTS AND SEMANTICS 6

7.11.2.4 Flag: float max exponent

Possible values: the default value only

Default: implementation defined

Changeable: No

Description: The value of this flag is greatest value of the exponent of a nor-
malized floating point number, an implementation defined integer value.

7.11.3 Other flags

7.11.3.6 Flag: unification subject to occurs check

Possible values: fail, cyclic, unsafe

Default: implementation defined

Changeable: No

Description: This read-only flag describes the behaviour of the Prolog system
when a variable is unified with a compound term that contains it (STO unifica-
tion, 3.165). The flag value fail implies that STO unification simply fails. The
flag value unsafe means that if an STO unification is encountered the further
behavior of the system is undefined. The flag value cyclic implies that STO
unifications will be successful and result in the creation of cyclic terms. More-
over, this flag indicates that the Prolog system is capable of handling certain
operations on cyclic terms safely, namely unifying, comparing, and copying of
cyclic terms is assured to terminate.

NOTES

1 The flag value fail means that the built-in predicate =/2 (8.2.1) behaves
exactly as the built-in predicate unify with occurs check/2 (8.2.2). The flag
value unsafe may imply that the STO unification itself, or further unifications
or built-in predicate calls may not terminate, or cause the system to fail or raise
an exception.

2 A conforming Prolog processor which supports the creation of cyclic terms
shall be accompanied by documentation that specifies which built-in predicates
may be safely called with arguments which are cyclic terms.

Examples:

| ?- X = f(X).

7 LANGUAGE CONCEPTS AND SEMANTICS 7

• fail: fails

• cyclic: succeeds and unifies X with a cyclic term f(f(f(...))).

• unsafe: undefined. Often succeeds, but subsequent use of X, as e.g. in
X=X, causes an error.

| ?- X = f(X), Y = f(Y), X = Y.
| ?- g(X,Y,X) = g(f(X),f(Y),Y).
| ?- X = f(X), Y = f(Y), X == Y.
| ?- X = f(X), asserta(p(X)).

For all the above four examples:

• fail: fails

• cyclic: succeeds and unifies both X and Y with a cyclic term f(f(f(...))).

• unsafe: undefined. Often causes an error.

7.11.3.7 Flag: encoding

Possible values: an implementation defined atom

Default: implementation defined

Changeable: implementation defined

Description: This flag represents the default encoding for text streams. An im-
plementation shall document if the flag value can be changed by programmer
as well all the supported encodings.

7.12 Errors

7.12.2 Error classification

The following types are added to the classification of 7.12.2 of ISO/IEC 13211-1.

a) The list of valid types is extended by the addition of pair (see 7.12.2 b of
ISO/IEC 13211-1).

b) The list of valid domains is extended by the addition of order and predicate property
(see 7.12.2 c of ISO/IEC 13211-1).

8 BUILT-IN PREDICATES 8

7.13 Predicate properties

The properties of procedures can be found using the built-in predicate predicate property(Callable,
Property), where Callable is a callable term. The predicate properties sup-
ported shall include:

• static — The predicate is static

• dynamic — The predicate is dynamic

• built in — The predicate is a built-in predicate

• multifile — The predicate is the subject of a multifile directive

A processor may support one or more additional predicate properties as an
implementation specific feature. Implementation-defined properties are not re-
quired to be atomic terms.

8 Built-in predicates

The following sections extends, with the specified number, the corresponding
ISO/IEC 13211–1 sections:

8.2 Term unification

8.2.4 subsumes/2

8.2.4.1 Description

subsumes(General, Specific) is true iff there is a substitution θ, including
the empty substitution, such that the term General is instantiated toGeneralθ =
Specific. This predicate provides a one-way unification.

8.2.4.2 Template and modes

subsumes(?term, @term)

8.2.4.3 Errors

None.

8.2.4.4 Examples

subsumes(f(X,Y), f(Z,Z)).
Succeeds, unifying both X and Y to Z.

subsumes(f(Z,Z), f(X,Y)).
Fails.

8 BUILT-IN PREDICATES 9

8.3 Type testing

8.3.9 callable/1

8.3.9.1 Description

callable(Term) is true iff Term is a callable term.

8.3.9.2 Template and modes

callable(@term)

8.3.9.3 Errors

None.

8.3.9.4 Examples

callable(a).
Succeeds.

callable(3).
Fails.

8.3.10 ground/1

8.3.10.1 Description

ground(Term) is true iff Term is a ground term.

8.3.10.2 Template and modes

ground(@term)

8.3.10.3 Errors

None.

8.3.10.4 Examples

ground(3).
Succeeds.

ground(a(1, _)).
Fails.

8 BUILT-IN PREDICATES 10

8.3.11 acyclic/1

8.3.11.1 Description

acyclic(Term) is true iff Term is an acyclic term. For implementations not
supporting STO unification 7.11.3.6, calls to this predicate simply succeed.

8.3.11.2 Template and modes

acyclic(@term)

8.3.11.3 Errors

None.

8.3.11.4 Examples

acyclic(a(1, _)).
Succeeds.

X = f(X), acyclic(X).
Fails.

8.3.12 cyclic/1

8.3.12.1 Description

cyclic(Term) is true iff Term is a cyclic term. For implementations not sup-
porting STO unification 7.11.3.6, calls to this predicate simply fail.

8.3.12.2 Template and modes

cyclic(@term)

8.3.12.3 Errors

None.

8.3.12.4 Examples

cyclic(a(1, _)).
Fails.

X = f(X), cyclic(X).
Succeeds.

8 BUILT-IN PREDICATES 11

8.4 Term comparison

8.4.2 compare/3

8.4.2.1 Description

compare(Order, Term1, Term2) is true iff Order corresponds to the standard
order between Term1 and Term2. The argument Order is unified with the atom
< when Term1 is less than Term2, with the atom = when Term1 and Term2 are
equal, and with the atom > when Term1 is greater than Term2.

8.4.2.2 Template and modes

compare(?atom, @term, @term)

8.4.2.3 Errors

a) Order is neither a variable nor an atom
— type error(atom, Order)

b) Order an atom other than <, =, or >
— domain error(order, Order)

8.4.2.4 Examples

compare(Order, 3, 5).
Succeeds, unifying Order with <.

compare(Order, d, d).
Succeeds, unifying Order with =.

compare(Order, 3, 3.0).
Succeeds, unifying Order with >.

8.5 Term creation and decomposition

8.5.5 numbervars/3

8.5.5.1 Description

numbervars(Term, Start, End) is true. This predicate unifies each free vari-
able on Term with a compound term with the format ’$VAR’(N) where N is an
integer starting from Start and ending at End−1.

8.5.5.2 Template and modes

numbervars(?nonvar, +integer, -integer)

8 BUILT-IN PREDICATES 12

8.5.5.3 Errors

a) Start is a variable
— instantiation error

b) Start is neither a variable nor an integer
— type error(integer, Start)

8.5.5.4 Examples

numbervars(foo(A, B, A), 0, End).
Succeeds, unifying A with ’$VAR’(0), B with ’$VAR’(1),
and End with 2.

8.8 Clause retrieval and information

8.8.3 predicate property/2

8.8.3.1 Description

predicate property(Head, Property) is true iff the procedure associated with
the argument Head (3.84) has predicate property Property.

Procedurally, predicate property(Head, Property) is executed as follows

a) Determines the principal functor P and arity N associated with Head. P/N
is the associated predicate indicator

b) Searches the complete database and creates a set SetPP of all terms PP
such that P/N identifies a procedure which has predicate property PP and
PP is unifiable with Property

c) If SetPP is non empty set proceeds to 8.8.3.1 e,

d) Else the goal fails

e) Chooses the first element PPP of SetPP, unifies PPP with Property and
the predicate succeeds

f) If all elements of SetPP have been chosen the predicate fails

g) Else chooses the first element PPP of SetPP that has not already been
chosen, unifies PPP with Property and the goal succeeds

predicate property(Head, Property) is re-executable. On backtracking, con-
tinue at 8.8.3.1 f.

The order in which properties are found by predicate property/2 is imple-
mentation dependent.

8 BUILT-IN PREDICATES 13

NOTES

1 A processor may support, as an implementation specific feature, additional
predicate properties.

2 For a dynamic predicate, all proprieties related to its definition shall be
removed when the predicate is abolished.

8.8.3.2 Template and modes

predicate property(@callable term, ?predicate property)

8.8.3.3 Errors

a) Head is a variable
— instantiation error

b) Head is neither a variable nor a callable term
— type error(callable, Head)

c) Property is neither a variable nor a predicate property
— domain error(predicate property, Property)

8.8.3.4 Examples

predicate_property(once(_), built_in).
Succeeds.

predicate_property(atom_codes(_, _), Property).
Succeeds unifying Property with static.
On re-execution, succeeds unifying Property with built_in.

8.9 Clause creation and destruction

8.9.3 retract/1

8.9.3.1 Errors

There is a typo on the current standard in the specification of the permission error

exception that should use the atom modify instead of access in order to match
the specification of other database predicates.

a) ...

b) ...

c) The predicate indicator Pred of Head is that of a static procedure
— permission error(modify, static procedure, Pred)

8 BUILT-IN PREDICATES 14

8.9.5 retractall/1

8.9.5.1 Description

retractall(Head) is true.

Procedurally, retractall(Head) is executed as follows:

a) Determines the principal functor P and arity N associated with Head. P/N
is the associated predicate indicator

b) If the database contains a dynamic procedure whose predicate indicator
is P/N, then proceeds to 8.9.5.1 d,

c) Else the goal succeeds.

d) Retracts from the database all clauses whose head unifies with Head and
the goal succeeds

NOTES

1 The dynamic predicate shall continue to be known by the system even when
all of its clauses are removed.

2 This predicate does not change any of the standard predicate proper-
ties of the referenced predicate (as reported by predicate property(Head,
Property)), even when all of its clauses are removed.

8.9.5.2 Template and modes

retractall(@callable term)

8.9.5.3 Errors

a) Head is a variable
— instantiation error

b) Head is neither a variable nor a callable term
— type error(callable, Generate)

c) The predicate indicator Pred of Head is that of a static procedure
— permission error(modify, static procedure, Pred)

8.9.5.4 Examples

The examples defined in this subclause assume the database has been created
from the following Prolog text:

8 BUILT-IN PREDICATES 15

:- dynamic(insect/1).
insect(ant).
insect(bee).
insect(spider).

retractall(insect(bee)).
Succeeds, retracting the clause ’insect(bee)’.

retractall(insect(_)).
Succeeds, retracting all the clauses of predicate insect/1.

retractall(insect(elephant)).
Succeeds.

retractall(mammal(_)).
Succeeds.

retractall(3).
type_error(callable, 3)

8.10 All solutions

8.10.4 forall/2

8.10.4.1 Description

forall(Generate, Test) is true iff for all possible bindings of Generate, the
goal Test is true. Procedurally, abstracting error checking, the predicate shall
behave as being defined by \+ (call(Generator), \+ call(Test)).

8.10.4.2 Template and modes

forall(@callable term, @callable term)

8.10.4.3 Errors

a) Generate is a variable
— instantiation error

b) Generate is neither a variable nor a callable term
— type error(callable, Generate)

c) Test is a variable
— instantiation error

d) Test is neither a variable nor a callable term
— type error(callable, Test)

8 BUILT-IN PREDICATES 16

8.10.4.4 Examples

The following examples assume that the predicate a/1 and b/1 are defined with
the following clauses:

a(1). a(2). a(3).
b(1, a). b(2, b). b(3, c).

forall(fail, true).
Succeeds.

forall(a(X), b(X, _)).
Succeeds.

forall(a(X), b(_, X)).
Fails.

forall(b(_, Y), write(Y))
Succeeds, outputting the characters

abc
to the current output stream.

8.15 Logic and control

8.15.4 call/2-N

8.15.4.1 Description

call(Closure, Arg1, ...) is true iff call(Goal) is true where Goal is con-
structed by appending Arg1, ... additional arguments to the arguments (if
any) of Closure.

8.15.4.2 Template and modes

call(@callable term, ?term, ...)

8.15.4.3 Errors

a) Closure is a variable
— instantiation error

b) Closure is neither a variable nor a callable term
— type error(callable, Closure)

c) The number of arguments in the resulting goal exceeds the implementation
defined maximum arity for compound terms
— representation error(max arity)

8 BUILT-IN PREDICATES 17

8.15.4.4 Examples

call(integer, 3).
Succeeds.

call(atom_concat(pro), log, Atom).
Succeeds, unifying Atom with prolog.

8.15.5 call cleanup/2

8.15.5.1 Description

call cleanup(Goal, Cleanup) is true iff call(Goal) is true. When the ex-
ecution of Goal terminates, either by deterministic success, by failure, by its
choice-points being cut, or by raising an exception, the goal Cleanup is exe-
cuted. The success or failure of Cleanup is ignored, as are any choice-points
created while proving it. An exception thrown by call(Goal) may be caught
by Cleanup. An exception thrown by Cleanup is handled as normal.

8.15.5.2 Template and modes

call cleanup(+callable term, @callable term)

8.15.5.3 Errors

a) Goal is a variable
— instantiation error

b) Goal is neither a variable nor a callable term
— type error(callable, Goal)

c) Cleanup is a variable
— instantiation error

d) Cleanup is neither a variable nor a callable term
— type error(callable, Cleanup)

8.15.5.4 Examples

call_cleanup(true, write(terminated)).
Succeeds, outputting the atom

terminated
to the current output stream.

catch(call_cleanup(throw(e), catch(true, E, throw(E))), F, true).
Succeeds, unifying F with e.

8 BUILT-IN PREDICATES 18

8.18 List processing

8.18.1 append/3

8.18.1.1 Description

append(List1, List2, List3) is true iff List3 is a list resulting from the
concatenation of List1 and List2.

8.18.1.2 Template and modes

append(?list, ?list, ?list)

8.18.1.3 Errors

None.

8.18.1.4 Examples

Some example calls of append/3:

append([], List, List).
Succeeds.

8.18.2 length/2

8.18.2.1 Description

length(List, Length) is true iff Length is the length of the list List.

8.18.2.2 Template and modes

length(?list, ?integer)

8.18.2.3 Errors

a) Length is neither a variable nor an integer
— type error(integer, Length)

8.18.2.4 Examples

length([1, 2, 3], Length).
Succeeds, unifying Length with 3.

length(List, 3).
Succeeds, unifying List with [_, _, _]

8 BUILT-IN PREDICATES 19

length(List, -2).
Fails

length(List, Length).

List = []
Length = 0 ;

List = [_]
Length = 1 ;

List = [_, _]
Length = 2
yes

8.18.3 member/2

8.18.3.1 Description

member(Element, List) is true iff Element is a member of list List.

8.18.3.2 Template and modes

member(?term, ?list)

8.18.3.3 Errors

None.

8.18.3.4 Examples

member(2, [1, 2, 3]).
Succeeds.

8.18.4 sort/2

8.18.4.1 Description

sort(List, Sorted) is true iff Sorted is a list containing the non-duplicated
elements of List sorted in ascending order following standard order (7.2).

8.18.4.2 Template and modes

sort(@list, ?list)

8 BUILT-IN PREDICATES 20

8.18.4.3 Errors

a) List is a partial list
— instantiation error

b) List is neither a partial list nor a list
— type error(list, List)

c) Sorted is neither a partial list nor a list
— type error(list, Sorted)

8.18.4.4 Examples

sort([1, 2, 1, 8, 4], Sorted).
Succeeds, unifying Sorted with [1, 2, 4, 8].

8.18.5 keysort/2

8.18.5.1 Description

keysort(List, Sorted) is true iff List is a list of elements with the format
Key-Value and Sorted is a list containing the elements of List sorted according
to the value of Key in ascending order following standard order (7.2). The
relative order of elements of List with the same key shall not change in the
Sorted list.

8.18.5.2 Template and modes

keysort(@list, ?list)

8.18.5.3 Errors

a) List is a partial list
— instantiation error

b) List is neither a partial list nor a list
— type error(list, List)

c) An element Element of List is a variable
— instantiation error

d) An element Element of List is neither a variable nor a ’-’/2 compound
term
— type error(pair, Element)

e) Sorted is neither a partial list nor a list
— type error(list, Sorted)

9 EVALUABLE FUNCTORS 21

8.18.5.4 Examples

keysort([1-a, 3-f(_), 1-z, 2-44], Sorted).
Succeeds unifying Sorted with [1-a, 1-z, 2-44, 3-f(_)].

9 Evaluable functors

9.1 The simple arithmetic functors

The unary plus evaluable arithmetic functor is added.

9.1.1 Evaluable functors and operations

Evaluable functor Operation

(+)/1 posI , posF

9.1.3 Integer operations and axioms

The following operations are specified:

posI : I → I

For all x ∈ I, the following axioms shall apply:

posI(x) = x

9.1.4 Floating point operations and axioms

The following operations are specified:

posF : F → F

For all x ∈ F , the following axioms shall apply:

posF (x) = x

9.3 Other arithmetic functors

9.3.8 log/2

9.3.8.1 Description

log(B, X) evaluates the expression B with value VB, the expression X with value
VX, and has the value of the logarithm to base VB of VX.

9 EVALUABLE FUNCTORS 22

9.3.8.2 Template and modes

log(int-exp, float-exp) = float
log(int-exp, int-exp) = float

9.3.8.3 Errors

a) B is a variable
— instantiation error

b) B is not a variable and VB is not an integer
— type error(integer, VB)

c) VB is zero or negative
— evaluation error(undefined)

d) X is a variable
— instantiation error

e) X is not a variable and VX is not a number
— type error(number, VX)

f) VX is zero or negative
— evaluation error(undefined)

9.3.8.4 Examples

log(10, 10.0).
Evaluates to 1.0.

9.3.9 gcd/2

9.3.9.1 Description

gcd(I, J) evaluates the expression I with value VI, the expression J with value
VJ, and has the value of the greatest common divisor of VI of VJ.

9.3.9.2 Template and modes

gcd(int-exp, int-exp) = integer

9.3.9.3 Errors

a) I is a variable
— instantiation error

b) I is not a variable and VI is not an integer
— type error(integer, VI)

9 EVALUABLE FUNCTORS 23

c) J is a variable
— instantiation error

d) J is not a variable and VJ is not an integer
— type error(integer, VJ)

9.3.9.4 Examples

gcd(2, 3).
Evaluates to 1.

9.3.10 min/2

9.3.10.1 Description

min(X, Y) evaluates the expression X with value VX, the expression Y with value
VY, and has the value of the minimum of VX and VY. When used with expressions
of mixed-types, the result is implementation-dependent; an implementation may
chose either to return a value or to throw an exception.

9.3.10.2 Template and modes

min(float-exp, float-exp) = float
min(float-exp, int-exp) = implementation-dependent result
min(int-exp, float-exp) = implementation-dependent result
min(int-exp, int-exp) = integer

9.3.10.3 Errors

a) X is a variable or Y is a variable
— instantiation error

b) X is not a variable and VX is not a number
— type error(number, VX)

c) Y is not a variable and VY is not a number
— type error(number, VY)

9.3.10.4 Examples

min(2, 3)
Evaluates to 2.

min(2.0, 3.0)
Evaluates to 2.0.

min(0, 0.0).
Implementation-dependent result.

9 EVALUABLE FUNCTORS 24

9.3.11 max/2

9.3.11.1 Description

max(X, Y) evaluates the expression X with value VX, the expression Y with value
VY, and has the value of the maximum of VX and VY. When used with expressions
of mixed-types, the result is implementation-dependent; an implementation may
chose either to return a value or to throw an exception.

9.3.11.2 Template and modes

max(float-exp, float-exp) = float
max(float-exp, int-exp) = implementation-dependent result
max(int-exp, float-exp) = implementation-dependent result
max(int-exp, int-exp) = integer

9.3.11.3 Errors

a) X is a variable or Y is a variable
— instantiation error

b) X is not a variable and VX is not a number
— type error(number, VX)

c) Y is not a variable and VY is not a number
— type error(number, VY)

9.3.11.4 Examples

max(2, 3)
Evaluates to 3.

max(2.0, 3.0)
Evaluates to 3.0.

max(0, 0.0).
Implementation-dependent result.

9.4 Bitwise functors

9.4.6 (><)/2 – bitwise exclusive or

9.4.6.1 Description

’><’(B1, B2) evaluates the expressions B1 and B2 with values VB1 and VB2 and
has the value such that each bit is set iff only one of the corresponding bits in
VB1 and VB2 is set.

The value shall be implementation defined if VB1 or VB2 is negative.

9 EVALUABLE FUNCTORS 25

9.4.6.2 Template and modes

’><’(int-exp, int-exp) = integer

NOTE — ’><’ is an infix predefined operator (see 6.3.4.4).

9.4.6.3 Errors

a) B1 is a variable
— instantiation error

b) B2 is a variable
— instantiation error

c) B1 is not a variable and VB1 is not an integer
— type error(integer, VB1)

d) B2 is not a variable and VB2 is not an integer
— type error(integer, VB2)

9.4.6.4 Examples

’><’(10, 12).
Evaluates to the value 6.

’><’(125, 255).
Evaluates to to the value 130.

’><’(-10, 12).
Evaluates to an implementation defined value.

’><’(77, N)
instantiation_error.

’><’(foo, 2)
type_error(integer, foo).

9.5 Trigonometric functors

Assuming that we will be adding the trigonometric functions described below to
the revised core standard, it’s probably best if we gather all the trigonometric
functions under their own section. the following order is assumed below: sin/1,
cos/1, tan/1, asin/1, acos/1, atan/1, and atan/2.

9.5.3 tan/1

9.5.3.1 Description

9 EVALUABLE FUNCTORS 26

tan(X) evaluates the expression X with value VX and has the value of the tangent
of VX (measured in radians).

9.5.3.2 Template and modes

tan(float-exp) = float
tan(int-exp) = float

9.5.3.3 Errors

a) X is a variable
— instantiation error

b) X is not a variable and VX is not a number
— type error(number, VX)

9.5.3.4 Examples

tan(pi).
Evaluates to 0.0.

9.5.4 asin/1

9.5.4.1 Description

asin(X) evaluates the expression X with value VX and has the value of the arc
sine of VX (in radians).

9.5.4.2 Template and modes

asin(float-exp) = float
asin(int-exp) = float

9.5.4.3 Errors

a) X is a variable
— instantiation error

b) X is not a variable and VX is not a number
— type error(number, VX)

9.5.4.4 Examples

asin(1.0).
Evaluates to a value approximately equal to 1.570796326795.

9 EVALUABLE FUNCTORS 27

9.5.5 acos/1

9.5.5.1 Description

acos(X) evaluates the expression X with value VX and has the value of the arc
cosine of VX (in radians).

9.5.5.2 Template and modes

acos(float-exp) = float
acos(int-exp) = float

9.5.5.3 Errors

a) X is a variable
— instantiation error

b) X is not a variable and VX is not a number
— type error(number, VX)

9.5.5.4 Examples

acos(0.0).
Evaluates to a value approximately equal to 1.570796326795.

9.5.6 atan/2

9.5.6.1 Description

atan(Y, X) evaluates the expression Y with value VY, the expression X with value
VX, and computes the principal value of the arc tangent of VY/VX (in radians),
using the signs of both arguments to determine the quadrant of the return value.
When both arguments are 0.0, an implementation-dependent value is returned.

9.5.6.2 Template and modes

atan(float-exp, float-exp) = float
atan(float-exp, int-exp) = float
atan(int-exp, float-exp) = float
atan(int-exp, int-exp) = float

9.5.6.3 Errors

a) X is a variable
— instantiation error

b) Y is not a variable and VY is not a number
— type error(number, VY)

9 EVALUABLE FUNCTORS 28

c) X is not a variable and VX is not a number
— type error(number, VX)

9.5.6.4 Examples

atan(0.0, -0.0).
Evaluates to a value approximately equal to 3.14159265358979.

9.6 Hyperbolic trigonometric functors

Should we also add the sinh/1, cosh/1, tanh/1, asinh/1, acosh/1, and atanh/1
hyperbolic trigonometric functors?

9.7 Mathematical constants

9.7.1 pi/0

9.7.1.1 Description

pi evaluates to the floating-point number which best approximates the mathe-
matical constant π, the ratio of a circle’s circumference to its diameter.

9.7.1.2 Examples

pi.
Evaluates to the corresponding mathematical constant.
The accuracy of the result is implementation-defined.

9.7.2 e/0

9.7.2.1 Description

e evaluates to the floating-point number which best approximates the mathe-
matical constant e, the base of natural logarithms.

9.7.2.2 Examples

e.
Evaluates to the corresponding mathematical constant.
The accuracy of the result is implementation-defined.

9.7.3 epsilon/0

9.7.3.1 Description

epsilon evaluates to the distance from 1.0 to the next largest floating point
number, an implementation defined value. Thus, it allows the programmer to
retrieve the relative accuracy when performing arithmetic with floating point
numbers.

9 EVALUABLE FUNCTORS 29

9.7.3.2 Examples

epsilon.
Evaluates to an implementation defined value.

	Introduction
	Contributors

	Scope
	Syntax
	Language concepts and semantics
	Types
	Related terms

	Prolog text
	Directives

	Input/ouput
	Standard Streams

	Flags
	Flags defining float type F
	Other flags

	Errors
	Error classification

	Predicate properties

	Built-in predicates
	Term unification
	subsumes/2

	Type testing
	callable/1
	ground/1
	acyclic/1
	cyclic/1

	Term comparison
	compare/3

	Term creation and decomposition
	numbervars/3

	Clause retrieval and information
	predicate_property/2

	Clause creation and destruction
	retract/1
	retractall/1

	All solutions
	forall/2

	Logic and control
	call/2-N
	call_cleanup/2

	List processing
	append/3
	length/2
	member/2
	sort/2
	keysort/2

	Evaluable functors
	The simple arithmetic functors
	Evaluable functors and operations
	Integer operations and axioms
	Floating point operations and axioms

	Other arithmetic functors
	log/2
	gcd/2
	min/2
	max/2

	Bitwise functors
	(><)/2 -- bitwise exclusive or

	Trigonometric functors
	tan/1
	asin/1
	acos/1
	atan/2

	Hyperbolic trigonometric functors
	Mathematical constants
	pi/0
	e/0
	epsilon/0

