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Kurzfassung

Die Vienna Architecture Description Language (VADL) ist ein leistungsstarkes Sys-
tem, das die Erzeugung einer Vielzahl von Artefakten und Anwendungen, einschließlich
Simulatoren beliebiger Prozessorarchitekturen ermöglicht. Ziel dieses Projekts ist die
Implementierung einer Schnittstelle, die das Debuggen von Skripten, welche auf solch
einem Simulator ausgeführt werden, mit herkömmlichen Mitteln ermöglicht. Diese Arbeit
stellt einen Ansatz vor, wie dies erreicht werden könnte. Sie umreißt die Aspekte, die
notwendig sind, um die Fähigkeiten zwei populärer Tools, GNU Debugger (GDB) und
Visual Studio Code (VS Code), insbesondere für das Debuggen von ausführbaren Dateien
auf einer beliebigen Architektur, zu nutzen. Darüber hinaus wird ein umfassender Aus-
blick auf mögliche zukünftige Ergänzungen und Erweiterungen der vorgestellten Lösung
vorgeschlagen.
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Abstract

The Vienna Architecture Description Language (VADL) is a powerful system that can
be used to generate a multitude of artefacts and applications, including simulators for an
arbitrary processor architecture. This project aims for the implementation of an interface
that facilitates the debugging of scripts executed on such a simulator using conventional
means. This thesis presents one approach on how this could be accomplished. It outlines
the necessary aspects to leverage the power of two popular tools, GNU Debugger (GDB)
and Visual Studio Code (VS Code), especially for debugging executables run on an
arbitrary architecture. Furthermore, it provides an extensive outlook of potential future
additions and enhancements to the presented solution.
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CHAPTER 1
Introduction

Debugging is a fundamental aspect of software development. As programs become more
intricate, the significance of debugging increases. One area where the ability to debug is
particularly beneficial is in analyzing a program that is run on a simulated processor.
This project aims to implement such a debugging interface for the Vienna Architecture
Description Language (VADL) ecosystem.

Chapter 2 lays out fundamental knowledge of di�erent tools involved in this project.
Subsequently, Chapter 3 describes the overall approach taken, in order to achieve the
aforementioned goal. Next, the actual implementation is discussed and explained in
Chapter 4. Following that, instructions on how to use the debugging interface are
presented in Chapter 5. Afterwards, Chapter 6 focuses on evaluating the implementation,
followed by the conclusion to this project in Chapter 7.
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CHAPTER 2
Background

This chapter introduces the reader to the GNU Debugger (GDB), the Debug Adapter
Protocol (DAP) and the Vienna Architecture Description Language (VADL). These
pieces of background information will help to build a comprehensive knowledge base for
a better understanding of the subsequent discussion regarding this project.

2.1 GDB
The GNU Debugger is an open-source debugger [dev23] which enjoys great popularity.
GDB supports debugging a range of di�erent languages, like C++ or Assembly [SPS24,
p. 229]. Furthermore, GDB can be compiled for di�erent architectures, depending on the
host or target, which is often used for cross-debugging [SPS24, pp. 742, 743].

2.2 GDB Remote Serial Protocol
The GDB Remote Serial Protocol is a protocol that allows the use of the GNU Debug-
ger [dev24] on a remote target [SPS24, p. 765]. For simplicity, the full protocol name will
be abbreviated to serial protocol in the following chapters.

To debug a program, GDB is in charge of starting the debuggee, which is the program
that should be debugged [dev24]. The GDB instance that controls the debuggee, will
henceforth be called host, while the debuggee will be called target. These two parties are
generally speaking run on two di�erent machines, although it is also possible to execute
them on the same machine as well [SPS24, p. 314].

When using the serial protocol, the host will connect to a target that implements the
receiving end of the protocol. This might either be a remote stub [SPS24, pp. 328, 329]
or the gdbserver [SPS24, p. 316], a specific program run on the target machine. While
the host acts as a client, both the stub and the GDB server application appear as a
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2. Background

server, implementing their part of the protocol. A remote stub is, in contrast to the
gdbserver, not a standalone program, rather it is compiled into the program one wants
to debug [SPS24, pp. 328, 329].

2.2.1 Remote Stub

The remote stub serves as an interface and connection point for the serial protocol, and
is dependent on the architecture of the target machine. GDB does provide a few working
remote stubs for di�erent architectures, like i386 or Scalable Processor Architecture
(SPARC) [SPS24, p. 329].

2.2.2 Connecting to a Target

There are two di�erent types of connections to a target: remote and extended remote.

There are numerous di�erences between the two types, but a significant one is the
contrasting behavior when the debuggee exits. In case of the remote connection mode,
the host will disconnect from the target, while in the extended remote connection mode,
the host will remain connected to the target, potentially restarting it. Similarly, the
standard remote connection does not support attaching to the target, while the extended
version does [SPS24, pp. 311–312]. Usually, a target only supports remote connection
types, and not extended remote connection ones [SPS24, p. 311].

To actually connect to a target, the user has to issue the target remote <medium>
or target extend-remote <medium> command respectively. The medium specifies
the instrument that carries the so called packets. This might be a serial device, a local
Unix domain socket or an Internet Protocol (IP) address [SPS24, pp. 313, 314].

2.2.3 Packet Structure

All data shared between the host and target, meaning commands and their responses,
is transmitted using characters from the American Standard Code for Information
Interchange (ASCII) in the form of packets, with the exception of acknowledgements,
which do not follow the typical packet structure.

Acknowledgements consist of two types, either positive or negative. This is expressed
with the ASCII characters + and - respectively [SPS24, p. 819].

Besides that, there are also special packets, that do not require acknowledgements [SPS24,
p. 816]. These packets are called notifications, and they di�er from the ordinary packet
structure [SPS24, p. 765]. Throughout the present paper, “packet” will refer to an
ordinary packet and not to a notification.

A packet has the following form:

$packet-data#checksum
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2.2. GDB Remote Serial Protocol

A packet will always be introduced by the $ character [SPS24, p. 765]. This is also a key
di�erence to the notification packet, which starts with % [SPS24, p. 816].

The packet data includes the actual data carried by the packet. It must not include the
characters # and $ [SPS24, p. 765].

The checksum is computed from all the characters in the packet data. Concretely, it is
the modulo 256 sum of its characters [SPS24, p. 765].

Prior to GDB version 5.0, the packet also included a sequence identification (ID), which
was to be found directly after the packet start symbol $, delimited by a colon. Stubs that
are build for later version of GDB do not have to handle sequence IDs [SPS24, p. 765].

In most cases binary data in the packet data is “encoded as two hexadecimal digits per
byte of binary data” [SPS24, p. 765]. But there is also a second binary data representation
that is in use. The second variant uses the ASCII character } with the hexadecimal value
of 0x7d as an escape character. The ASCII characters #, $ and } must always be escaped.
In order to achieve that, first the escape character is send, next the character to be
escaped is combined via Exclusive OR (XOR) with 0x20 and then sent. Responses from
a stub must also escape the * ASCII character because of run-length encoding [SPS24,
p. 766].

Generally speaking, the first variant of encoding binary data is used in older packets
like g or G, while the second one is utilized in more recent packets like qXfer [SPS24,
pp. 765, 769, 770, 801].

Run-Length Encoding

The data of responses from a stub may be run-length encoded. Run-length encoding is
most e�ective if the same character appears multiple times in a row, since it replaces
repeated characters with only one instance of that character together with information
on how often it shows up in the original data. In case of the serial protocol, any character
that occurs more than three times in a row can be run-length encoded.

Between the repeated character and the number of occurrences in the run-length encoded
data, the ASCII character * is placed. This is the reason for the obligatory escape of
this character as mentioned in the previous Section 2.2.3.

The number of occurrences is also encoded in a specific manner. To obtain a printable
ASCII character, the number 29 has to be added to the number of occurrences. As to not
run into problems with the delimiter of packets, repeats of six or seven must be chopped
into multiple smaller runs, since they would otherwise produce the ASCII characters #
and $ respectively for the encoded amount. Additionally, runs greater than 126 are not
permitted [SPS24, p. 766].
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2. Background

2.2.4 Packet Flow

After receiving a packet, it is verified via the attached checksum. Based on the result
of this verification a packet acknowledgement is send back. This can either be a +
or - character. Both the host and the target will respond with an acknowledgement
upon receiving a packet. Acknowledgements can also be disabled by switching into no-
acknowledgement mode. In this mode the checksums are ignored and acknowledgements
are neither expected nor sent [SPS24, p. 819].

2.2.5 Packets Overview

This section deals with the di�erent packet types, sometimes also called packet forms,
that the serial protocol provides. In this case “packet type” is referring to the structure
of a packet’s content, especially the first character, since the first character of the packet
data determines the packet type. A common notation is c-packet, where c is the first
character of the corresponding packet’s data. For this reason, all packet forms starting
with an upper- or lower-case letter are reserved by GDB [SPS24, p. 767]. For some packet
types, even subsequent letters are reserved, as is the case for q packets [SPS24, p. 781].

While some packet types like ? directly define a single command, in this case to query the
halting reason [SPS24, p. 767], others define a whole family of more specific commands.
For example, packets starting with q or Q are general query- and general set packets

respectively [SPS24, p. 781].

2.2.6 Minimal Implementation

While the serial protocol provides more than 45 di�erent types of packets [SPS24, pp. 767–
776], the minimum number of required packets a stub has to understand is just seven.
If the stub supports multithreading, a total of eight packets are needed. The required
packets are:

• the ? packet, so the host can query the halting reason,

• the g and G packets to read and write the general registers,

• the m and M packets for memory access,

• the c packet for continuing single-threaded implementations,

• the s packet for stepping, if the target supports it and finally

• the vCont packet, for multi-threaded continuing [SPS24, p. 766].

It is important to note, that with this subset of packets, debugging is hardly fruitful, due
to the lack of breakpoint support.
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2.2. GDB Remote Serial Protocol

2.2.7 Replies

Usually, each packet also defines the structure of its reply, with each packet having a
di�erent response. However, some of them are grouped together into a family of replies,
that are applicable to a multitude of di�erent packets, such as stop reply packets, or
standard error responses.

Empty Response

The empty response, a packet with empty packet data1, is sent by the target, if it does
not support or understand the previous request [SPS24, p. 766].

Stop Reply Packets

Stop reply packets contain information about the current state of the debuggee, such as
(i) if the process exited and what the exit code was, (ii) information about the received
signal, (iii) if the process terminated or (iv) simply some output of the program.

Usually, stop reply packets are send right after the target halts. The only exception
to that rule are the ? and vStopped packets. In the non-stop mode, the target will
reply immediately with OK and later signal the halt to the host via a notification [SPS24,
p. 777].

The packets, that return a stop reply packet are: C, c, S, s, vCont, vAttach, vRun,
vStopped and ?.

The stop reply packets can take one of many forms, depending on the data they transmit
or the state of the target. There are multiple di�erent stop reply packets that report
signals the target has received back to the host, like packets S, T or X, depending on
whether the target is still running, has terminated or already exited. These are also the
most used stop reply packets for this project. The signals are encoded into a two-digit
hexadecimal number, defined in signals.h2 of the GDB source [SPS24, p. 777].

Standard Error Responses

Error responses start with a capital E. In general, the standard error responses are
applicable for each packet. They report an error to the host, along with either an error
number or an error message. The error number is encoded as a two-digit hexadecimal
number. Usually, the meaning of this error number is not specified [SPS24, pp. 766, 767].

1The whole packet will still contain the start and end character, along with the checksum. Thus, the
empty packet is in fact $#00 [SPS24, p. 766].

2The actual definitions are placed in the signals.def file, which are then imported in the header
file. Both of these files can be found here: https://sourceware.org/git/?p=binutils-gdb.
git;a=tree;f=include/gdb;hb=a81f4e591fdb8530d832addc39beb31353b0ef2d (visited on
07/16/2024)
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2. Background

2.2.8 Target Description
The so called target description is used to inform the host about the processor architecture
of the target. This is useful, as many processors do have a common processor core as a
basis, but di�er in some other, smaller aspects [SPS24, p. 851]. For example, a processor
might use the Reduced Instruction Set Computers V (RISC-V) architecture, although
with a reduced register set.

With the target descriptions, GDB can make some changes at runtime, or tell the user,
whether the requested architecture of the target is supported or not [SPS24, p. 851]. More
crucially, it can support processor variants it has “never seen before” [SPS24, p. 851].

The target description is an Extensible Markup Language (XML) file, with a predefined
format. It’s format is defined in the gdb-target.dtd file3, in the GDB source [SPS24,
p. 851]

The overall stucture of the target description is as follows:

Listing 2.1: Schematic of the structure for the target description [SPS24, p. 852].
<?xml version="1.0"?>
<!DOCTYPE target SYSTEM "gdb-target.dtd">
<target version="1.0">

[architecture]
[osabi]
[compatible]
[feature...]

</target>

In this illustration elements in the square bracket signalize optional elements. The
feature element is special in the regard, that it may occur multiple times [SPS24,
p. 852].

A short overview over the top level elements is given here:

architecture This element specifies the architecture of the target. It accepts the same
values as the set architecture command in the GDB frontend4 [SPS24, p. 852].

compatible Similarly to the previous element, compatible specifies another archi-
tecture, that the target also understands. This element is only supported since GDB
version 7.0 [SPS24, p. 853].

osabi This element specifies the Operating System Application Binary Interface (OS
ABI) of the target. The acceptable values are the same as for the set osabi command
in the GDB frontend, and is also supported since version 7.0 [SPS24, p. 853].

3The file can be found here: https://sourceware.org/git/?p=binutils-gdb.git;a=blob;
f=gdb/features/gdb-target.dtd;h=d07703fca8b6b22bffb8acea99b40ce7f7a590c8;hb=
HEAD (visited on 07/17/2024)

4The accepted values for that command depend on how GDB was built [SPS24, p. 307].
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2.3. Executable and Linkable Format

feature The most important element is the feature element. A feature in the target
description is a logical element of the target. For now, features are used to describe
the registers of the processor [SPS24, p. 853]. This includes, among other things, their
name, type and size.
One other optional but crucial attribute for a register is regnum. This represents GDB’s
internal index of a register, which is used to order the registers in increasing order. It
can be supplied by the user, or, if not present, is assumed to be one larger than the
previous register number, starting from zero for the first register defined in the target
description. This ordering is directly reflected in the serial protocol, for example in the
g and G packets [SPS24, pp. 854, 855].

GDB also provides standard target features, so the user does not have to define every
register of an existing architecture. The available standard target features can be found
under the features directory5 in the source files of GDB. In order to use one of the
standard target descriptions, the name of the target description has to be supplied to
the name attribute of the feature element in the target description [SPS24, p. 857].

It is important to note, that, while the target description can inform the host over the
architecture of the target, the host still has to support the described architecture. That
means, GDB must be compiled for the architecture of the target [SPS24, p. 307].

In the serial protocol, the target description can be requested by the qXfer packet, with
an annex of target.xml, or via the show tdesc command in the frontend [SPS24,
p. 851]. The qXfer packet is described in more detail in Section 4.1.4.

2.3 Executable and Linkable Format
The Executable and Linkable Format (ELF) is a binary representation of a program [95,
p. 1]. There are three di�erent types of ELF files: (i) relocatable files, (ii) executable
files and (iii) shared object files [95, p. 1].

An ELF file always starts with an ELF header, after that, the file contains other elements
like a program header table, multiple sections and a section header table in no particular
order [95, p. 2].

The ELF header explains the layout of the file. The sections hold, among other things,
symbols or actual instructions. The program header table is solely needed for program
execution, whereas the section header table, which is comprised of information about the
file’s sections, is required while linking [95, p. 2].

Some of the sections in the ELF file are predefined. For example, the .text section
contains the instructions of the program, while the .debug section, or any other starting

5The directory can be found here: https://sourceware.org/git/?p=binutils-gdb.git;a=
tree;f=gdb/features;h=14359c1c9c7c6f3ba509cda7637873666f2d62ab;hb=HEAD (visited
on 07/17/2024)
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2. Background

with that particular wording, hold debug information, which is not further specified by
the ELF standard. Furthermore, the .line section accommodates data for line number
mappings [95, pp. 15, 16].

2.4 DWARF Debugging Information Format
DWARF is a format for packaging debugging data into an executable file. The core
concept of DWARF is to create a format independent to any compiler or debugger,
while also maintaining a high level of abstraction in order to support any programming
language on any architecture and Operating System [17, pp. 1, 3, 4].

Internally, DWARF uses so called Debugging Information Entries (DIEs) to represent
the source program. A DIE consists of a tag, identifying the entry, along with multiple
attributes [17, p. 15].

Debugging Information Entries might also own other DIEs. Ownership is represented
by referencing the children DIEs. Generally speaking, all DIEs together creates a tree
structure where nodes of that tree are DIEs referencing its children [17, p. 25].

These DIEs are usually placed in the .debug_info section of the object file [17, p. 15].

DWARF also supports line information, which is placed in the .debug_line section,
which is referenced by the aforementioned .debug_info section. Since this section
generally contains a lot of data, it is encoded to save some space. The encoding is done
by creating a state machine, that, upon execution creates the necessary line information
data. Only the input to that state machine is then saved in the object file [17, pp. 148,
149].

2.5 Debug Adapter Protocol
The DAP is an abstract protocol that connects development tools, such as Integrated
Development Environments (IDEs), and concrete implementations of debuggers in a
standardized way. The idea is, that di�erent development tools can implement a generic
debugger, that consumes data from an actual concrete debugger. The tool then only has
to support the DAP, and any debugger that is able to communicate via that protocol
can be used.

Since it is not assumed, that already available debuggers were to be rewritten to com-
municate via the DAP, another component is needed. The so called Debug Adapter
(DA). A debug adapter is an intermediary between the DAP interface and a concrete
implementation of a specific debugger. Each of the concrete debuggers simply need a
corresponding adapter to be able to work with the DAP.

This architecture has the beneficial implication, that a debugger with a corresponding
adapter only has to be written once, but can then be used in any tool that supports the
Debug Adapter Protocol [24h].
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2.6. Vienna Architecture Description Language

2.6 Vienna Architecture Description Language
The Vienna Architecture Description Language is a language for characterizing processor
architectures and Instruction Set Architectures (ISAs). Additionally, with VADL a whole
family of tools and artefacts concerning the described processor can be generated. Among
these tools is a complementary Instruction Set Simulator (ISS), capable of simulating
any processor described by VADL [Him+24, p. 1]. Furthermore, LLVM artefacts are
also generated, which can then be used to employ LLVM to create suitable compilers,
assemblers and linkers [Him+24, p. 3]. Considering these features, VADL is an impressive
tool for the development and analysis of processors with arbitrary architectures.
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CHAPTER 3
Approach

This chapter addresses the aim of this project along with illustrations for basic require-
ments. Furthermore, the necessity of this work is also discussed.

The ultimate goal for this project is the ability to debug a program running on a simulator,
defined and generated through the VADL ecosystem, on the Central Processing Unit
(CPU) cycle level. This would include a Visual Studio Code extension handling the
frontend of the debugger and a stub for the connection to the simulator. Ultimately, the
simulator together with the stub would run on a server, which could be accessed over the
internet.

Unfortunately, due to time constraints, only part of these ambitions could be completed.
Any remaining work or ideas will be discussed in Section 7.1.

While debugging programs which are executed on the Instruction Set Simulator is already
possible [Sch20, pp. 44–46], the fundamental idea for this project was the aspiration
to debug programs running on an ISS with conventional debuggers and tools. More
specific, the tech-stack chosen included the widely known debugger GDB and lightweight
IDE Visual Studio Code (VS Code) as it can be used both as a text editor as well as a
frontend for debugging. As a starting point, this project was implemented using an ISS,
which is not capable of a cycle accurate representation.

GDB was not only chosen because of its popularity, but also because of its well documented
serial protocol. This protocol and its corresponding stub serve as a sound base for
debugging a simulated processor. The reason being, that we do not want to debug the
actual simulator, but rather the program being run by the simulator, also known as the
guest [Him+24, p. 5]. Thus, simply debugging the simulator with an ordinary debugger
is not an option.

Furthermore, a valuable side-e�ect of using the GDB serial protocol, is the ability to also
use the conventional GDB distribution to connect to the stub. Thus being able to debug
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the program without the need for the VS Code extension, albeit having a few limitations
explained in depth in Section 5.2.1.

In order to achieve this, the ISS has to be augmented by a GDB stub, taking over the role
of the target, with the counterpart of this stub being a VS Code extension implementing
the host part.

3.1 Requirements
The requirements for this project can be separated into two categories: technical require-
ments and essential features. The technical requirements describe how this project should
be implemented, while the latter is a set of necessary features in order to achieve the
goal.

Since the stub will be linked into the ISS, and the generated simulator might simulate
a processor with an arbitrary architecture, the stub must be written in an architecture
agnostic way. Additionally, as the eventual objective is to let the simulator run in the
cloud, the stub must be accessible via the internet. The protocol, that handles the data
communication between IDE and ISS must suit the needs for debugging on a CPU-cycle
level, especially for arbitrary architectures.

The latter requirements for the features reflect the desire for e�ective debugging. The
most important demand is the ability to interrupt the flow of execution via breakpoints.
To then reason about the program, reading the contents of the registers of the processor
is of utmost value. Reading the contents of the registers is beneficial in and of itself;
however, setting the values of the registers is also a valuable tool for easily experimenting
with the written program. For this project, the ability to view the disassembly was also
regarded as important. This allows for more detailed debugging of source instructions
that are expanded into multiple machine instructions. Such instructions are commonly
known as pseudo instructions. Displaying the disassembly together with the addresses of
the instructions also allows for breakpoints at exact addresses, not only source file lines.
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CHAPTER 4
Implementation

This chapter presents a detailed description of the implementation of this project is
discussed. First, the remote stub is described in detail, and then the Visual Studio Code
extension is illustrated.

4.1 Stub
Conceptionally, a program should only have a single remote stub. To facilitate that, the
stub is realized using the singleton

1 design pattern. This restriction also makes sure, that
only a single connection to the stub at a time is possible. Additionally, to make linking
easier, the whole stub is contained in a single header file.

The stub has two main tasks: (i) servicing the host via the serial protocol, and (ii) inter-
rogating and controlling the ISS it is linked into.

The overarching procedure for serving the remote protocol is simple. Assuming a
connection to the host has already been established, the process of handling requests
consist of (i) waiting for a packet to arrive, (ii) performing a task, specific to that packet
and (iii) responding to the host appropriately. These three operations are executed in a
loop indefinitely, as shown in Figure 4.1.

4.1.1 Connection Establishment

First, the implementation of the connection creation is described. This connection to the
host is the central pillar for the stub, since it is essentially inoperable without it.

Connection-based communication is used, which can be reached via an Internet Protocol
Version 4 (IPv4) address. If not further specified, the target will assume the port number

1See Gam95, page 127 for more information about this pattern.
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Establish connection

Wait for incoming packet

Is the request
supported? Perform packet request

Should terminate?

Return responseReturn empty response

Terminate
No

Yes

No

Yes

Figure 4.1: This flowchart illustrates the core loop of the stub.

to be 2159. This number was chosen as the default, as it is the assigned port number for
the “gdbremote” service by the Internet Assigned Numbers Authority (IANA)2.

4.1.2 Packet Management

In order to service the host, the stub needs functionality for sending and receiving packets
for the serial protocol. In this section, packet sending and receiving will be outlined.

2Details on the assigned port number can be found here: https://www.iana.org/assignments/
service-names-port-numbers/service-names-port-numbers.xhtml?search=2159 (visited
on 07/17/2024).
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As already mentioned in Section 2.2.1, the GDB distribution comes with a few im-
plemented remote stubs. But these stubs are written for specific architectures, not
architecture agnostic [SPS24, p. 329]. This is a problem, since the goal for this project
is a single stub that can be linked into the generated ISS, regardless of its architecture.
That means, a generic implementation of a remote stub is needed.

The GDB manual does state, that for implementing a custom stub, one could use an
existing stub for guidance. Especially the stub written for the SPARC architecture
sparc-stub.c3 is particularly well “organized” [SPS24, p. 329].

Said stub was used as a template for the stub implementation. In particular, the functions
that handle the packet transmission process: getpacket and putpacket. Besides
that, the decoupling of sending and receiving characters from transmitting whole packets
was also replicated.

Handling the Sending of a Packet

The aforementioned function putpacket will send a given packet one character at a
time, until it receives a positive acknowledgement from the host.

The implementation of this function was followed closely from the SPARC stub, and can
be summarized with the pseudo-code displayed in Algorithm 4.1.

In that example, the parameter P represents the packet to be sent, and can be thought of
as a string, containing only the packet-data. The variable s keeps track of the checksum.
Pstart and Pend stand for the start and end packet characters respectively — as mentioned
in Section 2.2.3 — analogously, Aok and Aerr stand for the acknowledgement characters,
as seen in Section 2.2.4.

Handling the Receipt of a Packet

The function getpacket from the SPARC stub implementation will wait until a whole
packet was received. Internally, it consumes all incoming characters, until a complete
packet could be formed. If a received packet does not match the appended checksum, it
will communicate that error to the host, by responding with an error acknowledgement,
and waiting for the new transmission. Thus, this function will always return a complete
packet.

These characteristics can also be found in the implementation of the corresponding
functions in the project. The former can be outlined with the following pseudo-code 4.2.
In this illustration, s stands for the checksum of the received packet, as calculated by the
receiver. The variable st is the actually transmitted checksum of the packet. The latest
character read is stored in the variable c.

3The source file for the SPARC architecture can be found here:
https://sourceware.org/git/?p=binutils-gdb.git;a=blob;f=gdb/
stubs/sparc-stub.c;h=24631cebc43e775c9338a2a31c2b2c920e0593b1;hb=
dda83cd783075941aabe9b0292b004b11f00c831. (visited on 05/27/2024)
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Algorithm 4.1: The sendPacket function
1 function sendPacket(P) is
2 repeat
3 s Ω 0 /* checksum */

4 sendChar(Pstart)
5 foreach c œ P do
6 sendChar(c)
7 s Ω s + c

8 end
9 sendChar(Pend)

10 send checksum s

11 until getChar() = Aok

12 return

Returning the bu�er b is thought of as returning the contents of it until and including
the last character put into it, which is essentially the packet data of the incoming packet.

Note, that this implementation, and thus the whole stub, does not support notifications,
as it ignores any characters before receiving a packet start character. This is in line with
the specification [SPS24, p. 817].

4.1.3 Controlling the Simulator

The stub does also need to be able to interrogate and control the simulator. Interrogation
is achieved via internal Application Programming Interfaces (APIs) from the VADL
system. The manipulation of the execution process is described in the following section.

Stepping through the Simulator

Usually, the simulator would execute one CPU-cycle after the other, but for debugging,
the stub needs to take control over this part of the simulator. In stark contrast to the
ISS, the stub is not generated by the VADL framework, and cannot respond directly to
di�erent architectures. In order for the stub to execute one CPU-cycle, this action has to
be implemented in an abstract architecture agnostic way, decoupling it from the stub’s
implementation.

This is realized by encapsulating this logic into a separate function, that can then be
referenced in the stub. Since the target is a single threaded application, meaning the
ISS and the stub run on the same thread, executing one cycle is as simple as calling the
function once. The signature of the function, containing logic for a single cycle can be
seen in Listing 4.1.
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Algorithm 4.2: The getPacket function
1 function getPacket() is
2 s Ω 0 /* checksum */

3 st Ω 0 /* transmitted checksum */

4 c Ω 0 /* current character */

5 while true do
/* Consume incoming chars until a packet start char has been

read. */

6 while (c Ω getChar()) ”= Pstart do
/* ignore character */

7 end
8 while bu�er b is not full do
9 c Ω getChar()

10 if c = Pstart then
11 s, st Ω 0
12 clear bu�er b
13 continue
14 end
15 if c = Pend then
16 break
17 end
18 s Ω s + c
19 append c to bu�er b

20 end
21 s Ω s mod 256
22 if c = Pend then
23 if s = st then
24 sendAcknowledge(Aok)
25 return b

26 else
27 sendAcknowledge(Aerr)
28 end
29 end
30 end
31 return

Listing 4.1: Signature for the single CPU-cycle function
void(TestBench<TCPU> &tb,

BoundCheckingModule<TCPU> &boundCheckingModule,
int32_t &result,
bool &should_break)
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The first two arguments are part of the generated API for controlling the simula-
tor. The third argument result will store any error value, while the final argument
shouldBreak will indicate to the stub, whether it should break, thus terminating
simulation.

4.1.4 Supported Packets
Here, all packets that the stub supports are listed.

? This packet is used by the host to query the initial halting reason [SPS24, pp. 767–768].
Its response is a stop reply packet, as mentioned in Section 2.2.7, and will always be
the SIGTRAP signal number4.

c Continues the execution until the next breakpoint [SPS24, p. 768]. The optional
argument of this packet for continuing at a specific address is not supported and will
therefore always be ignored.

g Reads the general registers [SPS24, p. 769]. The order of the registers that are read is
defined in the target description, as described in Section 2.2.8. Additionally, the target
description also specifies what registers are belonging to the general section.

G Writes to the general registers [SPS24, p. 769]. This packet works analogously to the
previous one. If not enough data is given for this packet, a standard error response with
the error code 0 will be returned, as specified in Section 2.2.7.

k Kills the debugging process [SPS24, p. 770]. Upon receiving this packet, the core stub
loop mentioned in Section 4.1 is terminated. No response will be sent.

m Reads memory at the given address by the specified amount of addressable memory
units [SPS24, p. 770].

M Writes memory at the given address [SPS24, p. 771]. If not enough data is provided,
the stub responds with a standard error response with error code 0, as specified in
Section 2.2.7.

p Reads a specific register [SPS24, p. 772]. The register is selected via the register

number as defined in the target description.

P Writes to a specific register [SPS24, p. 772]. Similar to the previous packet, the register
is selected via the register number.

qAttached Returns whether the host attached itself to the debuggee, or launched
it [SPS24, p. 805]. Since the stub only supports single threaded applications, the
optional Process Identification (PID) will always be ignored. Moreover, since the stub
cannot be attached to a running process, the stub will always return 0, indicating, that
the stub created the debuggee process.

4The signal number for SIGTRAP is defined as 5 in the signals.def file.
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4.1. Stub

qSupported Returns all features that the stub supports [SPS24, pp. 791–799]. The
stub will always return the PacketSize feature, as well as all supported objects, the
host may read from via the qXfer packet. The packet size defines the maximum number
of characters in the packet data the stub supports [SPS24, pp. 795, 796]. Currently, the
stub has a packet size defined as 2048. If a larger packet is received, the stub will ignore
it and wait for the next packet.

qXfer:object:read:annex Requests the data of a specific annex, which is part of
an object [SPS24, p. 801]. If the given object is not supported or available, the stub
responds with an empty response. However, if the object is supported and available, but
the annex is not, the stub replies with a standard error response, with the error code 0.
How the qXfer packet is implemented is illustrated in the following Section 4.1.4.

s Performs a single step [SPS24, p. 771]. This translates to a single CPU-cycle in the ISS.
The optional argument of this packet for resuming at a specific address is not supported.

z Removes the breakpoint at a specific address [SPS24, pp. 775–776]. Only software
breakpoints (type 0) are supported by the stub. Additionally, the breakpoint-kind will
always be ignored. The breakpoint-kind is architecture specific, and usually indicates
the size in bytes of the breakpoint [SPS24, p. 775]. If the breakpoint could not be
removed, a standard error response with error code 0 will be returned.

Z Adds a breakpoint to the given address [SPS24, pp. 775–776]. Similarly to the previous
packet for removing breakpoints, only software breakpoints are supported. Again, the
breakpoint-kind will always be ignored. Furthermore, conditional breakpoints are not
supported, thus ignoring the optional conditional list.

General Query Transfer Packet

Packets that start with a q are part of the general query packets. Together with the
general set packets, starting with a Q, they provide a family of packets for transferring
data between the host and the target [SPS24, p. 781].

The specific packet out of the general query packets, that is most important to this
implementation is the general query transfer packet, starting with qXfer. For the
following sections, this packet is referred to as transfer packet.

The qXfer packet has the following form:

qXfer:object:read:annex:offset,length

Here, the transfer packet with the read operation has been chosen. This packet here asks
the target to read from a given annex, which is located in the specified object. To be
more precise, exactly length bytes should be read, starting from the given o�set. The
target will then respond with the data, also indicating whether there are more bytes left
to read [SPS24, p. 801].
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This transfer packet is used to transfer line information, disassembly information and
target descriptions from the target to the host. For the stub, objects are treated as
directories, while annexes are interpreted as files.

The host needs to know what objects and annexes are available for querying. To inform the
host about the possible transfers, the response of the qSupported packet is used [SPS24,
pp. 791–799].

4.1.5 Target Description Details

Section 2.2.8 already describes how target descriptions work in theory. While the target
description already carries a lot of information, they do not provide enough data for a
complete architecture agnostic host. In order to solve that problem, the target description
is augmented by new elements. The new elements are united under a common new
element, the details element.

Listing 4.2: Example for target description details.
<?xml version="1.0"?>
<!DOCTYPE details>
<details version="1.0">

<pc regref="pc" />
<instructions size="4" />
<memory minAddressableUnitSize="1" />

</details>

In order not to disturb the original document type, the details are placed in a separate file,
which can then be included into the original target description [SPS24, p. 852]. This makes
the new target description details compatible with the generic GDB implementation,
since they ignore unknown tags by default [SPS24, p. 853]. Notably, the reference to
the target details Document Type Definition (DTD) is omitted, otherwise, the target
description parsing will not work for GDB. Locally, the file can still be validated against
its corresponding DTD target-details.dtd.

Similar to the target description, the details also have a version attribute. This allows
quick detection, if the DTD changes.

The new elements can be seen in Listing 4.2, their purpose is outlined in the following
paragraphs:

pc This contains information for the Program Counter (PC) register. Currently, only
one attribute, regref is available. It references the PC out of all registers in the target
description by its name. The name instead of the register number has been chosen for
reference, since it is mandatory to provide one when describing the register, and it has to
be unique for the whole target description [SPS24, p. 855]. While the register numbers
are also unique [SPS24, p. 855], they may change if the number of registers is modified.

22



4.1. Stub

But more importantly, register numbers do not have to be mentioned explicitly [SPS24,
p. 855], thus reducing readability.

instructions Similarly to the previous element, the instructions element provides
additional information for the instructions. At this point, only one attribute can be
provided. It signals the size of one instruction in bytes. Due to this implementation,
only instructions of equal size are supported, although it is conceivable to expand upon
that further in the future, allowing di�erent sized instructions.

memory The third element, the memory element contains additional information about
the targets memory. The sole attribute allowed describes the size of the smallest
addressable memory unit size in bytes. This is needed for example for the packets m
and M [SPS24, pp. 770, 771].

Strictly speaking, an explicit value for the minimal addressable memory unit size is
not required, as one could just use the m packet with a length of 1 to read a single
addressable memory unit. The size could then be determined by the size of the response.
However, the response may carry less data, if part of the requested memory region could
not be read, resulting in a faulty assumption over the minimal addressable memory unit
size [SPS24, pp. 770, 771].

4.1.6 Line Information

On the target side, a mapping between source code line numbers and the respective PC
value is generated. To understand why this is necessary, we have to anticipate the inner
workings of the DAP. Under the DAP, many request refer to the source code line number5,
since it is the location the developer sees, when stepping through the code. The GDB
serial protocol, however, does not work via source code line numbers. For example, the
packet for breakpoints requires the address for the breakpoint location [SPS24, p. 775].

The mapping between source line numbers and addresses are extracted directly from the
executable. The compiled executables from the VADL ecosystem are in the Executable
and Linkable Format. When compiling with debug symbols, the wanted mappings are
stored using the DWARF format6.

As already mentioned, DWARF debug information is stored in the object files. Since
they follow the ELF format, the ELF parsing library (libelf)7 was used to navigate the
object file.

5For example, when setting a breakpoint, the line number (and optionally the column number as
well) is used to indicate the location. [24a]

6The assembly is done via llvm-mc. To get debug symbols the -g flag has to be appended. This
generates DWARF debug symbols [24f].

7The manual pages for ELF(3) can be found here: https://man.freebsd.org/cgi/man.cgi?
query=elf&sektion=3&manpath=FreeBSD+14.0-RELEASE+and+Ports (visited on 08/04/2024).
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The debug information could then be read using the DWARF access library (libdwarf)8

Since line information is stored per Compilation Unit (CU) [17, p. 148], the needed data
is accumulated by iterating over all CUs in the object file9 and querying for the source
lines in the current CU, as shown in Algorithm 4.3. The execution of the state machine
in charge of generating the line information is handled by the libdwarf library.

Algorithm 4.3: Illustration how the line information is extracted.
1 foreach CU œ object file do
2 foreach top level DIE œ the current CU do
3 L = all source lines stored in the current DIE
4 foreach l œ L do
5 get and save detailed information from l
6 end
7 end
8 end

Stucture

These mappings are stored in a separate file in Comma-Separated Values (CSV) format.
To be more precise, it follows the definition presented in Requests for Comments (RFC)
418010.

The Figure 4.2 describes a single line for the CSV file. As specified, the di�erent values
are separated by a comma11, and each line is terminated by a Carriage Return Line Feed
(CRLF)12 combination [Sha05]. The generated CSV file does not contain a header.

source filename The full path of the source file.

address The address corresponding to the generated machine instruction [17, p. 150].

8The manual pages for DWARF(3) can be found here: https://man.freebsd.org/cgi/
man.cgi?query=dwarf&sektion=3&manpath=FreeBSD+14.0-RELEASE+and+Ports (visited on
08/04/2024).

9The implementation follows the examples of the manual pages for DWARF_CHILD(3)
and DWARF_SRCLINES(3) available here: https://man.netbsd.org/NetBSD-7.0/dwarf_
siblingof.3#EXAMPLES and here: https://man.freebsd.org/cgi/man.cgi?query=dwarf_
srclines&sektion=3&manpath=FreeBSD+14.1-RELEASE+and+Ports#EXAMPLES (visited on
08/04/2024) respectively.

10This RFC can be found here: https://datatracker.ietf.org/doc/html/rfc4180 (visited
on 25/07/2024).

11The specification in the RFC defines a comma to be the character with an ASCII value of
0x2c [Sha05].

12Again, the RFC precisely defines these characters. The Carriage Return is the character with ASCII
value 0x0d, and the Line Feed is the character corresponding to an ASCII value of 0x0a [Sha05].
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unsigned
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integer bool
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bool bool bool bool
unsigned
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Figure 4.2: The structure for the line mappings CSV file.

line number The line number in the source file. Line numbers start at 1, if instructions
cannot be mapped to a line number, the compiler might output a 0 for the line number [17,
p. 151].

column number Similar to the line number, the column number represents the column
within a line from the source file. Again, they start with 1, the value 0 indicates, that
the statement starts before any characters in the line [17, p. 151].

is begin statement A Boolean indicating if this address represents the start of a
statement. This is a suitable location for breakpoints [17, p. 151].

is begin block A Boolean signaling that this address is the beginning of a basic

block. A basic block is a “sequence of instructions where only the first instruction may
be a branch target and only the last instruction may transfer control” [17, p. 150].

is end sequence A Boolean marking the end of a sequence. A sequence is a “series
of contiguous machine instructions” [17, p. 150].

is prologue end A Boolean indicating that the current address is the end of the
prologue. Therefore, a function breakpoint should be set here [17, p. 151].

is epilogue begin Similar to the previous Boolean, this marks the start of the
epilogue and thus is a suitable spot for the last breakpoint in a function [17, p. 151].

isa The encoded ISA for the current instruction [17, p. 152].

discriminator This identifies the block to which the current instruction belongs [17,
p. 152].

The most important values for this project are the source filename, the address along with
the line number and the flag indicating whether the current instruction is the beginning
of a statement or not.
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Requesting the Line Information

The host is then able fetch these mappings via the qXfer packet. The benefit of this
approach is, that the serial protocol does not have to be augmented with new custom
packets in order to support these line number mappings. The host is informed about the
mappings file via the qSupported response, which indicates the appropriate object and
annex for the transfer packet.

Known Issues

For larger source files, this line information file will get huge quickly. The main contributor
for the size is the filename, which will be repeated for each line in the CSV file.

The current implementation was chosen because of its simplicity, but there is definitely
room for improvement here, which will probably result in a di�erent format than CSV.

4.1.7 Disassembly

The frontend of the debugger is also capable of displaying disassembly. The required
data to display the disassembly is generated once for the whole source code on the
target side. This is achieved by employing the object file dumper from LLVM called
llvm-objdump13. It reads and outputs the contents of a supplied object file. Since this
object dumper is generated through the VADL system, it is best suited for understanding
and therefore disassembling the instructions [Him+24, p. 31]. Only executable sections
are disassembled, which is achieved with the -d flag.

Security Concerns

The target uses a subprocess to evaluate the llvm-objdump command. Since the
filename, which is supplied as a positional argument to the command, is not sanitized, it
poses a critical threat to security, potentially allowing arbitrary code execution. This is
especially important to note, as the user has control over the filename.

Due to time constraints, this matter has not been further revised.

Parsing the Object File Dumper’s Output

The output of llvm-objdump starts with a header displaying the file format of the
passed in file. Next, the disassembly for each section is output. The output for one
section is comprised of a section header, followed by the disassembled instructions. Each
disassembled line starts with an address, followed by an optional label. After that, a
semicolon prior to the actual data encoded in hexadecimal digits can be found. Last,
the instruction is printed. If an address has a label, it does not contain any data or
instructions. The same address may appear multiple times in the output.

13More information about llvm-objdump can be found here: https://llvm.org/docs/
CommandGuide/llvm-objdump.html (visited on 04/08/2024).
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In order to extract the required information, regular expressions are used. Since multiple
parts of one line are of interest, groups are used to match the di�erent components.

^([0-9a-fA-F]+)\s?(\S+)?:(?:\s?

((?:[0-9a-fA-F]+\s(?!\s\s+))+(?:[0-9a-zA-Z]+))\s*(.*))?$

Group 1 Group 2

Group 3 Group 4
Figure 4.3: An illustration of the used regular expression pattern using the ECMAScript
flavor.

The first group matches the hexadecimal address. Secondly, any optional label is matched.
After that, the raw hexadecimal data is captured, and finally, the instruction is matched
with the last group.

As can be seen in Figure 4.3, the third group is quite complex. This stems from the
aspiration to not have to clean up any matches from the regular expression pattern
afterwards. The data to be captured with the third group is a series of two hexadecimal
digits followed by a single space between these bundles. But simply matching two
hexadecimal digits with a following space would then also match the last whitespace,
which is not part of the wanted data.

If the object file dumper cannot disassemble a specific instruction it will output the string
<unknown> instead of the disassembled instruction [24g]. Internally, any instructions
exactly matching that string will be replaced with an empty string. The frontend may
then decide how to handle empty instructions, regardless of what disassembler was used
on the target side.

Structure

Likewise to the line information discussed in the previous section, the disassembled data
fetched via the llvm-objdump utility is persisted in a CSV file. Again, the definition
of RFC 4180 is followed.

address label bytes instruction

number string string string

Figure 4.4: The structure of the disassembly CSV file.

The structure is quite simple, as can be seen in Figure 4.4. Since the instruction
might contain commas it is important to wrap it in double quotes, as stated by the
specification [Sha05]. The labels must not contain any double quotes or commas.
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address The address in hexadecimal format

label The label, or an empty string if no label is present.

bytes The actual data in the same format as produced by the LLVM object file tool, or
an empty string if not present.

instruction The instruction as output by the object file dumper. This element will
always be encased in double quotes if present. When not present, or not able to be
disassembled, an empty string is placed instead.

Requesting the Disassembly

Similar to the transmission of the aforementioned line information, the disassembly is
also relayed to the host via a qXfer packet. Again the qSupported packet is used to
inform the host about the possibility to request this information.

Known Issues

The disassembly file will grow in proportion to the number of instructions in the source
file. This will have an e�ect, if a more abstract language is used, generating many more
machine instructions than statements in the source code.

4.2 Visual Studio Code Extension

The complementary part to the stub is a debugger extension for VS Code. It serves as a
host for the serial protocol while simultaneously providing a generic User Interface (UI)
to the user.

The core task of this extension is to manage the interface between two di�erent protocols.
Between Visual Studio Code and debugger extension, the Debug Adapter Protocol is
used, while the extension communicates with the stub using the already familiar GDB
remote serial protocol.

The extension development process was influenced heavily by the debugger extension
guide14 from VS Code. The underlying folder and file structure for the extension was
generated as suggested using yeoman

15 together with a code generator especially designed
for VS Code extensions16 [24k].

14The guide can be found here: https://code.visualstudio.com/api/extension-guides/
debugger-extension (visited on 08/10/2024).

15The website can be accessed here: https://yeoman.io/ (visited on 08/10/2024).
16The package can be found here: https://www.npmjs.com/package/generator-code (visited

on 08/10/2024).
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4.2. Visual Studio Code Extension

While the implemented Debug Adapter (DA) is independent of VS Code and could be
used to bring debugging functionality to a variety of other tools that support the DAP17,
this implementation and the following sections are written with regards to VS Code.

4.2.1 Contributions
The outline of the extension is defined in the package.json file. This includes metadata
like the name or version of the extension, but also so-called contributions. Contributions
declare the overarching category for the features the extension provides. In this case, the
extension defines two contributions: (i) breakpoints, and (ii) a debugger.

Breakpoints Contribution

The contribution of breakpoints is necessary to enable the user to set breakpoints.
Additionally, a language ID is required, which VS Code utilizes in order to enable specific
capabilities based on the language in use [24i]. In this case that would be the ability to
work with breakpoints on source file with the given language ID.

VS Code does not support language IDs for assembly by default [24e]. In order to avoid
conflicts, which could occur when defining custom language IDs specifically for this
project, an already existing extension18 for working with assembly in VS Code was chosen
as a dependency. This extension defines language IDs for assembly alongside additional
quality of life features like syntax highlighting. Another extension, that is declared a
dependency is the hex editor from Microsoft19 which is necessary to view the targets
memory. The extension’s dependencies are expressed in the package.json file under
the extensionDependencies key. Moreover, as defined in the package manifest, the
breakpoints are enabled for the asm-collection language ID.

Debugger Contribution

The debugger contribution specifies a debugger of type vadl with corresponding configu-
ration attributes. These attributes can be understood as arguments to the debugger and
can be changed by the user. How this is done exactly will be elaborated on in Section 5.1.

4.2.2 Serial Protocol Host
As already mentioned, the VS Code extension should serve as the host for the serial
protocol. There are a few di�erent ways to achieve that goal. The initial idea was to
use GDB itself as the host and connect to the stub as described in Section 2.2.2. The

17A list of supported tools is available here: https://microsoft.github.io/
debug-adapter-protocol/implementors/tools/ (visited on 08/25/2024).

18The extension’s ID is maziac.asm-code-lens and its marketplace page can be found
here: https://marketplace.visualstudio.com/items?itemName=maziac.asm-code-lens
(visited on 09/04/2024).

19The extension’s marketplace page can be found here: https://marketplace.visualstudio.
com/items?itemName=ms-vscode.hexeditor (visited on 09/04/2024).
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extension then only has to manage running a GDB instance. This is actually anticipated
by the GDB implementation, as it provides a machine-readable mode specifically tailored
to this use case. The so called GDB/MI interface is a “line based machine oriented text
interface to GDB” [SPS24, p. 583]. It allows using GDB as a small part constituting a
larger project.

This approach is definitely viable and in use20, but it requires the user to have not only
a working, but also the correct GDB installation on their system. This problem also
occurs when using GDB with the built-in DAP interface, which would even make the DA
obsolete. In the circumstances of this project, having the correct installation is of utmost
importance. Recalling, that GDB has to be compiled for a specific target architecture,
the task of building their GDB distribution from the source code appropriately to a given
architecture would fall onto the end user. This is not only demanding for the user but
also susceptible to errors.

To avoid this premise, the next idea was to ship the extension with the GDB source code
and to compile it for the correct architecture upon starting the extension. This concept
also comes with its own set of problems. For example, the source files of GDB version
15.1 is around 212 MB21. Compiling the source without any additional components takes
around 15 min22. Furthermore, there would be the large overhead of compiling GDB
for an arbitrary architecture. While gdb-multiarch23, a precompiled GDB instance
supporting multiple architectures, would work with the most popular architectures, it
would not solve the issue of using GDB with a custom architecture.

Considering these obstacles this approach was aborted. Finally, the whole idea of using a
GDB installation locally was scrapped, in favor of a custom GDB serial protocol host
side implementation.

Packets

For the host, a more abstract approach for the packets was chosen. This is reflected
by having dedicated implementations of the di�erent packets with custom constructors,
hiding the actual packet data from the developer. Besides the constructor, a packet
also contains functionality to parse its corresponding response. Why this is important is
exemplified in the following section.

When implementing a new packet three key aspects have to be considered: (i) the
response type (ii) the actual implementation of the packet and (iii) the implementation
of the response parser.

20The guide on C and C++ debugging by VS Code suggests a GDB installation [21a]. Furthermore,
there are existing GDB extensions on the marketplace, like: https://marketplace.visualstudio.
com/items?itemName=coolchyni.beyond-debug (visited on 14/08/2024) using this method.

21The source code was fetched from here https://ftp.gnu.org/gnu/gdb/ (visited on 14/08/2024)
and extracted using the 7-Zip file manager.

22This was timed on a Windows Subsystem for Linux (WSL) machine using the time command.
23The package can be found here: https://packages.debian.org/en/sid/gdb-multiarch

(visited on 14/08/2024).
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The response parser is an object, that provides functionality in order to dissect and extract
data from the responses raw string form. This data is then captured by a requested
response type. To facilitate that, the implementation of this parser is di�erent for each
response type.

While responses are technically also packets, inwardly, they are not represented by the
common GdbPacket interface, rather, each response has its own interface. This is viable,
as there is no need for a low level packet representation of a response.

Sending and Receiving Packets

The implementation for sending and receiving packets is akin to that of the stub. But
contrary to the stub, the host has to wait for the corresponding response. This is usually
the next packet, that is received. In order to retain this sequence of events, a lock is used,
making it impossible to send two consecutive requests without handling the response24.
There are also additional layers in place to make this send-receive mechanism usable in
a more abstract way. More precisely, sending and receiving a packet is combined in a
single function, which also handles standard responses. The implementation is outlined
in Algorithm 4.4.

Moreover, the returned packet is parsed to make the extraction of the information easier.
The internal API then presents the developer with a corresponding response object for
each request.

Algorithm 4.4: Outline of the send-receive process.
1 function getChar(p) is
2 sendPacket(p)
3 r Ω await readPacket()
4 if r = unsupported response then
5 throw
6 else if r = standard error response then
7 throw
8 else if p requires success response · r ”= standard success response then
9 throw

10 end
11 rparsed Ω parseResponse(r)
12 return rparsed

13 return

24For packets that do not have a response — like the k packet — a special variation of this mechanism
is in place, where waiting for a response is omitted.
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Connection and Initialization

Conceptionally, the host is split into two parts, the GDB client and the GDB session.
The former handles the connection to the requested address and port and providing raw
functionality for sending and receiving packets, while the later serves as a more abstract
view on the host. It provides functionality for specific actions on the target, like stepping
or reading registers. The session is also incorporating packet sending like mentioned in
the preceding Section 4.2.2. Additionally, the session emits events, that are subsequently
used by the Debug Adapter Protocol. Further details may be found in Section 4.2.3.

Moreover, it is also responsible for the storage of additional data the host may require. The
data comprises the following elements: (i) the target description, (ii) the features of the
target, as queried by the qSupported packet, (iii) line information and (iv) disassembly.

Upon startup, first the supported features of the target are queried. Next, the target
description is requested, followed by the line information. Subsequently, the disassembly
is retrieved, before querying the stop reason. This marks the end of the initialization
process.

When querying for the supported target features, the host also sends its features along.
The only feature from the host is currently xmlRegisters. It tells the target, that
the host is capable of understanding target descriptions. The host also includes the
understood architectures via a target specific string. If the target can provide the
target description for an understood architecture it will respond appropriately to this
packet [SPS24, p. 792]. Since this host is architecture agnostic, it understands any target
description. In order to convey this, instead of specifying an architecture, the keyword
any is used. This is a deviation from the serial protocol.

Although the DAP specification defines both attaching and launching without allowing
for the disabling of either, the implementation only foresees launching the program as a
connection method. This limitation can be attributed to the fact that the stub is unable
to attach to a running process, as outlined in Section 4.1.4.

Setting Breakpoints

The action of setting a breakpoint is provided and handled by the VS Code UI. Using
the source line mappings, gathered from the stub, the breakpoint locations are translated
into addresses. With the current implementation, there are a few limitations on where
breakpoints can be set. Breakpoints cannot be set on labels, only on instructions. Any
breakpoint, that is set on an illegal location will be indicated as unverified.

Using Target Data on the Host

The supported features, target description, line information and disassembly are parsed
into native TypeScript (TS) objects for ease of use.
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Supported Features The response for the qSupported packet is a list of features.
Each feature then declares whether it is supported or not. This can be done in four ways:

feature- Signals, that the feature is not supported.

feature+ Simply indicates, that the feature is supported.

feature=value Likewise to the prior method, this indicates that the feature is sup-
ported, while also providing an associated value with the feature.

feature? Means, that this feature may be supported. The host then has to find other
ways to check for support [SPS24, p. 792].

The implementation for this project actually requires the PacketSize feature to be
sent, as it does not have the capabilities to infer the maximum packet size of the target
by other means. The default packet size of the host is — likewise to the implementation
of the stub — 2048.

Due to simplicity, this host’s implementation will treat any feature responses with the
question mark as not supported.

Target Description After receiving the target description, all includes are resolved, by
issuing another qXfer request with the new annex. Next, the whole target description is
mapped onto a native TypeScript (TS) object. Since the target description might get very
large, another object is employed to operate on the actual data. This approach, which
involves the utilization of a more streamlined abstract operator to shield a subsystem, is
referred to as a facade [Gam95, p. 185]. It provides an easy way for developers to access
relevant data. The same mechanism is used for the line information and disassembly as
well.

Currently, the target description implementation supports all but the type element.
Notably, the retrieved target descriptions are not validated against their corresponding
DTDs.

Line Information Similar to the target description, the line information is also first
mapped onto an object, but then accessed via a user friendly facade.

Disassembly The disassembly is treated analogously to the line information.

4.2.3 Debug Adapter

The DA takes the role of the server for the DAP. The debugging tool, in this case VS
Code, then sends requests to that adapter, in order to provide debugging functionality.
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The DAP specifies not only requests, but also events the DA might emit. For example,
for indicating the conclusion of the initialization phase, or to signal that the debuggee
has stopped or that it has exited [24a].

These events should not be confused with the events, the GDB session internally emits,
even though it emits events for the same reasons, e.g. when the debuggee stopped by
various causes, or upon termination. Usually, the debuggee stops when a breakpoint is
hit, but it may also be suspended upon reaching the main entry point25. While these
events are strictly seen not identical, they are wired in such a way, that the DA may
often just relay the received events from the underlying session to VS Code.

Any data the developer might be interested in is usually only accessible, when the
execution stopped and the debuggee is in a suspended state. This is achieved, for
example, when a breakpoint is reached. While in a suspended state, all objects which
are accessible via the DAP, receive a so called object reference. If the client then requests
an object, this is done via this object reference. These references only remain as long as
the debuggee is interrupted, afterwards, they are newly assigned [24h].

For instance, when hitting a breakpoint, the DA emits a stopped event. The client is
then eligible to examine variables or stackframes. In order to read variables, it is first
necessary for the client to request all scopes for the current state. This allows the client
to then examine the available variables via their references, as described in more detail
in Section 4.2.3 and Section 4.2.3.

This DA is implemented as an inline adapter. That means, it is run directly by VS Code,
not in a separate thread or server [24b].

Capabilities

After the initialization of the DAP connection, the adapter will communicate its so called
capabilities. A capability can be thought of as a supported feature of the DA [24h]. The
implemented extension has the following capabilities:

supportsConfigurationDoneRequest This request declares, that the client fin-
ished its initialization. If supported by the DA, the client will send this request [24a].

supportsSetVariable The DA is capable of changing the values of variables [24a].

supportsTerminateRequest The DA is able to terminate the debuggee grace-
fully [24a].

supportsReadMemoryRequest As the name suggests, the DA can read arbitrary
memory [24a].

25How this is achievable is described in Section 5.1.2.
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supportsDisassembleRequest The DA can access disassembly information about
the debuggee, which further enables the disassembly view in VS Code26 [24a].

supportsInstructionBreakpoints The DA can set breakpoints based on ad-
dresses [24a].

Threads

Via the ThreadsRequest, the client inquires about any threads of the debuggee. This
request is not part of any capability, rather it is a core part of the DAP and has to be
supported.

For this project, only a single thread is supported. This results in an identical response
for any threads request.

Stackframe

Each thread contains a list of stackframes, the so called stacktrace [24h]. This im-
plementation does not support multiple stackframes, as it is usually not needed when
executing assembly code. That means, semantically, the whole user code is run in a
single stackframe, that is constantly changing as the execution progresses.

If possible, the topmost stackframe also contains an instruction pointer reference. That
is the current address, the PC points at. This is important, as the built-in disassembly
view from VS Code would not work without it.

Scopes

Variables in the DAP are grouped in so called scopes. When a user requests the value
of a variable, after the threads and stackframe requests, the client first issues a scope
request, which then holds references to the actual variables [24h].

Registers are treated as variables in this implementation. They are grouped into a register
scope. Since there are currently no more variables, only this scope exists. When variables
are requested, the client uses the variable references, stored in the previously requested
scope to inquire about their value.

Variables

Via the variables request, the client retrieves information about any variables, using
the variables reference [24h]. Registers are treated as variables in this implementation.
That means, in order to see the registers value, the corresponding variables have to be
inspected.

26Only enabling the capabilitiy is not enough to use the disassembly view, as mentioned in Section 4.2.3
and 4.2.3.
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Visual Studio Code introduced the memory view with version 1.64 [22]. The memory view
displays raw data in a hex-editor-like style. If memory writing would be implemented,
then this memory view would be used to modify binary data [22]. The debugging
tool communicates the capability to display binary data to the DA in the initialization
phase [24a]. VS Code has this capability [22].

In order to make a variables content available for the memory view, the memoryReference
for the variable has to be set. The current implementation automatically sets this memory
reference for all registers of the predefined type data_ptr27 in the target description.

Disassembly

As of version 1.59, VS Code includes a native disassembly view, which is used to present
the disassembly to the user, alongside with functionality to work with instruction level
breakpoints [21b]. As aforementioned, an instruction pointer reference has to be provided
in the topmost frame of the stacktrace, in order for the disassembly view to work
expectedly.

When setting an instruction level breakpoint, the disassembly view has to be used. Only
breakpoints on source line level are possible when setting them on the source file.

As implemented by VS Code, the disassembly view is only accessible while the debuggee
is in a suspended state, such as on a breakpoint.

Considering the unnecessity when using assembly code, the inlay option, to show source
code alongside the disassembled instructions, is currently not supported.

4.3 The Big Picture
To facilitate a more comprehensive grasp on the project’s overall structure, an illustration
is provided in Figure 4.5. It is easy to see, how the debugger is split into two parts, one
residing in the VS Code extension and the other being the stub. Furthermore, the usage
of the di�erent protocols, the DAP and the serial protocol, can be seen clearly.

VS Code DA GDB Host GDB Stub ISS
DAP Serial Protocol

Visual Studio Code Extension Target

Figure 4.5: The overarching structure of this project.

27Usually, the Stack Pointer (SP) as well as dedicated address registers are marked as data_ptr [SPS24,
p. 856].
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Usage

This chapter sets forth the intended way to utilize the stub in conjunction with the
extension. As already mentioned, the VS Code extension is not strictly necessary in order
to establish a connection to the stub. Furthermore, this chapter details the manner in
which the stub may be used with a generic GDB installation, along with the constraints
inherent to this approach.

5.1 Intended Usage

The intended usage for this project is to utilize the stub residing in the simulator together
with the VS Code extension.

It is assumed that the reader is already familiar with the compilation of the source code
for the ISS, as well as the setup of the VADL ecosystem, the generation of artefacts and
tools together with their compilation.

5.1.1 Setting Up the Target

Following the compilation of the source code for the ISS, the additional artefacts required
are the target description, along with its details. Both the target description and the
accompanying details should then be placed under the transfer/features directory
of the simulator.

Next, the ISS can be started. To enable debugging, the -g flag must be passed as an
argument. Additionally, the source file that is to be executed on the simulator must also
be provided.

Now that the ISS is running, it waits for an incoming connection from the extension.
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5.1.2 Setting Up Visual Studio Code
Posterior to installing the extension with its dependencies, the language ID of the source
file has to be set accordingly. Otherwise, breakpoints cannot be set. Next, in order
to start debugging, a so called launch configuration is needed. In VS Code, launch
configurations are used to configure and save details for the debugging process, regarding
a specific debugger [24c]. The available attributes for this configuration is set in the
extension’s manifest. They are:

type The type of the debugger [24c]. This is vadl in this case.

request Whether the debugger should launch the debggee or attach to it [24c]. As
already stated, only launching is supported.

name The name of the launch configuration, which will be displayed to the user [24c].

program The file to run, when starting the debugger. The default value for this attribute
is ${file}, which represents the current opened file [24j].

stopOnEntry A Boolean flag signaling whether the execution of the program should
be interrupted, right after it has been launched. By default, this is set to be true.

host The IP-address of the remote target. The default value for this is localhost.

port The port of the remote target. The assigned port for GDB debugging, as stated
in Section 4.1.1, is used as a default here.

trace A Boolean flag indicating if the events of the DAP should be logged1.

The first three attributes are required regardless of the debugger [24c]. Moreover, for
this debugger to work, the attributes program, host and port are also compulsory.

5.2 Without the Visual Studio Code Extension
Although not ideal, a local GDB installation can also be used instead of the extension. In
order to facilitate a flawless execution, a few configurations have to be done beforehand.

The setup of the target is identical to that presented in the previous section. However,
GDB demands special treatment. It is assumed, that the local GDB installation is able
to understand the target’s architecture.

Once the simulator has been launched, GDB can be started. Subsequently, a few
commands have to be issued in GDB, before the debugging can begin. The initial step is
to select the target’s architecture. This may be achieved via the set architecture
command. As the stub utilizes the big-endian notation exclusively, it is imperative that

1The logging does not seem to work, if the extension is run in the inline mode [jus23].
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the host is also configured to interpret data the same way. This may be accomplished by
the set endian big command. Ultimately, the host may connect to the target via
the target remote command as previously outlined in Section 2.2.2.

When debugging the connection, set debug remote 1, set debug xml 1 and
set debug arch 1 are valuable commands to gain insight in the data transmission
and architecture information. These commands should be issued prior to connecting and
setting the architecture respectively.

5.2.1 Limitations
As the utilization of the stub without the extension deviates from the intended usage, it
is only natural, that there exist some limitations.

For example, disassembly and line information are imperceptible to the standard GDB
implementation. The corresponding request is inline with the serial protocol’s specification,
but it lacks the understanding of what to do with that information. Therefore, GDB
cannot provide disassembly or symbol information without passing it the file that is
running on the simulator. To gain the maximum insight, it is therefore advised to pass
the executable to GDB and the ISS simultaneously.

The limitations of not having insight into the executable is becomes apparent when using
breakpoints. With no information about source file lines, the only way to set breakpoints
is by referring to an address. Additionally, GDB has to infer the instruction size when
stepping resulting in a large time duration to perform a single step. Explicit timings can
be found in Table 6.1.
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CHAPTER 6
Evaluation

The implementation of this project is evaluated on both data volume as well as in the
temporal domain. This chapter presents this evaluation and its key findings.

6.1 Environment

All participated tools, the ISS with the stub, GDB and the extension were run on a
Windows Subsystem for Linux (WSL) machine. The utilized GDB distribution was
gdb-multiarch version 12.1.

GDB was set up like described in Section 5.2 with the additional configuration to turn of
pagination. This is achieved via the set pagination off command [SPS24, pp. 368,
369]. Pagination might otherwise occur when GDB outputs a large quantity of text,
requesting the user for further input in order to see the next chunk of data. To measure
the time a specific action on GDB took, its Python support was utilized. For instance, in
order to get the exact time, issuing a step command takes, the time before and after the
command was sent could be captured with the datetime API in Python. Since this
would also include any time the user takes to input commands into GDB, an internal
function was written. An example of such a function can be seen in Listing 6.1. When
executing this function, the time before and after a command is noted in order to compute
the time span. Similarly, the time until the entry break was calculated. The results could
then be printed using the Python integration as well.
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Listing 6.1: Example of a function measuring the time the step command takes.
define fns

Python start_time = datetime.datetime.now()
step
Python end_time = datetime.datetime.now()
Python delta = end_time - start_time
Python deltas.append(delta)

end

It is important to note, that this will count the wall clock time, meaning the time
the machine takes to execute a specific command. This is highly subjective and can
vary largely based on what computer this is executed on. Nevertheless, the gathered
information can still be used to reason about relative di�erences in timing.

For measuring timings on the extension, the performance API was used. This provides
high resolution timestamps to evaluate durations in milliseconds [con24]. The time
stopped for the extension was the time spent inside of the extension. This excludes the
process of sending the corresponding DAP requests to the extension and back. However,
the time spend for transmitting these requests is negligible, since the extension is running
inline, not on another server or thread.

For data tracking, a tool called iptraf-ng was used. This tool is capable of tracking
Transmission Control Protocol (TCP) packets per port [ipt], which is ideal for this
particular use case. In order to capture tra�c to the localhost, the loopback interface1,
commonly named lo under Linux, was used. Notably, the data in the evaluation is
captured on the TCP level. This results in additional data and does not reflect the actual
amount send via the serial protocol.

All tests were conducted using the same script. Regarding the stepping, all instructions
in the main section of the script where executed, resulting in a total of 21 steps. Two
di�erent methods of stepping where used for the evaluation: (i) ordinary stepping and
(ii) instruction level stepping. The former continues the program, until the next source
code line is reached [SPS24, p. 84], while the latter only executes the next machine
instruction before halting again [SPS24, p. 86]. The stub currently does not di�erentiate
between these two types of stepping. It will always just execute the next machine
instruction. The final result, regardless of timing or data evaluation, was then computed
using the average. Likewise, the values for the break on entry time and reading memory
from the Stack Pointer (SP) register where conducted five times each, and summarized
using the average. For the first test, the time until the debugger halts after a connection
was established was timed. Importantly, no breakpoints where set prior to connecting
in order not to influence the startup time. Next, to measure memory reading times, an

1More information about this interface can be found here: https://man.freebsd.org/
cgi/man.cgi?query=lo&sektion=4&manpath=FreeBSD+14.1-RELEASE+and+Ports (visited on
09/03/2024).
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arbitrary register with the already explained data_ptr type has been chosen, in this
case it was the SP. When opening the memory view in VS Code, 4096 B are requested.
The memory at that section is filled with zeros. This process was timed, until all of the
requested data was available. Finally, the disassembly setting measures the time until
the disassembly of the whole source file is accessible. Notably, GDB does not provide
a disassemble command for the whole source file, rather the disassemble command has
to be issued for each function. Using memory ranges does not work in this case, since
the evaluated source file has inaccessible memory areas between functions. There is a
di�erence for the used timings regarding the disassembly situation. As indicated in the
tables, the first execution time was used for the evaluation without an extension, as GDB
caches the result of the disassembly command, drastically reducing its execution duration
on subsequent calls.

6.2 Local Execution
In this setup, both the host and the target were executed on the same machine. Commu-
nication was established through the localhost.

Under this setup, three distinct cases where inspected: (i) using both the simulator with
the stub and the extension as intended, (ii) using a GDB installation, which had access
to the compiled object file and (iii) using a GDB installation without reference to the
object file. The results of the local timing evaluation are presented in Table 6.1.

Disassembly

Step Step Instruction
(ms) (ms) (ms) (ms) (ms)

- 53.20 4 506.49 5 562.65 298.21

Exe. 1 029.41 1 030.69 918.59 208 611.93 714.71a

No Exe. - 6 294.89 863.97 209 055.27 -

Step
through main

Break
on Entry

Reading SP
Memory

With the Extension

Without the Extension

a First execution time.

Table 6.1: Timing evaluation for the local execution.

The first overall observation is that using the extension is faster in almost all tested
aspects. This is especially notable for the read memory case. The large discrepancy in
speed can be explained by the fact, that GDB issued a single memory read command for
each byte, while the extension requests a memory read with the largest number of bytes
possible, only being limited by the packet size.

Additionally, the di�erence in step times can also be easily explained. The extension
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sends a step packet for each step, but GDB unexpectedly does not do that. Rather it
sends a few memory read packets, followed by a breakpoint command.

Furthermore, the large increase in time until the debugger breaks on entry can be
attributed to the extension requesting and processing relevant data about line mappings
and disassembly information.

GDB requires more time to complete the disassembly request. When using the extension,
the process of disassembling the object file is done at the stub, reducing the overall time
it takes to display that information.

When taking all five repetitions into account, the average timing for providing the
disassembly of the whole source file would result in a time of 146.36 ms.

Origin Step Step Instruction Break on Entry Reading SP Memory
(B) (B) (B) (B)

Ext. - ¥1 335a 16 392 9 480
Stub - ¥1 349a 28 558 25 784

GDB ¥9 125a ¥9 125a 10 938 1 793 504
Stub ¥7 254a ¥7 254a 15 476 1 335 400

GDB - 54 506 10 260 1 810 432
Stub - ¥41 983a 15 040 1 335 400

With the Extension

Without the Extension
With the Executable

Without the Executable

a Rounded to the nearest byte.

Table 6.2: Data evaluation for the local execution.

Regarding the evaluation of the transmitted data, as seen in Table 6.2, the timing
di�erences when stepping comparing the use of the stub with and without the extension
is also reflected by the transferred data. Similarly, the increased transmission volume
for the memory read request without the executable can be contributed to the same
aforementioned fact. The one case where using the extension results in an increase of
tra�c, is the break on entry situation. Again, this is due to the fact, that the extension
requests information about source line mappings and disassembly, both of these request
are not issued by GDB.

6.3 Remote Execution

The temporal dimension was also evaluated over a remote usage of this debugging
interface. The setup involved the simulator to run on one machine, while another device
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in the same network executed the extension. In order to reach the stub running on a
WSL, the corresponding port had to be forwarded [Con24].

Disassembly

Step Step Instruction
(ms) (ms) (ms) (ms) (ms)

- 114.03 842.06 453.59 23.68

Exe. 2 305.28 2 125.19 1 835.66 439 905.38 401.20a

No Exe. - 13 431.44 1 872.84 456 492.04 -

Step
through main

Break
on Entry

Reading SP
Memory

With the Extension

Without the Extension

a First execution time.

Table 6.3: Timing evaluation for the remote execution.

Overall, the timings when used without an extension increased as expected in comparison
to the local execution. The speedup utilizing the extension in the remote setting can be
attributed to the increased performance of the device. This performance di�erence will
elaborated on in the succeeding section.

The discrepancy in duration for the disassembly case might also be connected to the
performance di�erences. Moreover, as already stated previously, the recorded time from
the first execution was used for evaluation. When regarding all five tests, the average
results in a time of 82.25 ms until the whole source file is disassembled.

6.4 File Transmission

The file transmission using the qXfer packet was also evaluated. Subject for the transfer
was a file with the size of precisely 1 MB. Its content consisted entirely of the ASCII NUL
character. The environment is identical to that of the previous setups.

Local Remote
(ms) (ms)

423 182.75 66 364.06

Table 6.4: Timing evalua-
tion for file transmission.

Notably, the transmission is faster by a significant factor when requesting the file remotely.
The large contrast between the times can be attributed to the power of the di�erent
devices in use. More concretely, the machine running the extension has 14 cores, while
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the other device, running GDB in this case, and both host and target in the previous
context only has 8 cores.

A more performant implementation of the extension, especially the packet reading might
alleviate this problem.
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CHAPTER 7
Conclusion

The presented debugging interface provides an accessible way to debug scripts run on a
VADL generated simulator. It provides a seamless integration into VS Code, enabling
the user to use its powerful UI. Furthermore, it is possible to set breakpoints, examine
and manipulate the values in registers and it supports reading arbitrary memory of
the simulator. Additionally, disassembly information is also provided to the user. The
extension is fully architecture agnostic and is able to cater to an arbitrary architecture.
Moreover, the debugging interface is developed in a distributed manner, which enables
remote debugging.

7.1 Future Work

While the current state of the project is operational, there are still some missing features,
as well as a few minor alterations that would significantly enhance the debugging
interface. First and foremost, the previously stated support for displaying the contents of
the instruction pipeline must be incorporated. To achieve this, it is likely that the serial
protocol will require extensions beyond the use of additional file transfers via the qXfer
packet. The specification of the pipeline can easily be described in the target description
details. Moreover, supporting a representation of the instruction pipeline, would most
likely also necessitate the development of a custom view in VS Code in order to present
the pipeline in a meaningful manner to the user. The necessary simulator, that operates
on a cycle accurate level can already be generated through the VADL system [Sch20,
pp. 47–50].

In order to support architectures with variable instruction sizes, the target description
details, and its associated elements in the extension, would also need an augmentation.
One potential solution would be to explicitly list the instruction size for each possible
mnemonic. Furthermore, the ability to specify the instruction size and minimal address-
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able memory size in bits rather than of bytes would facilitate the support of more unique
architectures.

There are also features which are supported by the tools in use, just not implemented
yet. This includes support for manipulating memory, setting conditional breakpoints
or restarting the debuggee. Additionally, there are some elements of the serial protocol
that are not fully completed yet. For example, the target description does not support
the type element, and received XML documents are not validated against their DTD.
Another example would be the use of run-length encoding in order to minimize transferred
data, potentially increasing overall performance. Moreover, currently the maximum packet
size is fixed to an arbitrary number. There is definitely room for experimentation to
find the optimal size. Notably, there is also a small deviation from the serial protocol,
as both the stub and the extension do not allow an unlimited packet size prior to the
qSupported packet, as advised by GDB [SPS24, p. 793].

Other small changes, which would greatly impact the perceived usability of the extension,
is the option to set breakpoints on lines with labels, or to have the extension wait until
it is able to connect to the stub. Regarding the former, it would be plausible for the
extension to try to set the breakpoint on the next line, if possible, and informing the
debugging tool of the changed location. For the latter, currently, the stub has to be
started prior to the extension in order to achieve a successful connection.

Another great improvement focuses on the involved artefacts for the extension. Currently,
the target description along with its details have to be typed manually. In the future,
it would be conceivable to generate these files together with the ISS right from the
VADL source files. In conjunction with the generation of the target description files, it
is imaginable for the VADL system to generate additional files describing the ISA run
on the simulator, enabling the possibility of a language extension for VS Code. This
would include correct syntax highlighting, language snippets and language configurations
like indentations, folding and autosurrounding [24d]. The extension written for this
debugging interface has the potential to evolve into an extensive set of tools, making
development for and on a specific architecture straightforward and accessible. In the
long run, this would also void the need for the extension dependency for the language
ID, required for VS Code.

All these ideas would contribute to this project with more features. However, the stub
would also benefit from a more structured architecture, and the extension from a more
performance centric implementation. Furthermore, there are still a few places, where the
stub is not entirely architecture agnostic.

The presented aspects are all useful, when the simulator is run on the same machine
as the extension. However, ultimately, the ISS would not be something the user has to
worry about. Ideally, it would run on a server, executing the source on the cloud, while
communicating with the extension. Implementing this whole infrastructure might also
imply some changes to the extension, in particular on how sources are handled.
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As can be seen by the multitude of possibilities and enhancements, this debugging
interface presents significant potential.
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