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Kurzfassung

Die Vienna Architecture Description Language (VADL) ist eine Processor Descripti-
on Language (PDL). Die ursprüngliche Implementierung des VADL-Parsers verwendet
Xtext, ein Framework, welches auf dem ANTLR Parser-Generator aufbaut und zusätzli-
che Artefakte wie einen Typchecker und IDE-Werkzeuge generiert. OpenVADL ist eine
von Grund auf neue Implementierung von VADL. Wenngleich OpenVADL mit alten
VADL-Spezifikationen weitgehend kompatibel bleiben soll, bieten sich durch die Neuim-
plementierung Gelegenheiten, die Sprache zu erweitern und mitunter andere Richtungen
einzuschlagen.

Ein Hauptziel der neuen Implementierung des OpenVADL Parsers war, die Laufzeit
mindestens um einen Faktor 5 zu verbessern. Durch die Verwendung von Coco/R als
Parser-Generator und eine Reduktion der Verarbeitungspässe konnte eine Laufzeitverbes-
serung vom Faktor 14, mit der Verwendung von Ahead-of-Time-Kompilierung sogar bis
zu 150 erreicht werden.
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Abstract

The Vienna Architecture Description Language (VADL) is a processor description lan-
guage (PDL). The original VADL parser used Xtext, a framework built on top of the
ANTLR parser generator, which generates artifacts such as IDE tooling and type checkers
in addition to a parser. OpenVADL is a completely new implementation of VADL. While
OpenVADL aims to remain largely compatible with specifications written for VADL, the
new implementation takes the opportunity to improve some aspects of the language and
take a di�erent direction in some aspects.

The main goal of the new OpenVADL parser was an expected runtime improvement
factor of 5. By choosing Coco/R as parser generator and reducing the number of passes
performed on the abstract syntax tree, we reached a runtime improvement of up to 14,
which we furthermore increased to 150 by using Ahead of Time compilation.
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CHAPTER 1
Introduction

The Vienna Architecture Description Language (VADL) is a Processor Description
Language (PDL) [HHH+24]. A PDL is a language used to describe instruction set archi-
tectures and the structure of processors [MD08]. VADL’s goal is to generate compilers,
linkers, simulators, assemblers, disassemblers, debuggers, and hardware definitions from
a high-level processor specification.

VADL as a language distinguishes between the description of an Instruction Set Archi-
tecture (ISA), micro architectures, application binary interfaces (used for generating
compilers), and microprocessors (used by the hardware generators and the simulators)
[MD08]. This strict separation enables readable specifications and separation of concerns.

While some results have been published [HHH+24, HK23], implementation details and
source code are not openly accessible due to having been developed as part of a research
cooperation.

The new implementation, named OpenVADL, aims to be largely backwards-compatible,
while containing no code of the original implementation as well as making di�erent
architectural decisions. In particular, the speed of the VADL parser has hindered its
widespread adoption, as large specifications can take dozens of seconds to parse.

By choosing a lightweight parser generator, using fewer processing passes, and employing
modern technologies, OpenVADL parses specifications up to 150 times faster than
the original VADL implementation. Despite not being feature-complete yet, these
developments are a promising beginning of the new implementation.
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CHAPTER 2
Background and Related Work

2.1 The original VADL parser

The original implementation of VADL [HHH+24] was built using the Xtext framework
[xteb, Bet16]. This framework uses ANTLR [PQ95, PF11] as the foundation of its parser,
but also generates additional artifacts that allow integration into the Eclipse Integrated
Development Environment (IDE) for the specified language. The implementation of the
original VADL project was written in Xtend, which is a Java dialect and part of the
Xtext project [xtea].

As part of the parser generation process, Xtext generates a model for the parsed text that
tightly follows the written grammar rules. VADL refers to this model as the Concrete
Syntax Tree (CST) [HHH+24, 4.2 Language Parser]. After parsing a VADL specification,
the VADL parser then converts this CST into an Abstract Syntax Tree (AST) that only
contains the relevant information about the VADL specification.

Macro expansion and CST validation were implemented as distinct passes that operated
on the CST, while module importing, symbol resolution, type inference, recursive call
detection, and AST validation were implemented as passes that operated on the AST.
In total, a VADL specification went through 22 passes before it was ready to be further
used in compiler generation or simulation.

Complex specifications can take dozens of seconds to parse, which makes specifying
complex instruction sets with a large amount of macros burdensome.
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2. Background and Related Work

2.2 Introduction to VADL

A VADL specification consists of definitions and optional import declarations. Typical
specifications contain global definitions, followed by instruction set and micro architecture
definitions. Listing 2.1 shows the definition of a fictional ISA with two instructions, ADD
and SUB.

1 constant RegIndexLen = 4

2 constant RegValueLen = 16

3 constant AddrLen = 32

4 us ing RegIndex = Bi t s <RegIndexLen>

5 us ing RegValue = Bi t s <RegValueLen>

6 us ing Address = Bi t s <AddrLen>

7
8 i n s t r u c t i o n set a r c h i t e c t u r e ISA = {

9 r e g i s t e r f i l e X : RegIndex ≠> RegValue

10 memory MEM : Address ≠> Bit s <8>

11
12 format F : B i t s <16> =

13 { r s 2 : RegIndex

14 , r s 1 : RegIndex

15 , rd : RegIndex

16 , op : B i t s <4>

17 }

18
19 i n s t r u c t i o n ADD : F = X( rd ) := X( r s 1 ) + X( r s 2 )

20 encoding ADD = { op = 0 }

21
22 i n s t r u c t i o n SUB : F = X( rd ) := X( r s 1 ) ≠ X( r s 2 )

23 encoding SUB = { op = 1 }

24
25 assembly ADD, SUB = (mnemonic , " " , r e g i s t e r ( rd ) , " , " , r e g i s t e r ( r s 1 )

, " , " , r e g i s t e r ( r s 2 ) )

26 }

Listing 2.1: Typical VADL definition

The example in Listing 2.1 starts with constant definitions (constant) and type aliases
(using) that are relevant for the entire specification. Types in VADL consist of a type
name, like Bits, and an optional bit-width surrounded by angle brackets (< and >).

A register file in VADL is assigned a name (in this case, X) as well as an index and
an element type. The index type specifies how the register file is indexed, and the
element type specifies the type of the registers in the file. Register file indexing in
VADL uses a style similar to function calls in other languages (e.g., X(rd)). Memory
access works similarly, although sometimes authors of specifications may want to access
multiple cells of memory at once. In this case, authors can specify a vector size like
MEM<size>(address).
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2.2. Introduction to VADL

A format has a name, a type, and multiple constituent fields. By using formats, authors
can assign meaningful names to parts of a whole binary value. In this example, a
Bits<16> value can be partially accessed by the top three Bits<4> parts and the
trailing op bits.

VADL instructions have a name, an instruction format type and a behavior. The
fields of the format type are available within the instruction behavior, the instruction
encoding and the instruction assembly. The examples ADD and SUB show how the
format’s register fields can be used to access a register file.

An encoding definition instructs VADL on the details of the instruction’s binary
encoding. Only fields that identify the instruction will be specified in the encoding. The
name of the encoding has to correspond to the name of a corresponding instruction.

An assembly definition defines the way an instruction is converted to readable assembly
code. As with the encoding, its name has to refer to a corresponding instruction.
As shown in the example, the assembly of multiple instructions can be defined with a
single definition using the mnemonic keyword, which stands for the respective instruction
name.

The example in Listing 2.1 shows the usage of several syntax types: definitions like
constant AddrLen, statements like the assignment in the ADD instruction definition,
expressions like X(rs1) + X(rs2), numeric literals like 32, string literals like ",",
and encodings like op = 1 .

2.2.1 Macros in VADL

The VADL macro system was conceived and implemented by Christoph Hochrainer et al.
in [HK23]. The article goes into detail on the many design decisions that went into the
original macro system. It also elaborates on literature related to macro systems and the
di�erent needs of a PDL’s macro system compared to a general purpose programming
language’s.

OpenVADL uses a slightly extended version of the original VADL implementation’s type
system (see 4.1 Defs as a new syntax type). Figure 2.1 shows the syntax types of
OpenVADL as well as their subtype relationships.

Listing 2.2 shows a minimal VADL specification containing one instruction. In this
specification, the names of the definitions (X, F and ADD), the names used in the
assignment statement (X, rd, rs1, and rs2), and the name of the type literals (Bits)
are identifiers (type Id). A statement (Stat) can be seen in the behavior of the ADD
instruction, whereas expressions (Ex) can be found in the bit width of the type literals,
as well as both sides of the assignment statement (e.g., X(rd), which is an expression of
type CallEx). In binary expressions, the operator (e.g., +) has the type BinOp.
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2. Background and Related Work

‹

Stats Encs IsaDefs Ex BinOp UnOp

Stat Defs Lit CallEx

Str V al SymEx

Bool Int Bin Id

Figure 2.1: Syntax types in the OpenVADL macro system

1 i n s t r u c t i o n set a r c h i t e c t u r e ISA = {

2
3 r e g i s t e r f i l e X : B i t s <4> ≠> Bit s <32>

4
5 format F : B i t s <16> =

6 { r s 2 : B i t s <4>

7 , r s 1 : B i t s <4>

8 , rd : B i t s <4>

9 , op : B i t s <4>

10 }

11
12 i n s t r u c t i o n ADD : F = X( rd ) := X( r s 1 ) + X( r s 2 )

13 }

Listing 2.2: Example of a VADL instruction

In VADL’s macro system, macro elements can produce language elements of any syntax
type defined in Figure 2.1, and can be used wherever the respective syntax type can be
used. The following subsections describe the di�erent kinds of macro elements.

2.2.2 Model instances

In VADL, structural code reuse can be implemented by using models. Models can be
parameterized and produce a node of one of the syntax types described in Figure 2.1.
The example in Listing 2.3 shows a model that produces an arbitrary instruction, and
two invocations of that model to produce ADD and MUL instructions.
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2.2. Introduction to VADL

1 model C r e a t e I n s t r ( i n s t r : Id , fmt : Id , b e h a v i o r : Stats ) : I saDefs = {

2 i n s t r u c t i o n $ i n s t r : $fmt = {

3 $ b e h a v i o r

4 }

5 }

6
7 $ C r e a t e I n s t r (ADD ; I32 ; X( rd ) := X( r s 1 ) + X( r s 2 ) )

8 $ C r e a t e I n s t r (MUL ; I 32 ; X( rd ) := X( r s 1 ) � X( r s 2 ) )

Listing 2.3: Instantiating a model

As can be seen in the example, the invocation of a model can specify expressions,
statements, definitions, encodings and operators directly in the argument list, separated
by semicolons (;). Using macros in the argument lists of a model instance is also supported.
Only arguments that are of a valid syntax type are accepted, where an argument is
considered valid if its syntax type is a subtype of the formal model parameter.

2.2.3 Model parameter placeholders

In the example in Listing 2.3, $behavior is used as a placeholder for the argument
that the model is actually invoked with. As shown, parameters of a model can be used
wherever their syntax type is considered appropriate.

2.2.4 Macro matches

In order to compare a macro value with predefined options, the macro match can be used.
It will conditionally insert the matching options into the syntax tree. In the example in
Listing 2.4, a user can switch between 32 and 64 Bit length by setting the appropriate
Arch to x64. A default case, characterized by the underscore symbol (_), always needs
to be provided.

1 constant AddrWidth = match : Ex ( $Arch ( ) = x64 => 64 ; _ => 32)

2 us ing Address = Bi t s <AddrWidth>

3 memory MEM : Address ≠> Bit s <8>

Listing 2.4: Matching on Id nodes

2.2.5 Built-in macro functions

To append or prepend string snippets to Id values, the macro function ExtendId

is provided. It will produce an Id by concatenating all given arguments, where Id

arguments are first converted to a string literal (Str). This is especially useful if one
model is used to produce multiple variants, e.g., signed and unsigned operations, or 32
and 64-bit variants.

7



2. Background and Related Work

1 constant ExtendId (A, "2" , B, "3" ) = 1

2 // e q u i v a l e n t to

3 constant A2B3 = 1

Listing 2.5: Simple ExtendId usage

The macro function IdToStr converts a VADL Id to a corresponding string literal. This
is useful in situations like an assembly definition, where the value of the instruction’s
name may be extended by a su�x and then turned into a part of the assembly.

1 model CreateAssembly ( i n s t r : Id , s u f f i x : Str ) : I saDefs = {

2 assembly $ i n s t r = ( IdToStr ( ExtendId ( $ i n s t r , $ s u f f i x ) ) , " rd " )

3 }

4 $CreateAssembly (SET ; " 32 " )

Listing 2.6: Using IdToStr with ExtendId

The outcome of the model invocation in Listing 2.6 is an assembly definition for the
instruction SET with a value of "SET32 rd".

2.2.6 Advanced types in macros

The type hierarchy in Figure 2.1 only covers the basic syntax types in VADL. A specifi-
cation can also define composite types, which can then be used in the formal parameters
of a model definition.

One of the available classes of composite types are record types. A record consists of
named fields, each with their own syntax type. Records can be nested, although a record
name can only be used if it has been defined earlier in the specification. They are defined
using the record keyword. Record members are accessed using the dot (.) operator,
and record values are created using parentheses, where record members are separated
with a semicolon (;) symbol. Listing 2.7 shows an example of the usage of records, where
the model Instr takes an argument of type NameFmtAndStats.

8



2.3. Binary expression parsing

1 record NameFmtAndStats =

2 { name : Id

3 , fmt : Id

4 , s t a t s : Stats

5 }

6
7 model I n s t r ( data : NameFmtAndStats ) : I saDefs = {

8 i n s t r u c t i o n $data . name : $data . fmt = {

9 $data . s t a t s

10 }

11 }

12
13 $ I n s t r ( (ADD ; F_Type ; X( rd ) := X( r s 1 ) + X( r s 2 ) ) )

Listing 2.7: Using record types

Another kind of composite type is VADL’s model-type. It allows using references
to model definitions as arguments in model instantiations, which allows the definition
and usage of higher-order macros. In OpenVADL, a model reference is assignable to
a model-type parameter if all its parameters are supertypes and the result type are
subtypes of the model-type’s respective parameters and result type. Listing 2.8 shows
a specification wherein a reference to the FInstrFactory model is used as an argument
for the invocation of another model.

1 model≠type I n s t r F a c t o r y = ( Id , Id , Stats ) ≠> I saDefs

2
3 model F I n s t r F a c t o r y ( name : id , fmt : Id , s t a t s : Stats ) : I saDefs = {

4 i n s t r u c t i o n $name : $fmt = {

5 $ s t a t s

6 }

7 }

8
9 model C r e a t e A d d I n s t r ( f a c t o r y : I n s t r F a c t o r y ) : I saDefs = {

10 $ f a c t o r y (ADD ; F_Type ; X( rd ) := X( r s 1 ) + X( r s 2 ) )

11 }

12
13 $ C r e a t e A d d I n s t r ( F I n s t r F a c t o r y )

Listing 2.8: Using model-type in macros

2.3 Binary expression parsing

Nested binary expressions in the original VADL implementation are always explicitly
enclosed by parentheses. In OpenVADL, binary expressions without explicit parentheses
are allowed and parsed using a well-defined operator precedence.
Table 2.1 shows the binary operator precedence, weakest-precedence operators first.

9



2. Background and Related Work

Operator Description

|| Logical OR (weakest precedence)
&& Logical AND

œ, /œ, in, !in List inclusion operators
| Binary OR
ˆ Binary XOR
& Binary AND

=, ! = Equality operators
>=, >, <, <= Comparison operators

>>, <<, <>>, <<> Shifts and rotations
+, ≠, +|, ≠| Additions (optionally saturated)
ú, /, %, ú# Multiplications (strongest precedence)

Table 2.1: Binary operator precedence

2.3.1 Operator precedence in compilers

One approach to implementing operator precedence in compilers is by using dedicated
grammar rules. The article [Aas95] lays out a process of transforming precedence
grammars (grammars where ambiguous rules are annotated with a numerical precedence)
into unambiguous context-free grammars. In addition, the presented algorithm supports
languages with postfix and prefix operators in addition to infix operators. The article
also provides definitions for precedence correctness of trees and operator covering.

As outlined in [Aas95], this style of precedence implementation has a number of drawbacks.
Firstly, it requires intermediate terms whose meaning can be unintuitive to a reader.
Secondly, it is not able to handle operators with dynamic, user-defined precedences.

As an alternative, [LdR81] lays out a mechanism of implementing operator precedence
by not considering precedence during parsing, instead performing tree operations on the
already-parsed expression tree. The main idea is to successively modify parts of the
binary expression tree to resolve local precedence mismatches until eventually, the entire
tree is well-ordered. A proof of correctness as well as time and space linearity is provided
too.

Figure 2.2 shows the expression 2 + 3 ú 10 > 5 parsed as a left-sided binary expression
tree, as well as the same tree ordered according to operator precedence.

2.3.2 Precedence in OpenVADL

As binary expressions in VADL can also contain BinOp macros as the operator (e.g. 5
$op 2), binary expression trees can only be reordered when every binary expression
in the tree has a non-macro operator. For this reason, using the precedence grammar
approach described in [Aas95] proved impossible - instead, binary expressions are parsed
as-is as a left-sided binary tree and reordered at a later point as described in [LdR81] .

10



2.4. Coco/R and LL(k) grammars

> >

ú 9 + 9

+ 10 2 ú

2 3 3 10

Before After

Figure 2.2: A binary expression tree before and after operator reordering

Binary expressions without BinOp macros are reordered immediately after they are parsed.
Other binary expression trees are marked as not reordered, and will be reordered by the
macro expansion once all macro elements have been replaced by concrete operators. The
expression tree is then marked as successfully reordered to prevent redundant reordering.

2.4 Coco/R and LL(k) grammars

Coco/R is a compiler generator primarily developed at the Johannes Kepler University
Linz. It is available for multiple languages, with versions for C#, Java and C++ being
the most up-to-date. It generates a recursive descent parser from an attributed grammar
[WLM03, Mö91]. Usually, recursive descent parsers are only able to parse languages
of grammars in the LL(1) class. LL(k) grammars are grammars that are parsable
left-to-right, with derivations also performed left-to-right, and with k lookahead tokens.
Thus, a LL(1) parser can only parse grammars where a single lookahead token is enough
to derive the selected derivation rule unambiguously.

However, despite producing a LL(1) recursive decent parser, Coco/R can parse languages
in the LL(k) classes for an arbitrary k by using predicates and allowing token peeking.
Not only does this enable Coco/R to parse a greater class of languages, it also allows the
grammar author to make their grammar easier to read.

1 i n s t r u c t i o n set a r c h i t e c t u r e ISA = {

2 r e g i s t e r r a : B i t s <32>

3 r e g i s t e r f i l e R : B i t s <5> ≠> Bit s <32>

4 }

Listing 2.9: Simple ISA definition

Listing 2.9 shows a short, valid VADL specification. A reasonable approach to distin-
guishing the register and the register file definitions is by factorization, i.e.

11



2. Background and Related Work

moving the common prefix register into a grammar rule and distinguishing the two
cases at the point of divergence, as illustrated in the Coco/R example in Listing 2.10.

1 i s a D e f = r e g i s t e r O r F i l e .

2 r e g i s t e r O r F i l e = " r e g i s t e r " ( " f i l e " r e g i s t e r F i l e D e f | r e g i s t e r D e f ) .

3 r e g i s t e r F i l e D e f = i d " : " type "≠>" type .

4 r e g i s t e r D e f = i d " : " type .

Listing 2.10: Disambiguation via factorization

Not only does this increase the amount of rules, it also impairs the readability of the
grammar specification. Coco/R conflict resolvers can be used to transform this into a
readable, unambiguous grammar that uses a more intuitive layout, as shown in Listing 2.11.
The corresponding syntactic predicate is shown in Listing 2.12.

1 i s a D e f = IF ( i s R e g i s t e r F i l e ( )) r e g i s t e r F i l e D e f | r e g i s t e r D e f .

2 r e g i s t e r F i l e D e f = " r e g i s t e r " " f i l e " i d " : " type "≠>" type .

3 r e g i s t e r D e f = " r e g i s t e r " i d " : " type .

Listing 2.11: Disambiguation via resolvers

1 boolean i s R e g i s t e r F i l e ( ) {

2 re tu rn l a . k i nd == REGISTER && scanne r . Peek ( ) . k i nd == FILE ;

3 }

Listing 2.12: Syntactic predicate

Another way of using these conflict resolver is to decide between di�erent rules depending
on the current state of the parser. The example given in [WLM03, Section 4.2] shows a
parser that can parse identifier tokens di�erently depending on the compiler’s semantic
state. In OpenVADL, this functionality is used do di�erentiate macro expressions that
may syntactically look identical, but should be parsed di�erently depending on their type
(see 3.6.2 Parsing macro expressions).

Coco/R works with attributed grammars, which allow for passing of semantic information
up and down the parse tree. Attributes passed up from lower nodes are called synthesized,
while attributes passed down from higher nodes are called inherited [Knu68]. When
targeting Java, Coco/R generates a method for each grammar rule, where inherited
attributes are implemented as method parameters and the synthesized attribute is the
method’s return value. Both synthesized and inherited attributes are optional in Coco/R
[WLM03].

To produce an abstract syntax tree in Coco/R, OpenVADL utilizes attributes and
semantic actions. This is in contrast to Xtext, which first generates a concrete syntax
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tree using the grammar specification which then has to be transformed to an abstract
syntax tree. Listing 2.13 shows what building an AST using Coco/R attributes and
semantic actions can look like.

1 b i n a r y E x p r<out Bina ryExpr exp r> =

2 number<out i n t l e f t>

3 o p e r a t o r<out Op op>

4 number<out i n t r i g h t> ( . exp r = new Bina ryExpr ( l e f t , op , r i g h t ) ; . )

5 ,

Listing 2.13: Attributed grammar example

2.5 GraalVM Native Image

GraalVM is a Java Development Kit (JDK) developed by an open source community led
by Oracle. It includes the Graal Compiler, a just-in-time compiler; the Tru�e language
implementation framework, which is used to build interpreters for other languages in
Java; the Polyglot API for hosting other languages in the Java Virtual Machine; and the
Native Image technology, which compiles Java programs Ahead Of Time (AOT) and
produces a self-contained binary executable [Graa].

GraalVM Native Image performs static analysis to determine which parts of the program
are actually reachable and discards unreachable parts. It also tries to perform as much
static initialization of the program as possible at build time, including static blocks and
class loading [Grab]. Finally, it compiles the remaining Java bytecode into native machine
code. In this step, classic compiler optimizations like method inlining are performed.
Due to its characteristic reduction in program start-up time, the GraalVM Native Image
technology is of specific interest to OpenVADL.

Because of GraalVM Native Image’s use of static analysis, most Java classes’ metadata
is discarded and not included in the generated executable. However, certain dynamic
Java features cannot be fully analyzed at build time. Examples for these features are
the reflection APIs, Dynamic Proxies, Java Native Interface (JNI) and runtime class-
loading. In these instances, required class metadata needs to be explicitly included in
the native image compilation by providing reachability metadata configuration [Grac].
Some libraries include the required configuration files in their distribution [Net], others
generate it during compilation by using annotation processing [Pic], and some rely on the
developer to manually configure the required metadata. A community-driven e�ort to
provide a centralized repository of metadata configuration files for third-party libraries
exists as well [Grad].

In the usual lifecycle of a Java runtime, the JIT gathers runtime behavior data and uses
the collected profiles to optimize the program further. As such, the longer a program
runs, the more e�cient it will become. As GraalVM Native Image compiles the Java
bytecode ahead-of-time, any optimizations will be static for the lifetime of the program.
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Instead, developers can opt into Profile Guided Optimization (PGO), where one or more
training runs of a native image produce a "profile", which is then used to compile a binary
with optimizations derived from the profile. [Grae].

As of writing, GraalVM Native Image supports the Serial and the Epsilon garbage
collectors on all supported platforms, as well as the G1 garbage collector on Linux.
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CHAPTER 3
Implementation

OpenVADL’s parser is implemented with a focus on e�ciency, which makes a reduction
of the number of syntax tree passes a priority. Where possible, the implementation moves
logic from dedicated passes into the syntax parsing process.

3.1 Architecture

Figure 3.1 shows a high-level overview of the compiler architecture.

Source Code

Scanner

Symbol Table Parser Macro Expressions

Symbol Resolution

VADL Backend

Characters

Tokens
ExpandsCollects Symbols

Intermediate AST
Consults

Resolved AST

Figure 3.1: OpenVADL compiler architecture

The Scanner and the Parser are generated by Coco/R. In OpenVADL, the Java
variant of Coco/R is used. OpenVADL generates the AST using attributes and semantic
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3. Implementation

actions (see also 2.4 Coco/R and LL(k) grammars).

During parsing, macro expressions are expanded and symbol definitions are collected. The
collected symbol information is then used to resolve the usage of symbols in expressions
and type literals. Sections 3.3 Scoping and Symbols and 3.6 Macros describe respective
implementation details of these processes.

3.2 Abstract Syntax Tree Modeling

The Abstract Syntax Tree (AST) is modeled using Java classes. The Node class is an
abstract class that is the superclass of any kind of AST node. Listing 3.1 shows the most
important methods of this class. Dedicated subclasses Definition, Statement and
Expr are provided for the most common node types. Collections of nodes used in macros
are represented via dedicated collection node types. If one of these collection nodes is to
be added to the AST, its contained items are added instead.

1 abs t rac t c l a s s Node {

2 /��

3 � Used f o r s yn tax type checks i n the p a r s e r .

4 �/

5 abs t rac t SyntaxType syntaxType ( ) ;

6
7 /��

8 � S t o r e s the c o r r e s p o n d i n g s o u r c e f i l e l o c a t i o n

9 � o f t h i s node f o r d i a g n o s t i c s .

10 �/

11 abs t rac t Sou r c eLoca t i on l o c a t i o n ( ) ;

12
13 /��

14 � Used to c o n s t r u c t a c a n o n i c a l s o u r c e r e p r e s e n t a t i o n

15 � o f an AST or s i n g l e node .

16 �/

17 abs t rac t vo id p r e t t y P r i n t ( i n t i ndent , S t r i n g B u i l d e r b u i l d e r ) ;

18
19 /��

20 � Created by the symbol c o l l e c t i o n , used by symbol r e s o l u t i o n .

21 �/

22 SymbolTable symbolTable ( ) { /� . . . �/ }

23 }

Listing 3.1: Node class for AST modeling

AST elements that can be either a concrete node or a macro invocation are modeled using
a sealed interface. A sealed interface is an interface that only permits a
specified set of implementations. As an example, Listing 3.2 shows an interface IsUnOp
which identifies any nodes of syntax type UnOp.
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1 sea led i n t e r f a c e IsUnOp permits UnOp , P laceho lde rNode ,

MacroInstanceNode , MacroMatchNode {}

Listing 3.2: Interface used to model macro invocation options

In this example, UnOp is a concrete Node implementation, whereas PlaceholderNode,
MacroInstanceNode, and MacroMatchNode are nodes that will be replaced by a
UnOp node upon macro expansion. The usage of this interface can be seen on UnaryExpr,
shown in Listing 3.3.

1 c l a s s UnaryExpr extends Expr {

2 IsUnOp o p e r a t o r ;

3 Expr operand ;

4 }

Listing 3.3: Binary expression model

In the specification in Listing 3.4, the ADD instruction of the minimal example in Listing 2.2
is restated. For this instruction definition, the produced AST is shown in Figure 3.2.

1 i n s t r u c t i o n ADD : F = X( rd ) := X( r s 1 ) + X( r s 2 )

Listing 3.4: Minimal VADL instruction

InstrDef

Id(”ADD”) AssignStat Id(”F”)

CallEx BinEx

Id(”X”) Id(”rd”) CallEx BinOp(+) CallEx

Id(”X”) Id(”rd”) Id(”X”) Id(”rs2”)

name formatbehavior

target

target arg

value

left

target arg

op right

target arg

Figure 3.2: Syntax tree of an instruction definition
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3.3 Scoping and Symbols

In VADL, symbols are generally visible in the scope that they are defined in, as well as
any child scopes. For example, a register file defined in an ISA is visible within
any definitions within the ISA. Some definitions have additional scoping e�ects – for
example, statements in instruction definitions can access symbols defined within the
associated format.

To manage the definition and resolution of symbols, OpenVADL uses symbol tables. A
symbol table in OpenVADL contains a list of symbols defined in a scope, as well as an
optional reference to the parent scope’s symbol table. Every symbol table entry contains
a reference to the AST node that originally defined the symbol, called the symbol’s
origin. When resolving a symbol using a symbol table, the symbol is first searched
within the table entries, consulting the parent symbol table only if it could not be found
therein. A reference to the enclosing scope’s symbol table is stored within every AST
node that resides in the scope – for example, while an ISA node holds a reference to the
root symbol table, its child definitions contain a reference to a child of the root symbol
table. Figure 3.3 illustrates this concept, detailing an example ISA specification where
every scope’s symbol table is shown with its respective declared symbols.

1 us ing RegIndex = Bi t s <4>

2
3 i n s t r u c t i o n set a r c h i t e c t u r e ISA = {

4 r e g i s t e r f i l e X : RegIndex ≠> Bit s <16>

5
6 format F : B i t s <16> =

7 { r s 2 : RegIndex

8 , r s 1 : RegIndex

9 , rd : RegIndex

10 , op : RegIndex

11 }

12
13 i n s t r u c t i o n ADD : F =

14 l e t sum = X( r s 1 ) + X( r s 2 ) i n

15 X( rd ) := sum

16
17 }

Name Root
Parent None
Symbols RegIndex

ISA

Name ISA
Parent Root
Symbols X

F

ADD

Name F
Parent ISA
Symbols rs2

rs1

rd

op

Name ADD
Parent F
Symbols None

Name Let
Parent ADD
Symbols sum

Figure 3.3: Scopes and symbol tables in VADL
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The process of assigning AST nodes references to the respective symbol tables and
populating the symbol table entries is called Symbol Collection. As shown in Figure 3.1,
this process occurs during parsing. The result of the symbol collection process is a fully-
built tree of symbol tables, with AST nodes referencing symbol tables, and symbol table
entries referencing AST nodes.

Some AST nodes, such as binary expression, do not create a new child scope. Therefore,
the resulting symbol table tree is of lesser depth and width than the AST. Additionally,
since the symbol table tree is based on parent rather than child references, its directionality
is reversed as compared to the AST. Figure 3.4 illustrates a simple AST and the
corresponding symbol table tree.

AST

ISADef(”Isa”)

FuncDef(”add”, {”x”, ”y”})

BinExpr

Id(”x”) BinOp(+) Id(”y”)

Root Table
{”Isa” æ ISADef}

ISA Table
{”add” æ FuncDef}

Func Table
{”x” æ FuncParam,

”y” æ FuncParam}

Figure 3.4: An AST with its corresponding symbol tables

3.3.1 The Symbol Resolution Pass

After the parsing process is completed and an AST with the populated symbol tables is
created, OpenVADL performs a dedicated AST pass called Symbol Resolution. The
goal of this pass is to verify that every identifier used in the specification refers to a valid
symbol, and to store references to those symbols’ origin nodes in the AST.

Symbol resolution in OpenVADL is implemented as a recursive process that inspects every
node in an AST. For most nodes, symbol resolution consists solely of invoking symbol
resolution on its children. For example, an assignment statement’s symbol resolution
simply invokes the symbol resolution of the target and value expressions. For type literals,
the existence of a symbol with the type’s name is verified using the node’s stored symbol
table, and a reference to the type’s original definition is stored in the node. For Id
expressions, if the referenced name can be resolved to a defined symbol, a reference to
that symbol’s origin node is stored within the Id node. This allows further processing
steps to process the fully-resolved syntax tree without any indirections. Unresolvable
symbols lead to an error that reports the symbol name and the corresponding location in
the source file.

19
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3.3.2 Macro evaluation

A dedicated symbol table is also used during parsing to store model, model-type and
record definitions. This symbol table is consulted when parsing macro expressions,
or when a model parameter uses a record or model-type name (see 2.2.6 Advanced
types in macros).

After parsing, this dedicated symbol table is discarded.

3.4 Binary expression ambiguity

Type literals in VADL have the form Name<sizeExpr>, where sizeExpr can be any
numerical expression. However, binary expressions containing the > operator cause an
ambiguity between the binary operator and the end of the type literal, as both use the
same symbol. Another example of ambiguity in expressions is the let expr in expr

expression type, because the in symbol is a binary operator as well as the terminal of
part of the expression.

To resolve these conflicts, OpenVADL restricts the use of binary operators in certain
situations. In most situations, all operators are allowed, but the typeLiteral rule allows
only a subset of operators called BIN_OPS_EXCEPT_GT. Similarly, let expressions use
a subset called BIN_OPS_EXCEPT_IN. These restrictions are implemented as inherited
attributes on the expression grammar rule (see 2.4 Coco/R and LL(k) grammars).

If the author of a VADL specification needs to use these binary operators in these
situations, it is possible to wrap the expression in parentheses ().

3.5 Vector Size Expressions

In VADL expressions, it is possible for memory accesses to specify a vector size for
multi-byte memory access.
For example, the expression MEM<4>(addr) := 7654321 would assign four bytes at
the address addr.

As these size expressions use the < symbol, distinguishing them from a comparison expres-
sion is not trivial. The original VADL implementation uses a syntactic predicate and only
interprets the expression as a size expression if a corresponding closing > is found. In Open-
VADL, this is implemented using a disambiguation rule symbolOrBinaryExpression,
which returns a SymbolExpr node if a closing > is found and a BinaryExpr node
otherwise. For situations where no binary expression is appropriate, e.g. in the assignment
statement above, an attribute allowLtOp is available on the rule to require a matching
> symbol – or report an error through the parser if not found.

The same ambiguity is also an issue in cast expressions with sizes.
Consider two expressions X(0) as SInt<5> and X(0) as SInt < 5. The only
di�erence between them is the closing angle bracket (>) of the first expression. To resolve
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< <

as 5 + 5

+ SInt 6 as

6 X X SInt

Before After

Figure 3.5: A binary expression tree before and after cast reordering

the ambiguity that arises at the opening angle bracket (<), the cast expression parser has
a fallback clause to return a BinaryExpr if a closing angle bracket (>) is not found. Cast
expressions are not implemented as binary operators – instead, their strong precedence is
implemented by manually manipulating the last element of a binary expression tree and
applying the cast to that element. Figure 3.5 shows an expression tree of the expression
6 + X as SInt < 5, before and after reordering the cast expressions.

3.6 Macros

3.6.1 Implementing macros in Coco/R

The philosophy of the macro systems and general language rules in OpenVADL are
described in 2.2.1 Macros in VADL. Its implementation in Coco/R is non-trivial, and
required several design decisions.

Consider the parsing rules of unary expressions, which allow elements of the UnOp syntax
type as their operator. In the grammar definition, the distinction between concrete
elements (e.g., a literal +) and macro elements has two consequences. Firstly, grammar
rules that might accept a macro element need an additional alternative in the rule,
illustrated in Listing 3.5.

1 una ryOpe ra to r<out IsUnOp op> ( . op = n u l l ; . )

2 = SYM_MINUS ( . op = new UnOp(NEGATIVE ) ; . )

3 | SYM_EXCL ( . op = new UnOp(LOG_NOT) ; . )

4 | SYM_TILDE ( . op = new UnOp(COMPLEMENT) ; . )

5 | macroNode<out Node n> ( . op = ( IsUnOp ) n ; . )

Listing 3.5: Unary operator parsing

Secondly, to avoid macros that are not a UnOp being parsed using this rule, a check has
to be added at the use site, as shown in Listing 3.6. In this listing, la is used to refer to
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the parser’s lookahead token.

1 term<out Expr exp r> ( . exp r = n u l l ; . )

2 = l i t e r a l<out exp r>

3 | IF ( isUnaryOperator ( l a )

4 | | isMacroNodeOfType ( th i s , BasicSyntaxType .UN_OP))

5 una ryOpera to r<out IsUnOp op>

6 term<out exp r> ( . exp r = new UnaryExpr ( op , exp r ) ; . )

7 | . . .

Listing 3.6: Unary operator use site

Using the isMacroNodeOfType guard, only the proper UnOp macro expressions are
parsed as unary expressions. The algorithm of this guard is described in detail in 3.6.2
Parsing macro expressions.

The isUnaryOperator function compares the lookahead token with the set of valid
unary operator tokens. This type of token lookup table check has to occur wherever
the isMacroNodeOfType guard is used to also allow non-macro syntax to be parsed.
Automated tests ensure the parser rules and the respective lookup tables do not diverge.
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3.6.2 Parsing macro expressions

Both placeholders (usages of a ‘model‘ parameter within its body) and model instances
(invocation of a model) start with a $ symbol. As Coco/R is a LL(1) parser generator,
it needs help to distinguish these di�erent types of macro expressions. This can be
especially challenging when parsing Stats.

1 model Othe rS ta t s ( ) : Stats = { /� Snipped �/ }

2 model Ass ignmentTarget ( ) : Ca l lEx = { /� Snipped �/ }

3 model LL1ExampleStats ( param : Stats , r e g F i l e I d : Id ) : Stats = {

4 $Othe rS ta t s ( ) // (1 )

5 $Ass ignmentTarget ( ) := 2 // (2 )

6 $param // (3)

7 $ r e g F i l e I d (0 ) := 4 // (4 )

8 }

Listing 3.7: Di�erent statements with same prefix

In Listing 3.7, the statements (1) through (4) start with a $ token followed by an
identifier token. Three of the four statements also use parentheses, indicating either a
model instance or a CallEx.

1. The entire line is parsed as a ModelInstanceStatement, because OtherStats
is a model that produces a Stats node

2. $AssignmentTarget() is recognized as a model instance that produces a
CallEx, thus parsing the line as an assignment statement

3. $param is a parameter of type Stats, thus the line
is parsed as a PlaceholderStatement

4. The $regFileId is parsed as a PlaceholderExpr of type Id, which causes
the call argument (0) not to be parsed as part of the macro invocation despite
looking like a model instantiation

The OpenVADL implementation described in Algorithm 3.1 uses Coco/R’s multi-token
lookahead to determine the type of statement that will be parsed.
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Algorithm 3.1: Scanning for macro syntax types
1 type Ω null;
2 while true do

3 peekedToken Ω Peek();
4 if isIdentifier(peekedToken) then

5 type Ω resolveType(type, peekedToken)
6 else if isDot(peekedToken) then

7 if not isRecord(type) then

// This dot "." belongs to a CallEx, not a record

8 return type

9 end

10 else if isOpenParen(peekedToken) then

11 if isModelType(type) then

12 return resultType(type)
13 else

// This parenthesis "(" belongs to a CallEx, not a

macro invocation

14 return type

15 end

16 else

// Peeked token is not part of the macro expression

17 return type

18 end

19 end

These same ambiguities also occur when using macro match, thus it also requires a
lookahead parsing. However, macro match always specifies the produced types, which
leads to a much simpler implementation as shown in Algorithm 3.2. Macro match is
described in detail in 2.2.4 Macro matches.

Algorithm 3.2: Scanning for macro match type
1 if isMatch(Peek()) and isColon(Peek()) then

2 return parseType(Peek())
3 else

4 return error

5 end
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CHAPTER 4
Changes to the VADL language

The OpenVADL implementation changes some aspects of VADL. Parts of the language
have been simplified, while other changes introduce features that simplify authoring
specifications.

4.1 Defs as a new syntax type

The original VADL implementation supported using IsaDefs in macros, but not any
non-ISA definitions. This meant that definitions of application binary interfaces and
micro processors could not use macros to define constants, formats and type aliases, as
these IsaDefs definitions were not allowed in non-instruction set definitions.

OpenVADL introduces a new type Defs, which describes all definition types that can be
used across ISAs, application binary interfaces, micro processors, and micro architectures.
It also allows models that produce this type to be defined in the outer-most level of the
specification, which was not possible in the original VADL implementation.

Listing 4.1 shows a model that defines a function being used by both an ISA and an
application binary interface.
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1 model CastedOp ( func : Id , op : Id , inType : Id , outType : Id ) : Defs = {

2 f unct ion $func ( l e f t : $inType , r i g h t : $ inType ) ≠> $outType =

3 VADL : : $op ( l e f t , r i g h t ) as $outType

4 }

5
6 us ing S In t16 = SInt <16>

7 us ing S In t32 = SInt <32>

8 us ing S In t64 = SInt <64>

9
10 i n s t r u c t i o n set a r c h i t e c t u r e ISA = {

11 $CastedOp ( add1632 ; adds ; S In t16 ; S In t32 )

12 }

13
14 a p p l i c a t i o n b ina ry i n t e r f a c e ABI f o r ISA = {

15 $CastedOp ( mul3264 ; muls ; S In t32 ; S In t64 )

16 }

Listing 4.1: Functions as a macro

4.2 Flexible macro matches

In VADL, usage of the macro match syntax allows an author to conditionally insert
syntax elements into the specification (see 2.2.4 Macro matches). In the original VADL
implementation, only comparisons with syntax elements of type Ex and its subtypes were
allowed.

OpenVADL enables authors to use macro match conditions of any syntax type. The main
motivation behind this change was to allow BinOp and UnOp comparisons, where certain
operators can lead to problematic behavior (e.g. divide-by-null behavior). Listing 4.2
shows a model that optionally wraps an operation into a zero check.

A second change of the macro match syntax concerns the condition, where it is now
possible to provide a list of conditions separated by a comma. If any of the conditions
match, the rule will be applied. Previously, match rules needed to be duplicated for each
alternative condition. Listing 4.2 shows this feature applied to two operators (/ and %).

1 model SafeOp ( l e f t : Id , op : BinOp , r i g h t : Id ) : Ex = {

2 match : Ex

3 ( $op = / , $op = %

4 => i f $ r i g h t = 0 then ≠1 e l s e $ l e f t $op $ r i g h t

5 ; _ => $ l e f t $op $ r i g h t

6 )

7 }

Listing 4.2: Divide-by-null safeguard
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4.3 Record access without parentheses

In the original VADL implementation, certain situations required the access of record
members to be surrounded by parentheses. This decision was made to disambiguate
the record access syntax from CallEx occurrences. In OpenVADL, this syntax is no
longer necessary, and not supported. Instead, the parser will consult the respective record
definition to determine which segments of an apparent CallEx are part of a record
access, and which are normal fields on a format. Listing 4.3 shows an example of a
record access expression in the original VADL implementation (1), contrasted with the
OpenVADL implementation (2).

1 record NameAndFmt ( name : Id , fmt : Id )

2
3 model OrigVADL (nameAndFmt : NameAndFmt ) : I saDefs = {

4 i n s t r u c t i o n $ (nameAndFmt . name ) : $ (nameAndFmt . fmt ) = {} // (1 )

5 }

6
7 model OpenVADL( nameAndFmt : NameAndFmt ) : I saDefs = {

8 i n s t r u c t i o n $nameAndFmt . name : $nameAndFmt . fmt = {} // (2 )

9 }

Listing 4.3: Record access comparison

4.4 Models that produce models

In the macro expansion system of OpenVADL, model instances are expanded immediately
at the site they are declared. This allows the usage of a feature not present in the original
VADL implementation: Models that produce models.

1 model BinExFactory ( binExName : Id , op : BinOp ) : I saDefs = {

2 model $binExName ( l e f t : Ex , r i g h t : Ex ) : Ex = {

3 $ l e f t $op $ r i g h t

4 }

5 }

6 $BinExFactory ( A d d i t i o n ; +)

7 i n s t r u c t i o n ADD : RType = X( rd ) := $Add i t i on (X( r s 1 ) ; X( r s 2 ) )

Listing 4.4: A model-producing model

Listing 4.4 shows the model BinExFactory which in turn produces a model. Because
the $BinExFactory instance is evaluated immediately after it is parsed, the produced
model Addition is known to the parser and can be used in the definition of the ADD
instruction.
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As can be seen in the example above, the inner model uses a parameter of the outer
model called op. To facilitate this, the outer models arguments are captured upon
its instantiation. When an inner model uses a placeholder, its captured arguments
are consulted if the placeholder expression cannot be resolved using the model’s own
arguments.

4.5 Type variance in model-type parameters

When passing a reference to a model as an argument, the original VADL implementation
considers the reference type valid only if the referenced model has the exact same
type for each parameter and as the result type as the used model-type definition.
OpenVADL relaxes this restriction, allowing the model parameters to be supertypes of the
model-type parameters and the result type to be a subtype of the model-type result.
Listing 4.5 shows a reference to model Constants being used as an IsaDefsFactory.
The reference is of a valid type because the result type Defs is a subtype of IsaDefs
and the type Ex of parameter size is a supertype of Id (see Figure 2.1).

1 i n s t r u c t i o n set a r c h i t e c t u r e ISA = {

2 constant Word = 16

3
4 model≠type I s a D e f s F a c t o r y = ( Id ) ≠> I saDefs

5
6 model Cons tant s ( s i z e : Ex ) : Defs = {

7 constant a = $ s i z e

8 constant b = $ s i z e / 2

9 }

10
11 model Bi tDe f s ( f a c t o r y : I s a D e f s F a c t o r y , s i z e : Id ) : I saDefs = {

12 $ f a c t o r y ( $ s i z e )

13 }

14
15 $B i tDe f s ( Cons tan t s ; Word)

16 }

Listing 4.5: Valid types in model references

4.6 Binary expressions without parentheses

In the original VADL implementation, chained binary expressions were only possible
using parentheses. This also included type casts. As a result, expressions with several
operators became cumbersome to use.

OpenVADL implements operator precedence as described in 2.3.2 Precedence in Open-
VADL. Listing 4.6 shows a comparison for a shift-by-immediate computation.

28



4.7. Flexible Imports

Authors may still choose to use parentheses – in the example, the addition should likely
remain parenthesized for clarity.

1 constant a = (1 as Bi t s <2>) << ( ( imm(0) as UInt <2>)+(1 as UInt <2>))

2
3 constant b = 1 as Bi t s <2> << imm(0) as UInt<2> + 1 as UInt<2>

Listing 4.6: Equivalent binary expressions with and without parentheses

4.7 Flexible Imports

In the original VADL implementation, imports had the pattern (in EBNF notation):

"import" filename { "::" symbol_path } ["with" string_literal]

For example, import riscv::ISA with "ArchSize=Arch64" would import a
symbol ISA from riscv.vadl in the current directory and set the model ArchSize
to Arch64 during parsing. The imported files had to be located in the same directory
as the importing specification. Multiple symbols needed multiple import declarations.

In OpenVADL, two backwards-compatible extensions were made to this syntax:

• The file name can now be a string literal pointing to any valid path

• Multiple symbols can be imported using a {}-wrapped list

To showcase these new features, let’s consider the declaration
import "../isa.vadl"::{RVI, RVIM}

In this example, two di�erent symbols are imported from a file in the specification’s
parent directory. Specifying the .vadl extension is optional, but complements editor
support for file paths.

Another change in OpenVADL concerns the parsing model of imports: In the original
VADL implementation, an import declaration was evaluated in a dedicated pass, after
the parsing and macro expansion had already taken place. This meant that model
definitions could not be imported across specifications. Instead, OpenVADL evaluates
import declarations immediately after parsing, making any macro symbols available in
the current specification.

An additional side e�ect of these changes is that imported specifications are parsed
and evaluated once per import declaration. The original VADL implementation would
only evaluate each specification once, and reuse the parsed syntax tree for other import
occurrences. In practice, OpenVADL proved fast enough that this did not lead to a
noticeable performance degradation.
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4. Changes to the VADL language

4.8 Constant expressions in enumerations and groups

In the original VADL implementation, enumeration values and literals in group

definitions only allow the usage of integer literals. In OpenVADL, this restriction is
relaxed, and constant expression are usable. Listing 4.7 shows a comparison between
enumerations in the original VADL implementation as well as an OpenVADL equivalent.

1 i n s t r u c t i o n set a r c h i t e c t u r e OrigVADL = {

2 enumeration F l a g s =

3 { READ = 0b001

4 , WRITE = 0b010

5 , EXEC = 0b100

6 }

7 }

8
9 i n s t r u c t i o n set a r c h i t e c t u r e OpenVADL = {

10 f unct ion n thB i t ( n : I n t ) ≠> Bit s <3> = 0b001 << n

11
12 enumeration F l a g s =

13 { READ = nthB i t (0 )

14 , WRITE = nthB i t (1 )

15 , EXEC = nthB i t (2 )

16 }

17 }

Listing 4.7: VADL enumerations and constant expressions
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CHAPTER 5
Performance Evaluation

To evaluate the performance of the OpenVADL parser, a diverse range of VADL specifi-
cations were used. Table 5.1 summarizes the characteristics of the specifications. The
.expanded variants of miniARMv7 and TIC64x are semantically equivalent to their
base variants, except every usage of macros has been substituted with the equivalent
expanded VADL code.

File # Lines # Instructions # Model Instances

aarch64 2328 799 1362
ARMNeon 2968 140 609
hexagon 1454 204 154
mipsIV 1131 106 163
miniARMv7 1272 8865 5701
miniARMv7.expanded 189555 8865 0
TIC64x 1001 8636 7083
TIC64x.expanded 187022 8636 0

Table 5.1: A summary of the specifications used for performance evaluation

5.1 Single file parsing

The objective of this scenario is to measure the time it takes the parser to parse a
single file in a CLI usage scenario. Six of the specifications listed in Table 5.1 are used
to compare the performance of the original VADL parser and the OpenVADL parser:
aarch64, miniARMv7, ARMNeon, mipsIV, TIC64x and hexagon.
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5. Performance Evaluation

5.1.1 Methodology

To compare results of the OpenVADL parser with the VADL implementation in a single
file parsing scenario, four classes of tests were run against the VADL specification files:

1. The old Xtext-based implementation using Java 21.0.4 OpenJDK

2. The new Coco/R based implementation using Java 21.0.4 OpenJDK

3. The new Coco/R based implementation using Java 21.0.4 GraalVM

4. The new Coco/R based implementation compiled ahead-of-time with
GraalVM 21.0.4 Native Image

Every test file was parsed using the respective command line interface 50 times, and the
average execution time (wall clock) was measured.

For the non-native image runs (1, 2 & 3), the same Java Virtual Machine flags were used:

-XX:TieredStopAtLevel=1 -Xmx8G

-XX:+UnlockExperimentalVMOptions -XX:+UseEpsilonGC

For the Native Image run (3), the image was compiled using ML-inferred profile guided
optimization and the following flags:

-O4 --gc=epsilon -march=native

In addition, the native image also was assigned a maximum heap size via -Xmx8G.
Profile-guided optimization was not utilized, as its performance impact would depend on
whether its training workload is representative of real-world specifications – using the
test files themselves as training data would bias results beyond real-world performance
gains. All tests were run on a PC using an Intel i7-7700K with 16 GB of DDR4 2667MHz
memory.

As several features of the old VADL parser are not yet implemented, the results of the old
VADL parser have been normalized by deducting the duration of the non-implemented
passes from the measured run time:

AstAnnotationPass, AstPipelineSplittingPass, AstRAIIPass,

AstRecursiveCallDetectionPass, DefaultGrammarInjectionPass,

AstOperationAnnotationPass, AstTypeInferencePass,

AstLoweringPass, AstValidationPass

32



5.2. Performance Impact of Macros
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Figure 5.1: Parse durations of various VADL files (logarithmic scale)

5.1.2 Results

As Figure 5.1 shows, by using a faster parser generator and combining it with the
ahead-of-time compilation capabilities of GraalVM, a speedup factor of 32 to 150 was
achieved for these test files, with simpler files showing larger improvements. Looking
towards the future, these initial response times should be more than satisfactory for a
responsive language server.

5.2 Performance Impact of Macros

The objective of this scenario is to measure whether, and by how much, using macros
has an impact on parse performance compared to manually typing out specifications.

This test uses the miniARMv7 and TIC64x specifications, as well as their respective
.expanded variants (as described in Table 5.1).

5.2.1 Methodology

This test consists of the same four classes as 5.1 Single file parsing, with the same build
time and run time flags.

All four specification files were parsed 50 times, and the average execution time (wall
clock) was recorded. Results for the original VADL implementation were normalized as
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5. Performance Evaluation

described in Section 5.1.

5.2.2 Results

Figure 5.2 shows that for miniARMv7, both the original VADL implementation and the
Native Image build of OpenVADL parse the macro-based specification considerably faster
than its expanded version. OpenVADL on OpenJDK and GraalVM only shows a minor
di�erence in runtime.
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Figure 5.2: Parse durations of original and expanded miniARMv7 (logarithmic scale)

On the other hand, Figure 5.3 shows that OpenVADL on OpenJDK and on GraalVM
parse the expanded TIC64x specification faster than the original, macro-based version.
Only the original VADL implementation and OpenVADL built with Native Image are
faster parsing the macro-based specification than the expanded variant.
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Figure 5.3: Parse durations of original and expanded TIC64x (logarithmic scale)
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5.3. Performance as a long-running process

5.3 Performance as a long-running process

The objective of this scenario is to measure how a theoretical language server built on
top of OpenVADL may perform. For this purpose, a varying number of files is parsed and
the average time per parse is recorded. Files miniARMv7 and miniARMv7.extended

of Table 5.1 are used for this evaluation.

5.3.1 Methodology

Three classes of tests were used to parse the VADL specification files:

1. The new Coco/R based implementation using Java 21.0.4 OpenJDK

2. The new Coco/R based implementation using Java 21.0.4 GraalVM

3. The new Coco/R based implementation compiled ahead-of-time with
GraalVM 21.0.4 Native Image

Every test file was parsed using OpenVADL’s development-only -n command line flag,
which repeats the file parsing n amount of times. For this evaluation, files are parsed
between 1 and 100 times and their average parse time is compared.

For the non-native image runs (1 & 2), the same Java Virtual Machine flags were used:

-Xmx8G -XX:+UseG1GC

For the Native Image run (3), the image was compiled using the following flags:

-O4 --gc=G1 -march=native

In addition, the native image also was assigned a maximum heap size via -Xmx8G.
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5.3.2 Results

As can be seen in Figure 5.4, the advantage of ahead-of-time compilation fades as the
virtual machine warms up. As the native image is approximately 25% faster per-parse
with larger amounts, it stands to reason that 25% of the native image’s run time is its
startup logic (scheduling by operating system, binary loading, allocations, initialization).
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Figure 5.4: Warm-up behavior of the OpenVADL parser
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CHAPTER 6
Future Work

The original VADL implementation produced a user manual containing descriptions,
specifications, and examples of the VADL language. Parts of this user manual were
generated from the Xtext specification. To replace this user manual, an OpenVADL
documentation needs to be created. As part of this e�ort, an adapter that converts
Coco/R specifications into a documentation format will be necessary.

In the macro system, additional syntax types AbiDefs, MiaDefs, MipDefs analogous
to the existing IsaDefs may improve the authoring experience. This would improve
the reuse of common elements outside the ISA definition.

To further improve performance, changes to the parser and scanner generated by Coco/R
may be considered. Currently, OpenVADL uses the default Coco/R file templates. Initial
investigation showed that the parser/scanner can be improved by rewriting some parts
to allocate fewer objects – for example, every parsed token will always contain the token
text as a String object. In practice, only identifiers and literals ever access this value,
leading to thousands of needlessly allocated objects.

Along the same lines, both the internals of the generated parser and the AST nodes allocate
a large amount of objects. Java’s Project Valhalla [Pro] aims to provide constructs to
the Java language that would discard the identity of value objects, allowing flattening
in function calls and on the stack. The Token and SourceLocation classes are
prime examples of often-created objects that do not need identity and would benefit
from flattening. Once these concepts land in the Java language, an analysis of their
performance impact on parsers may reveal a large potential.

To replace the IDE tooling generator provided by the Xtext framework, it is planned to
implement the language server protocol (LSP) [LSP] to enable IDE integration.

Other parts of the OpenVADL implementation, such as the type system, are currently in
development.
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CHAPTER 7
Conclusion

OpenVADL significantly improves upon the original VADL implementation regarding
performance. Choosing a di�erent parser generator and planning the compiler structure
with performance in mind, OpenVADL was able to achieve great performance gains
without compromising on readability and maintainability.

In addition to being more e�cient, OpenVADL also introduced several useful features
to the language. These features will enable our team to more e�ciently write VADL
specifications for complex instruction sets and microprocessors.

Despite restricting use of dynamic Java features, GraalVM Native Image proved a good
fit for a static command-line interface program. Avoiding the use of reflection also helps
new developers to rapidly understand the structure and flow of the implementation.
Overall, we are delighted with the advantages of GraalVM Native Image and do not see
the disadvantages as relevant to OpenVADL.

Although the first step of a new, open implementation of VADL is now completed,
significant e�ort is still necessary to implement the full feature set of VADL.
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