Generation of a QEMU-Based
R OpenvaDL Instruction Set Simulator from a M oNVERSTH
Processor Description in OpenVADL

Johannes Zottele, Matthias Raschhofer, Benedikt Huber, and Andreas Krall
Technische Universitat Wien, Vienna, Austria

OpenVADL VIAM Transformation and Optimization

OpenVADL is an open-source implementation of the The VIAM is OpenVADLSs intermediate representation,
Vienna Architecture Description Language (VADL). modeling instruction behavior as a multigraph that
From a VADL specification, it can generate various tools integrates a control flow and dependency graph.

and artifacts, including an assembler, linker, compiler, To convert a VADL instruction into TCG operations, this
and instruction set simulator (ISS). Artifact generation graph is transformed and optimized into a TCG-specific
based on architecture synthesis is still in an early control flow graph suitable for direct C code generation.

development stage. [Assembler

& Linker
VADL
Specification

Key transformations include:

, Cycle- - Normalization to the QEMU target size
Architecture A erimate
bp - Side-effect scheduling

Synthesi
yRACsIs Simulator

l » TCG expression scheduling

(Hardware) » TCG operation lowering @Sb’ @
@ess<imm5>: Bits<64> @x Bi@
QEMU Generation @mb: Bitseon

The ISS generator builds on QEMU, an open-source

QEMU
Simulator

machine emulator that uses Dynamic Binary Translation wr1te<X> b start
(DBT) to emulate guest architectures. \
1nstr end

Lowered
VIAM

Guest Program

. QEMU System @
C-Code E QEMU E
Generation : Frontend @

executes on

Decoder

Generation

TCG
Transformation

e e e e eeaaaaae . 6,65‘ 666&
start | tcg add »| tcg mov —>»| instr end

OpenVADL generates the guest frontend, which translates
guest instructions into TCG operations —QEMU'’s

architecture-independent intermediate representation (IR). Runtime Performance Evaluation

These are then compiled by the host backend into native ,
The Embench benchmark suite was used to evaluate the

host instructions. , .
runtime performance of the generated QEMU against the

RISC-V TCG IR X86_64 upstream version (baseline 1). Results show a runtime
» add i64 loc3,x10,8 [”| leaq 8(%10),%rdi : o
d x11, 8(x10) 0 d 164 x11. l0c3 novq (%rdi) %ril reduction of up to 44% (RISC-V crc32).
Further optimizations are expected to yield similar
performance gains for AArch64.
AArch64 Embench - QEMU Relative (lower is better) RISC-V 64 (IM) Embench - QEMU Relative (lower is better)
1.2F 7 7 0 S S S S S S S

relative runtime
relative runtime

L0 | E 08
0.8 ¢ :

: 0.6 1
0.4 | 5 047
0.2 | 0.2 |
0.0 ' 0.0 !

< AN +— . O - O L <t NN O et — v \O - L+ O +
f%%?-ﬁﬁ%e§§§='§~**§§ EHEgEEEEEERE TV EETES
! . '-‘-y—qm 0) : 4 .'-"Hm 2
5 O 2EL4 2535882 5 ° 558 2582 ELEE5 5T c5 ZE
‘qu—q.‘_‘@H - "“CO-HOLH)Q)H -— o
5 E EEE ¢ 2R E CE 5 SEE- $fzdaEcE BT OB
qv} = s o — R O qe! R o — o v) wn
= = = ' = < = = |
< s 2 = < & > S
&0 = &0
7)) nn

