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OpenVADL VIAM Transformation and Optimization

OpenVADL is an open-source implementation of the The VIAM is OpenVADLSs intermediate representation,
Vienna Architecture Description Language (VADL). modeling instruction behavior as a multigraph that
From a VADL specification, it can generate various tools integrates a control flow and dependency graph.

and artifacts, including an assembler, linker, compiler, To convert a VADL instruction into TCG operations, this
and instruction set simulator (ISS). Artifact generation graph is transformed and optimized into a TCG-specific
based on architecture synthesis is still in an early control flow graph suitable for direct C code generation.
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OpenVADL generates the guest frontend, which translates
guest instructions into TCG operations —QEMU'’s

architecture-independent intermediate representation (IR). Runtime Performance Evaluation

These are then compiled by the host backend into native ,
The Embench benchmark suite was used to evaluate the

host instructions. , .
runtime performance of the generated QEMU against the

RISC-V TCG IR X86_64 upstream version (baseline 1). Results show a runtime
» add i64 loc3,x10,8 [ ”| leaq 8(%10),%rdi : o
d x11, 8(x10) 0 d 164 x11. l0c3 novq (%rdi) %ril reduction of up to 44% (RISC-V crc32).
Further optimizations are expected to yield similar
performance gains for AArch64.
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