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1 INTRODUCTION

The Vienna Architecture Description Language (VADL) is a Processor Description Language (PDL). The name is
inspired by the Vienna Definition Language (VDL) which was developed 50 years ago for the formal specification of
the programming language PL/I using operational semantics [122].

Why do we need another PDL? The development of backends for compilers like LLVM, GCC or just-in-time (JIT)
compilers is cumbersome and error prone. The specifications are huge and very difficult to understand even for
experienced compiler developers. Thus, we want to get all these distinct compilers automatically generated based on a
single concise specification. Additionally, we also want to automatically produce an assembler, a debugger, disassembler,
Instruction Set Simulator (ISS) and linker. To the best of our knowledge, currently there does not exist any PDL or
compiler backend specification language that achieves this. Furthermore, we want to do computer architecture research
and teaching on a higher level of abstraction compared to what, we believe, other existing PDLs or Hardware Description
Languages (HDLs) currently offer. The low level micro architecture specification means provided by current PDLs
or HDLs lead to huge unmaintainable specifications where the instruction’s semantics and the microarchitecture are
intermingled. It should be possible that hardware, Cycle Accurate Simulators (CASs) and instruction schedulers for
compilers are also automatically generated from such a high level specification. We want to push forward the research
in the area of PDLs. For all these reasons we designed VADL and developed the necessary generator technologies.

VADL permits the complete formal specification of a processor architecture. Additionally it is possible to specify the
behavior of generators which produce different artifacts from a processor specification. From a single concise VADL
processor specification, the VADL system is able to automatically generate an assembler, a compiler, linker, functional
ISS, CAS, synthesizable specification in a HDL, test cases and documentation. VADL strictly separates the Instruction
Set Architecture (ISA) specification from the Microarchitecture (MiA) specification. The ISA specification is needed by
all generators. The MiA specification is used by the HDL and CAS generators as well as for instruction scheduling in
the compiler. An ISA specification can be implemented by one or more MiA specifications. The Application Binary
Interface (ABI) specification defines a programming model and is used by the compiler generator.

VADL has been designed to enable concise comprehensible specifications. A novice should be able to understand a
specification without prior knowledge of VADL. Redundant specifications are avoided. VADL is a safe language. It is
strongly statically typed. The language parser and the artifact generators apply extensive consistency checks. VADL is
a generator language, executable specifications are not possible.

1.1 Contribution

The development of VADL led to innovations across different domains. Our main contributions are:

• A concise and comprehensible processor description language
• A high abstraction level ISA independent MiA specification language
• ISA to MiA mapping by using inherent properties of the instruction’s behavior for MiA assignment
• A simple pred-LL(k) parsable syntactical pattern-based macro system
• Syntactic type safe higher-order macro templates
• Specification of assembly language by string expressions
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• Assembler generation by automatic grammar inference through program inversion
• Compiler generation by automatic pattern inference from operational semantics specifications
• MiA synthesis by reduction of the instruction’s data flow graph
• MiA hazard detection and optimization

See section 2 for a short explanation of the concepts listed here. Additionally, we present a variety of smaller
contributions particularly useful for our exploratory language design of VADL:

• Composable syntax types using records and type aliases
• Constraints on instruction encodings
• Register file aliases with different constraints
• Access functions for decoding and encoding of format fields
• Concise specification of user mode emulation

Additionally, we have started to develop OpenVADL which is the open source implementation of VADL.

1.2 Outline

Section 2 gives some background information about the different domains touched upon in this article. This section can
be skipped by readers who already have a deep knowledge of compilers and computer architecture. Section 3 presents
the most important language elements of VADL by examples. Section 4 describes the implementation of the VADL
compiler, its intermediate representation and the different generators in detail. Section 5 does a detailed qualitative and
quantitative evaluation of VADL and its generators. Section 6 compares VADL and its implementation with related
work.

2 BACKGROUND

Design Space Exploration (DSE)

One of the most relevant applications for a PDL is DSE for Application Specific Instruction Set Processors (ASIPs). If
it is possible to automatically generate a set of tools from an architecture description in a PDL, the productivity of
the architecture design process can be improved by establishing short feedback loops between design iterations. The
set of these tools should at least contain a compiler toolchain, a CAS and a synthesizable hardware model in a HDL.
Additionally it can also include a functional ISS, test cases, documentation and other artifacts. As described in [92] this
establishes two feedback loops:

• The compiler toolchain together with the CAS can provide accurate performance information for a given software
workload.
• The hardware model can provide information about the maximum clock frequency or chip area needed for the
actual hardware implementation.

To consider this information in the architecture design is especially useful in embedded systems and ASIPs design,
because of stringent hardware constraints and the known workload.
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4 Freitag et al.

Compiler Toolchain

VADL can generate the toolchain necessary for producing machine executable code from a high level programming
language like the C programming language. The main tools in this toolchain are the compiler, the assembler, and the
linker.

Compiler. In general, a compiler translates a program written in one programming language into a semantically
equivalent program in another programming language. In the most common case, and the case relevant for VADL, the
compiler translates a program written in a high-level and architecture independent programming language into an
architecture dependent assembly language. An assembly language is a direct textual representation of machine code. In
other words, there is a direct correspondence between machine instructions and assembler instructions.

Typically, high-level programming languages offer syntax constructs to describe control flow and data structures in
a manner easily understood by a programmer. This abstraction helps to facilitate reasoning about the semantics of
an implemented algorithm and hides unnecessary details. It also helps in the maintenance of software. An assembly
language typically does not provide such syntax features and is more difficult to read and maintain for a programmer.
The primary purpose of the compiler is to translate from the higher abstraction level of the programming language to
the lower abstraction of the assembly language. This translation is typically done in multiple passes. The compiler can
employ various optimization steps during translation to increase the resulting program’s performance or reduce its
code size.

A retargetable compiler is designed to make it easy to add support for a new target architecture. The design of
a retargetable compiler has target architecture independent and target architecture dependent components. Target
architecture independent components implement common transformations and optimizations for all targets, e.g., dead
code elimination. Target-dependent transformations, like register allocation, are implemented such that the main
algorithm is target-independent but can be parameterized with target-specific data.

A retargetable compiler is often roughly subdivided into three parts.

• The frontend is input language dependent. It typically parses and analyzes a high-level programming language as
input. It abstracts each concrete programming language to a common Intermediate Representation (IR). This IR
is input language independent and it is used in the later stages of the compilation process. To support multiple
high-level programming languages, the front end has to be able to abstract all of them to the common IR.
• The middleend operates on the IR. It performs transformations and optimizations that are common to all target
architectures. It is independent of both the input programming language and the target architecture. In order to
facilitate retargetability, as much functionality as possible should reside in the middleend.
• The backend emits code specific to the target architecture. It has specialized functionality for each supported
target.

Parser. An important component of the frontend in a compiler is the parser. In the context of VADL an important class
of parsers are predicated LL(*) parsers. These parsers read input from left-to-right and derive the leftmost non-terminal
symbol, hence LL. The lookahead is arbitrary but finite – hence ∗ – as opposed to LL(k), where the lookahead is bounded
by 𝑘 . A special case of LL(k) is LL(1), which is the most resource-efficient.

A predicated parser can also use syntactic predicates to decide which derivation to apply. This allows the parser to
resolve possible divergences, and it can help to make the input grammar more readable and maintainable.
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Also part of the frontend is the macro system. Macros are a well established way to realize language extensions. In
general, a macro is a user defined procedure that reads and transforms program code. In its simplest form, a macro can
define simple string replacements A complex macro on the other hand can be seen as a form of generative programming.
Since a macro is also defined as program code, it can also be processed by a macro. This leads to the idea of higher-order
macros. So, a macro is higher-order if it takes another macro as input, or returns a macro or both.

Lexical macros are string operations that operate directly on the text of the program code. As such, they are not
aware of program structure. VADL macros are syntactic macros that are aware of the syntactic structure and operate on
the Abstract Syntax Tree (AST). In addition, VADL macros support a type system for syntax types, where each syntax
element is of a certain type. The type system helps prevent programming errors and enhances readability. The types in
VADL macros are extensible with programmer-defined composable syntax types, also known as records. A record is a
type checked collection of named syntax elements. A macro can access a member of a record via its user-defined name.

For more information about the VADL parser and macro system see section 4.2.

Instruction Selection. An important aspect of the compiler backend is the translation from the target independent IR to
the target specific assembly language. This is done by selecting the instructions offered by the target in such a way
that the resulting program is functionally equivalent to the IR input program. Hence the name of the pass instruction
selection. The most common approach to achieve this is described in the standard compiler text book [7] and also
implemented in LLVM which is used in VADL’s compiler generator. The idea is to represent the IR input program as
dependency graph – the instruction selection graph – where each node is an IR instruction and each directed edge
represents a dependency. Each target instruction is represented as a graph, which represents the input, the output
and the semantics: the instruction pattern. A pattern is a potential subgraph of the instruction selection graph. The
instruction selection pass has to find a complete cover of the instruction selection graph, by tiling the appropriate
patterns. In a VADL ISA specification, the semantics of an instruction is formulated as operational semantics. Thus
an important task of VADL’s LLVM Compiler Backend (LCB) is to infer the instruction patterns to be used during
instruction selection from the VADL specification. See section 4.5 on implementation details.

Register Allocation. The compiler has to decide which values to keep in registers for fast access, and which values to
store in memory, resulting in slower access. This is done in the register allocation pass. The live range of a value in a
program is the collection of all points in the program between the definition of a value and its last use. If the number of
overlapping live ranges is greater than the number of available registers, the compiler has to break up live ranges and
insert spill code – i.e., store a value in memory and load it when it is needed again.

A common approach for register allocation is graph coloring, described in [30]. The idea is to construct an interference
graph, representing live ranges as nodes and interference relations as edges. Each available register is represented by a
color. The goal of the approach is to assign each node a color, such that no two nodes with the same color are connected
by an edge.

OpenVADL’s QEMU Generator uses the same approach to minimize the number of temporary variables, see section
4.8.7.

Instruction Scheduling. While respecting all dependencies and keeping the original semantics of the program, the order
in which the instructions are arranged can be subject to optimization. This pass is called instruction scheduling. Skillfully
rearranging the order of the instructions can lead to better resource usage, and fewer pipeline stalls, thus improving
performance. Especially in target architectures with explicit instruction level parallelism, like Very Long Instruction

Manuscript submitted to ACM



6 Freitag et al.

Word (VLIW) architectures, a good instruction schedule is crucial, as the instruction scheduler has to decide which
instructions should be executed in parallel.

A Basic Block (BB) is a sequence of instructions with one entry point, and one exit point, and no other control flow.
In most cases, the instruction scheduler operates on a single BB. This limits the scope of the scheduler and restricts its
possibilities. One technique to improve this situation is to merge BBs with control flow elimination, thus increasing the
scope of the scheduler. This is done by transforming control dependencies into data dependencies.

This can be done by using predicated instructions, which have to be available in the target architecture. Alternatively
it can be realized by speculative execution and conditional assignment. However, this only works if the speculated
instructions do not have side effects.

VADL’s MiA synthesis also uses control flow elimination, see 4.9. Again, the idea is to replace control dependencies
with data dependencies.

Compiler Optimizations. Optimizations done by the compiler are program transformations that retain the semantics of
a program, while improving it according to some metric. Typical metrics of interest are: Execution time, memory use,
code size or power intake. Often trade-offs have to be made, because a given transformation may improve one metric,
but harm another.

In order to facilitate code reuse, it is good engineering practice to place program optimizations in the middleend of the
compiler, if possible. Due to their target independent nature, optimizations in the middleend can benefit all supported
target architectures. Often optimizations in the middleend are not entirely target independent, but are parameterized
with information about the target architecture. These can help the – otherwise target independent – middleend pass
make some optimization decisions.

One important aspect regarding the middleend is the design of the IR. The IR should make it easy to perform program
analysis and program transformations. An IR in Static Single Assignment (SSA) form can help with these goals. In SSA
form, a variable is assigned a value exactly once and cannot be changed thereafter. This property greatly facilitates
dependency analysis, and determining use-def chains, since there is a single point of definition for a variable. Many
widely used compilers employ an IR in SSA form, e.g. GCC [116] and LLVM [77], which VADL uses. The article [35]
describes how to efficiently generate the SSA form of a given program, and the topic – including many optimizations –
is covered comprehensively in the SSA book [106].

An optimization well suited for SSA form is global value numbering [28]. The goal of global value numbering is to
remove redundant computations that compute the same value, by replacing them with the value itself. It does so by
labelling expressions that produce the same value with the same value number. This facilitates analyzing inputs and
outputs of computations, thus making it possible to determine which computations yield the same value.

Common Subexpression Elimination (CSE) has a similar goal, as it also tries to eliminate redundant computations. It
does this by analyzing which expressions are available at which point in the program. Then it decides where to replace
identical – i.e., common – expressions by a single variable holding the computed value of the expression [32].

Important and common compiler optimizations are those operating on constant values. A constant value in a program
does not depend on the program’s input. Thus, everything needed to compute it is already known at compile time;
hence the name compile time constant. Programs often contain expression that only depend on compile time constants.
Therefore, it is possible to compute their value at compile time, thus moving complexity from the program’s runtime to
its compile time. This optimization is called constant expression evaluation or constant folding.
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Working closely together with constant folding is constant propagation, which replaces the use of a variable, which
the compiler can determine to be constant, with its constant value. This in turn may lead to new opportunities for
constant folding. Both of these techniques and many more are described in the book [94].

Dead code is program code that is guaranteed to never be executed. Dead code elimination is a compiler optimization
that tries to find dead code, and remove it. One common application arises when control flow depends on a compile
time constant condition and the compiler can guarantee that a branch target can never be reached.

Sometimes it is beneficial to move computations in a program to another point within the program. This is called
code motion and may serve to provide the result of a computation to more places where this result is needed, without
recomputing it. Alternatively it can be employed to prevent recomputations inside a loop where the result does not
change between loop iteration, known as loop invariant code motion. Code motion has to be done carefully, as it
can lengthen live ranges, or increase code size. Thus, sophisticated approaches like lazy code motion [74] have been
developed to make sensible code motion decisions.

In general function calls cause an overhead, as the program has to prepare the stack frame and handle input parameters
and return values. Function inlining is a way to remove this overhead. The idea is to replace the function call with an
inlined copy of the callee. Thus the complete functionality of the callee is available in the caller without the overhead of
a function call. This can also increase the scope on which the instruction scheduler may operate. However, function
inlining typically leads to an increase in code size.

Some compiler optimizations are target machine dependent and are considered to be part of the backend. In many
target architectures it is the case that some operations need more resources than others. Strength reduction tries to replace
expensive operations with cheap operations which yield the same result. A typical example is integer multiplication by
a power of two. If the value is represented as two’s complement, the compiler can choose to use a bitwise left-shift
instead, which is typically cheaper than multiplication. Strength reduction is presented in [33]. This optimization is an
example of a pass that can reside directly in the target dependent backend, or, with appropriate parameterization, in the
middleend.

Assembler. The assembly language is independent of the concrete binary encoding of the machine instructions. The
assembler reads a textual representation of the machine program, i.e., a program in assembly language, and generates
a binary representation of this program that a processor can execute. This step consists of encoding the machine
instructions as a bit pattern. The main task of the assembler is to apply such a binary encoding to the assembly program,
thus creating an object file.

Since the assembler has to parse a string representation of the program, a straight forward way is to generate a
parser from a grammar describing the assembly language. However, sometimes it is not the most convenient way to do
this. An ISA specification in VADL already contains a specification of how to print each instruction as a string in the
assembly language. This functionality is also called a pretty printer, as it takes a binary encoded instruction and prints it
in readable form. If the assembly language is not too complex, it is possible to deduce the grammar of the assembly
language from the specification of the pretty printer. Informally speaking, it is possible to go the other direction, and
generate a parser from the specification of a pretty printer. This technique is called program inversion. This feature
helps to keep VADL specifications succinct and reduce redundancies. For more complex assembly languages, VADL
also supports explicit specification of a grammar for the assembly language. See section 4.6 for details.

Linker. The linker joins object files together, creating a single executable native program that can be run on a processor.
The linker has to resolve symbolic addresses and assign them concrete address values from the machine’s address space.
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It must also place the object files containing executable code in non-overlapping memory segments so each instruction
has a unique address. This process is called relocation. Often, target-specific rules for relocations exist that have to be
obeyed by the linker.

Microprocessor

In the context of VADL, a microprocessor is an integrated digital electronic circuit that reads data frommemory, executes
operations on these data and writes data to memory. These operations are called instructions. The representation of
these instructions, together with initial values in memory, is called a native program. Which instructions are available
and how they are represented in memory is defined by the ISA. Thus, a microprocessor implements an ISA. The MiA
describes how the implementation for a microprocessor is realized, specifically, it defines what components make up its
internal structure and how they interact.

The timing behavior of these designs is based on clock signals. While modern processors do use multiple clocks with
different frequencies, VADL currently focuses on designs of processors with a single clock domain. Related to the clock
cycle, the machine cycle is the time interval between the start of two instructions [113, p. 51]. Depending on the MiA
this can be longer than one clock cycle, e.g., for multi-cycle MiAs.

Besides low-level hardware design decisions theMiA is fundamental to reach certain design goals, such as performance
or power consumption, in the hardware implementation of a microprocessor. Techniques used for this include pipelining,
forwarding and branch prediction, but also advanced techniques specific to superscalar and out-of-order processors,
like register renaming, reservation stations and reorder buffers.

Pipelining is concerned with splitting instruction execution into smaller steps structured in stages, which allows
resulting hardware to run faster, i.e., at higher clock frequencies. In a classical scalar pipeline this results in different
steps of multiple instructions being executed at each point in time and gives rise to data hazards, that occur when
instructions require results from previous instructions still in execution. To resolve this problem without delaying
instructions a MiA can be equipped with forwarding logic, which connects stages that read values with other stages
where the needed results are already available.

Another problem that is caused by the simultaneous execution of sequential instructions occurs in the presence of
branch instructions. In order to still execute further instructions while the result of a branch is not yet known, processors
employ branch predictors. These predictors speculate on the outcome of the branch – i.e., the branch predictor tries to
anticipate the correct target address of the branch. The processor continues execution of subsequent instructions at the
predicted target address. Mispredicted branches must be resolved by either not changing the state during speculative
execution or by rolling back changes.

Superscalar processors strive to complete more than one instruction per cycle. To achieve this they implement
out-of-order execution. The processor here analyzes the data dependencies between the fetched instructions and
executes the instructions it can simultaneously. At the core of such architectures are multiple functional units that
handle the computations involved in the instructions in parallel.

For the processor to be able to continue decoding instructions while others wait for their input operands to become
available from previous computations, it uses reservation stations. These are buffers that collect the waiting instructions
and their operand values and then move instructions to functional units when their operands are available.

The reorder buffer keeps track of the unfinished dispatched instructions. This buffer is used to complete instructions
in order and is also used when doing speculative execution.
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To exploit instruction-level parallelism even more, superscalar architectures try to reduce anti- and output depen-
dencies by renaming registers. The design then contains more physical than architectural registers. If a new instruction
has an anti- or output dependence on an instruction that has not completed yet, its output register is renamed and the
instruction can be dispatched right away. This renaming can be realized using a separate register rename file or be
integrated with the reorder buffer, recording a rename register for every instruction in progress.

VADL can be used to describe many of these micro-architectural aspects in its MiA section. To implement a MiA,
conventionally an HDL is used to represent the design at Register-Transfer Level (RTL).

Register-Transfer Level. This is the level of abstraction where the design is described as a set of registers and their
connection through combinational logic. The registers are the only components having memory, i.e., are solely holding
state. Their inputs are consequently outputs from other registers and external inputs wired through logic gates. Typically
the description also involves defining a clock signal and reset logic (initial values) for the registers. In contrast to mere
combinational logic, such a design with memory embodies sequential logic – its outputs are not only determined by its
current inputs, but also the sequence of past inputs.

Since the internal state and its possible transitions in sequential logic is not always obvious on RTL, a useful
abstraction for creating sequential logic is the definition in the form of a state machine (following the formal model of
finite-state machines). State machines are defined by a set of states with corresponding output and next state logic.
Such a state machine can then be implemented using registers to hold the state and combinational logic to feed outputs
and the next state logic.

Verilog and Very High Speed Integrated Circuit Hardware Description Language (VHDL) are examples of widely
used low-level HDLs. These languages can specify a wide range of circuits and also behavior not implementable in
hardware (non-synthesizable behavior). Hence, they are not only capable of describing microprocessors.

VADL emits Chisel [15], which then generates Verilog. Chisel’s goal is to offer convenient abstractions and to be
easier to work with than directly writing Verilog code. For instance, it only generates synthesizable Verilog.

Chisel. Chisel is an HDL used to describe digital circuits on the RTL. It tries to increase the circuit designer’s productivity
by providing powerful abstractions compared to the low level languages like Verilog or VHDL.Many of these abstractions
are a result of the fact that Chisel is a Domain Specific Language (DSL) embedded in the general purpose programming
language Scala. Thanks to this, Chisel can directly use Scala’s object oriented and functional programming features
as well as parameterized types and type inference. Chisel’s goal is to use these features to make the hardware design
shorter and easier to maintain and extend. The Chisel compiler emits Verilog code which in turn can be used to map to
Field Programmable Gate Arrays (FPGAs) or for Application Specific Integrated Circuit (ASIC) synthesis.

Simulation

ISA simulation is the process of executing a program on a software implementation of the target ISA instead of a
hardware implementation, i.e., a processor. This software implementation is called a Simulator. For the properties
and behavior under consideration, the behavior and execution of the simulator is identical to the simulated processor.
However, certain aspects might not be simulated depending on the requirements of the simulation. For instance, the goal
of an ISS is to match the semantics of the ISA but without considering the behavior of an underlying microarchitecture.
This is sufficient for executing programs written for the target ISA, but e.g. analyzing energy consumption of the
processor will not be possible. Whether a certain property or behavior should be modeled by the simulator is an
important design decision.
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Hence, VADL aims to describe various architectures and generate various simulators depending on the user’s needs.
The most relevant approaches for VADL are described in the following paragraph.

The program that is executed by the simulator is called the guest, the system running the simulator is called the
host. A simulator that primarily takes care of the semantics of each simulated instruction is called an Instruction Set
Simulator (ISS). In addition, a simulator can also model certain other aspects that may be of interest, particularly the
performance metrics of the simulated processor. A simulator that can also take the MiA of a particular processor into
account and simulate the complete processor pipeline is called a Cycle Accurate Simulator (CAS). A CAS has to handle
forwarding behavior, pipeline stalls, cache/memory latencies and other MiA related aspects of a processor. This is why
a CAS is usually more complex than an ISS and its execution is computationally more costly.

There are several ways to implement a simulator. The most straightforward approach is interpretive simulation. Here,
the simulator reads the guest program instruction by instruction and simulates the effect of each instruction. Since all
simulation decisions happen at the time of simulation, it is a very flexible approach, but also computationally costly.
VADL’s ISS generator, presented in section 4.7, emits a simulator that falls into this category.

Another approach that tries to achieve better simulation performance is compiled simulation [91]. It translates the
guest program into a program that is executable directly on the host, while keeping the same functional behavior.
This way it moves complexity to compile time and also makes it possible to apply optimizations during compilation.
Normally compiled simulation does not allow self-modifying code in the guest program, as it is compiled ahead of time.

Dynamic Binary Translation (DBT) [31] tries to combine the flexibility of interpretation with the performance of
compiled simulation. It only translates frequently executed code fragments into executable host code. In this regard it is
conceptually similar to a JIT compiler. Its dynamic nature also allows it to handle self-modifying code. QEMU [19] uses
DBT, thus the simulator emitted by OpenVADL’s ISS generator, presented in section 4.8, falls into this category.

Both, processor specifications and simulators have to be validated. The most common technique is co-simulation

where the execution state of a test application on one simulator is compared against the execution state on another
simulator or on real hardware [52]. The comparison of the execution state can be done immediately after the execution
of every instruction. An alternative is to generate execution traces and to compare the traces. The validation can be
done at different levels of accuracy depending on the kind of execution state to be checked. The state just can be the
content of the modified registers or can contain internal processor states like pipeline registers and microarchitecture
elements.

3 THE PROCESSOR DESCRIPTION LANGUAGE

3.1 Introduction

The purpose of the PDL VADL is the complete specification of a processor architecture regarding the instruction set,
the microarchitecture, the application binary interface, the assembler, the compiler, the linker, a functional ISS, a CAS,
a synthesizable specification in a HDL, test cases and documentation. The aim of VADL is to facilitate the development
and customization of processors and their corresponding toolchains. Thus, VADL enables rapid DSE of ASIPs, leading
to higher quality processors and tools at reduced development costs and shorter time to market. We want to highlight
that even for existing architectures VADL can be used solely for generating compilers for systems like LLVM or GCC,
avoiding the need for LLVM or GCC specific know-how.

VADL is a PDL, that is a DSL in the domain of computer architecture and compiler construction. Potential users
are computer architects or compiler developers with an academic or industrial background, but they do not require
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extensive knowledge in both fields. Nonetheless, all use cases should be served by a single language. The language must
provide an easily comprehensible syntax and semantics. A user without prior knowledge of VADL should understand a
specification of a moderately complex architecture at first sight. Therefore, the behavioral parts of VADL are inspired
by Java, C++, Rust and Chisel enriched with ideas from functional programming to provide familiarity to the users.
VADL has a unique syntax and static semantics.

There is a long-standing debate whether a specification language should be executable [50, 61]. Executable specifica-
tions only work well if the language is single purpose, e.g. used for the specification of simulators. A VADL behavior
specification has to fulfill multiple purposes with the same specification, describing the semantics of a compiler’s
code generator, the semantics of simulators and the instruction execution in hardware. Therefore, a VADL processor
specification cannot be executed directly, but executable artifacts are produced by generators and thus VADL is a
generator language.

VADL is a specification language where a processor can be described on a high abstraction level. The goal is to have
a concise specification that is easy to write by the user and, at the same time, easy to analyze by the generators. The
implementation of a concrete generator should not have any influence on the design of VADL.

3.1.1 Strict Separation of ISA and MiA. VADL strictly separates the specification of the ISA and the specification of a
concrete MiA implementation. Different implementations can exist for the same ISA specification, realized by different
MiA specifications. This strict separation follows the best practice design process in computer architecture introduced
by Fred Brooks with the architecture of the IBM System/360 [8] and advocated by Richard Sites, the chief architect of
the Alpha AXP architecture [115]. The ISA part specifies the register sets and the behavior, encoding and assembly
language representation of the instructions, while the MiA part describes the structure and microarchitecture of the
processor. Regarding the commonly used classification of PDLs into structural, behavioral, or mixed languages, the ISA
is related to the behavioral part, and the MiA is related to the structural part and therefore, VADL is a mixed PDL. The
MiA description of VADL operates on a higher level of abstraction than existing structural PDLs.

There are no references from the ISA part to the MiA part. Only some references from the MiA part to the ISA part
are allowed. The ISA part is sufficient to generate a purely functional ISS or, together with an ABI, a compiler. The MiA
part is necessary to synthesize hardware, to generate a CAS or to generate an instruction scheduler for a compiler.

3.1.2 Language Safety. VADL is designed with high productivity and type-safety in mind. Therefore, the language is
strongly statically typed, but type inference is supported to keep the specification concise. In addition, static analysis
prevents VADL developers from writing illegal specifications. For example, format fields are not allowed to overlap and
a register write cannot occur before a read in the semantics of an instruction. Furthermore, VADL supports syntactic
macros which are also type checked.

3.2 Overview

VADL provides a Chisel-like type system to represent arbitrary bit vectors. There are two primitive data types – Bool

and Bits<N>. Bool represents Boolean typed data. Bits<N> represents an arbitrary bit vector data type of length N.
Furthermore, to explicitly express signed and unsigned arithmetic operations VADL provides two sub-types of Bits<N>
– SInt<N> and UInt<N>. SInt<N> represents a signed two’s complement integer type of length N. Note that the length
of this signed integer data type contains the sign-bit and data bits. UInt<N> represents an unsigned integer type of
length N. For all bit vector based types – Bits, SInt, and UInt – VADL will try to infer the bit size from the surrounding
usage. But for definitions, a concrete bit size has to be specified in order to determine the actual size of, e.g., a register.
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In contrast to Chisel the size of the resulting bit vector of an operation is identical to the size of the source operands.
An exception is the multiplication where two versions are available, one with a result with the same size and one with
a double sized result. An additional String type is available in the assembly specification and the macro system.

1 constant MLen = 32
2
3 using BitsM = B i t s <MLen>
4 using SIntM = SInt <MLen>
5 using UIntM = UInt <MLen>
6
7 function l e s s t h a n ( a : SIntM , b : SIntM ) −> Bool = a < b
8
9 import r v 3 2 i : : RV32I
10
11 in s t ruc t ion se t arch i tec ture RV32IM extending RV32I = { }
12
13 appl icat ion binary in te r face ABI for RV32IM = { }
14
15 assembly descr ipt ion Assemble for ABI = { }
16
17 micro arch i tec ture F i v e S t a g e implements RV32IM = { }
18
19 micro processor CPU implements F i v e S t a g e with ABI = { }
20
21 user mode emulation UME for CPU = { }

Listing 1. VADL specification

Listing 1 shows the main elements of a VADL processor specification. Usually, a VADL processor specification has
some global definitions in the beginning, followed by some sections describing ISA or MiA, which are described in more
detail in the following sections. On line 1, a constant MLen with the value 32 is defined. Type aliases can be defined with
the keyword using as shown on lines 3 to 5. On line 7, a function is defined that compares two values of type SIntM
and returns the result of the comparison as a value of type Bool. import allows the import of VADL specification parts
from separate files. On line 9, a specification named RV32I is imported from a file called rv32i.vadl. In this example,
RV32I refers to another ISA specification.

An instruction set architecture specification can extend another ISA specification (line 11). Section 3.3 contains
a detailed description of the ISA specification. Lines 13 to 21 demonstrate the definition of the application binary

interface (see Section 3.5), the assembly description (see Section 3.7), the micro processor specification (see
Section 3.8) and the user mode emulation (see Section 3.6). On line 17 a MiA named FiveStage implements RV32IM
(see Section 3.4).

More complex examples and the VADL grammar are available at the VADL home page.

3.3 Instruction Set Architecture Section

The ISA section is the major part of a processor specification. Listing 2 gives a small example specifying a subset of the
RISC-V architecture with one branch instruction. The section starts with the keyword instruction set architecture

followed by the name of the architecture, which we simply call RV32I. On line number 3, a constant Size with the
value 32 is defined. Constant expressions can be used in a constant definition, as demonstrated on line number 4. These
constant expressions are evaluated during parsing.
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Type casting is done with the keyword as, shown on lines 28 and 30. Type casting does zero extension, sign extension,
or truncation of values if necessary.

Memory is defined on lines 12 to 14 by the mapping of a 32-bit address to an 8-bit byte. The memory definition
shows the use of annotations in square brackets. Annotations can be applied to most of the definitions. Annotations for
memory are [littleEndian] and [bigEndian] which are allowed to be used in a dynamically evaluated expression,
e.g., depending on the value of a configuration register. A further memory annotation is the memory consistency
model, e.g., [sequentialConsistency], [totalStoreOrdering], or [rvWeakMemoryOrdering]. There exist only a
small number of predefined consistency models. Predefined microarchitectural elements like cache protocols know
which consistency models they obey and the correct combinations are verified by the type checker. If more than one
memory type is defined one has to be declared as instruction memory. It is also verified the type of the program counter
fits to the address type of the instruction memory.

Declaring a Program Counter (PC) (line 17) is mandatory. In most architectures, the PC points to the start of the
current instruction when used inside an instruction specification (lines 16 to 17). This behavior can be changed by
adding the annotation [next], which lets the PC point to the end of the current instruction. The ARM AArch32
architecture has the peculiar behavior that the PC points to the end of the following instruction, which can be specified
by the annotation [next next]. If an instruction does not explicitly modify the PC, it is implicitly incremented by the
instruction size in each execution cycle.

The RISC-V RV32I architecture has an integer register file named X with 32 registers, which are 32 bits wide (lines 19
to 20). The register with index 0 is hardwired to the value 0. This can be specified with an annotation that maps the
constant 0 to the specified register.

Instruction words or system registers are commonly split into multiple fields. The VADL format definition allows
the specification of such instruction or register formats with their corresponding fields. They can either be specified by
connecting names with bit positions (as in Listing 2 lines 23 to 27) or by connecting names with types (as in Listing 3
lines 2 to 6). Sometimes fields in instruction words are not used directly, e.g., an immediate value is sign-extended or
a register index can access only the higher half of a register file. For convenient use of such fields, access functions
can be defined. In Listing 2 line 28, the access function immS is defined, which sign-extends the field imm to Size1 (31)
bits and concatenates it with a binary constant of type Bits<1> and value 0. The binary comma operator applied in
parentheses defines a bit vector (line 28) concatenation or a string (line 45) concatenation. During instruction selection,
a compiler must know what immediate values are valid and how they can be encoded. For trivial access functions, the
compiler generator can determine the validity and encoding function of values. For nontrivial access functions, the
validation and encoding functions have to be specified in the predicate and encoding part of the format specification.
The validation on line 30 specifies that the value must be a multiple of 2 and must be in the range from -4096 to 4095.
The encoding on line 33 specifies that imm is a bit slice of immS from position 12 to position 1.

With the instruction definition, the behavior of an instruction is specified (lines 37 to 42). Every instruction has a
name (BEQ in the example) and an instruction format type (Btype in the example). Between the curly braces (lines 39 to
41), statements in a style inspired by functional programming languages specify the behavior. Assignments denoted by
the assignment operator ":=" are possible only to registers and memory locations. To each variable, only one assignment
is allowed, i.e., the behavior is single assignment. All reads to a register must occur before any writes to this register.
The same is true for a given memory location. This requirement is checked by the VADL language parser. The let
statement defines a constant (cond in the example) that can be used in the (block) statement after the keyword in. The
else part of the if statement is optional but required for an if expression. Multiple conditional expressions can be
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1 in s t ruc t ion se t arch i tec ture RV32I = {
2
3 constant S i z e = 32 / / a r c h i t e c t u r e s i z e i s 32 b i t s
4 constant S i z e 1 = S i z e − 1 / / a r c h i t e c t u r e s i z e minus 1
5
6 using Byte = B i t s < 8 > / / 8 b i t Byte
7 using I n s t = B i t s < 32 > / / i n s t r u c t i o n word type
8 using Regs = B i t s < S i z e > / / r e g i s t e r word type
9 using Addr = Regs / / add re s s word type i s equa l to the r e g i s t e r type
10 using Index = B i t s < 5 > / / 5 b i t r e g i s t e r index type f o r 32 r e g i s t e r s
11
12 [ l i t t l e E n d i a n ] / / memory i s a c c e s s ed l i t t l e endian
13 [ rvWeakMemoryOrdering ] / / RISC V weak memory o r d e r i n g
14 memory MEM : Addr −> Byte / / byte addre s sed memory
15
16 [ c u r r e n t ]
17 program counter PC : Addr / / PC po i n t s to the s t a r t o f the c u r r e n t i n s t r u c t i o n
18
19 [X ( 0 ) = 0 ] / / r e g i s t e r with index 0 a lways i s 0
20 r eg i s t e r f i l e X : Index −> Regs / / i n t e g e r r e g i s t e r f i l e with 32 r e g i s t e r s
21
22 format Btype : I n s t = / / Btype i n s t r u c t i o n s a re I n s t s i z e d
23 { imm [ 3 1 , 7 , 3 0 . . 2 5 , 1 1 . . 8 ] / / 12 b i t immediate va l u e
24 , r s 2 [ 2 4 . . 2 0 ] / / 2nd sou r c e r e g i s t e r index
25 , r s 1 [ 1 9 . . 1 5 ] / / 1 s t s ou r c e r e g i s t e r index
26 , f un c t 3 [ 1 4 . . 1 2 ] / / 3 b i t f u n c t i o n code
27 , opcode [ 6 . . 0 ] / / 7 b i t o p e r a t i o n code
28 , immS = ( imm as SInt < S i z e1 > , 0 b0 ) / / s h i f t e d and s i gn extended immediate va l u e immS
29 : predicate { / / immS i s a mu l t i p l e o f 2 and −4096 <= immS <= 4095
30 immS => ( immS ( 0 ) = 0 ) & ( ( ( immS as UInt ) + 4 0 9 6 ) <= 819 1 )
31 }
32 : encode {
33 imm => immS ( 1 2 . . 1 ) / / s l i c e b i t s 12 to 1 from immS to encode imm
34 }
35 }
36
37 [ operation BranchOp ] / / BEQ be longs to the s e t o f branch op e r a t i o n s
38 in s t ruc t ion BEQ : Btype = { / / branch equa l i n s t r u c t i o n
39 l e t cond = X ( r s 1 ) = X ( r s 2 ) in
40 i f cond then
41 PC : = PC + immS
42 }
43 [ r s 1 ! = r s 2 ] / / s ou r c e r e g i s t e r i n d i c e s shou ld be d i s t i n c t
44 encoding BEQ = { opcode = 0 b110 ' 0 0 1 1 , f un c t 3 = 0 b000 }
45 assembly BEQ = (mnemonic , " " , r eg i s t e r ( r s 1 ) , " , " , r eg i s t e r ( r s 2 ) , " , " , decimal ( imm ) )
46 }

Listing 2. ISA specification basic example (RISC-V)

written using a match expression (see Listing 5 lines 8 to 13). The match statement works analogously. The optional
operation annotation is used to assign an instruction to a set of operations. These operation sets can be used to specify
the grouping for VLIW architectures or in the MiA section to filter instructions for superscalar microarchitectures.

An instruction encoding assigns fixed values, like operation codes, to certain fields of the instruction word (see
Listing 2 line 44). To improve readability, the symbol "’" can be inserted between the digits of a number as demonstrated
with the binary number 0b110’0011. With annotations, it is possible to add constraints on format fields to give stronger
restrictions on the encoding. On line 43, there is the restriction that the two register indices rs1 and rs2 must be
distinct (this is a reasonable constraint but not a requirement in the RISC-V architecture).
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An assembly definition specifies how an instruction is represented in a human-readable textual form as used, e.g.,
by a disassembler or a compiler (see Listing 2 line 45). The keyword assembly is followed by one or more names with a
common assembly representation. The textual representation is specified by a string expression. The only available
string operator is the comma symbol "," which does string concatenation. VADL offers some built-in string functions:
mnemonic returns the identifier of the instruction as a string. register returns a standard representation of a register
based on the name in the register (file) definition. decimal or hex return their argument in a decimal or hexadecimal
string representation.

1 format I t y p e : I n s t = / / immediate i n s t r u c t i o n format
2 { imm : B i t s <12 > / / [ 3 1 . . 2 0 ] 12 b i t immediate va l u e
3 , r s 1 : Index / / [ 1 9 . . 1 5 ] sou r c e r e g i s t e r index
4 , f un c t 3 : B i t s <3 > / / [ 1 4 . . 1 2 ] 3 b i t f u n c t i o n code
5 , rd : Index / / [ 1 1 . . 7 ] d e s t i n a t i o n r e g i s t e r index
6 , opcode : B i t s <7 > / / [ 6 . . 0 ] 7 b i t o p e r a t i o n code
7 , immS = imm as SInt < S i z e > / / s i gn extended immediate va l u e
8 }
9
10 model I t y p e I n s t r ( name : Id , op : BinOp , f un c t 3 : Bin ) : IsaDefs = {
11 in s t ruc t ion $name : I t y p e = {
12 X ( rd ) : = X ( r s 1 ) $op immS
13 }
14 encoding $name = { opcode = 0 b001 ' 0 0 1 1 , f un c t 3 = $ func t 3 }
15 assembly $name = (mnemonic , " " , r eg i s t e r ( rd ) , " , " , r eg i s t e r ( r s 1 ) , " , " , decimal ( imm ) )
16 }
17
18 $ I t y p e I n s t r ( ADDI ; + ; 0 b000 ) / / add immediate i n s t r u c t i o n
19 $ I t y p e I n s t r ( ANDI ; & ; 0 b111 ) / / and immediate i n s t r u c t i o n
20 $ I t y p e I n s t r ( ORI ; | ; 0 b110 ) / / or immediate i n s t r u c t i o n

Listing 3. ISA model definition and instantiation (RISC-V)

instruction, encoding and assembly definitions are often quite similar for different instructions. VADL’s macro
system helps to reduce redundancies caused by these similarities. As simplicity and safety are crucial requirements
for a processor description language, VADL provides a pattern-based syntactical macro system. The core of VADL’s
macro system are syntax models. Every model has a name, a typed parameter list, a result type, and a body (see Listing
3 line 10). Possible parameter types are syntactic elements like identifiers (Id), binary operator symbols (BinOp), binary
constants (Bin), or multiple ISA definition elements (IsaDefs) as used in Listing 3. Further syntactic types for general
expressions (Ex), expressions on the left-hand side of an assignment (CallEx), statements (Stat) or encoding elements
(Encs) are used in Listing 34 in the appendix. model parameters can be used at every position in the body which has
the same syntactic type as the parameter. The use of a parameter is indicated by a leading "$". This design decision has
two advantages. Firstly, it simplifies parsing as it explicitly marks the use of a macro element. Secondly, the "$" captures
the model parameter names, preventing name collisions with other ISA definitions. Similar to the parameters, the "$"
marks the instantiation of defined syntax models. The symbol ";" separates the syntax elements inside an instantiation.

Architectures like the ARM AArch64 or AMD64 ISAs are more complex and have many variants of the same
instruction. In VADL, it is required that every variant is specified in a separate instruction definition. For such
applications, the core macro system is not sufficient. Therefore, VADL supports higher-order macros (macros which
take macros as arguments or which generate a macro), type aliases (e.g. the definition of a higher order macro type),
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composition of syntax types (like structures in conventional programming languages), conditional macros, and built-
in lexical macro functions (e.g. generating new identifiers). Descriptions regarding these advanced features, their
application and their efficient implementation have been presented in an earlier article in full detail [64].

1 r eg i s t e r f i l e S : Index −> Word / / g en e r a l purpose r e g i s t e r f i l e , S31 SP
2 [X ( 3 1 ) = 0 ] / / X31 i s z e r o r e g i s t e r ZR
3 a l i a s r eg i s t e r f i l e X = S / / g en e r a l purpose r e g i s t e r f i l e , X31 ZR
4 a l i a s r eg i s t e r SP : Word = S ( 3 1 ) / / s t a c k p o i n t e r
5 a l i a s r eg i s t e r ZR : Word = X ( 3 1 ) / / z e r o r e g i s t e r

Listing 4. ISA register aliasing (AArch64)

In the ARM AArch64 architecture, the register with index 31 of the general purpose register file can serve two
different purposes. Depending on the instruction, it can be used as a stack pointer or zero register. The alias directive
allows access to a register (file) with another name and different constraints, as shown in Listing 4. When using the
name S(31) or SP the real register is accessed; when using the name X(31) or ZR the zero register is accessed. It is
also possible to define an alias of the PC to a certain register of a register file. This is required for the ARM AArch32
architecture.

1 enumeration c o n d i t i o n s : B i t s <4 > = / / c o nd i t i o n code encod ings
2 { EQ / / equa l Z == 1
3 , NE / / not equa l Z == 0
4 . . .
5 , AL / / a lways
6 }
7
8 function c ond2 s t r i n g ( c o nd i t i o n : B i t s <4 >) −> S t r i n g = match c o nd i t i o n with
9 { c o n d i t i o n s : : EQ => " eq " as S t r i n g / / equa l
10 , c o n d i t i o n s : : NE => " ne " as S t r i n g / / not equa l
11 . . .
12 , _ => " a l " as S t r i n g / / a lways
13 }

Listing 5. ISA enumerations, functions, match and String (AArch32, AArch64)

Listing 5 shows how enumerations are defined and used in VADL. Enumerations are typed. Their values can be
either derived implicitly or set in the definition as shown in Listing 22. When using an enumeration value, the full name
consisting of the enumeration name and the element name separated by "::" has to be specified. VADL supports the
definition of pure functions. The function body is an expression. Therefore, no statements and side effects are possible.
As demonstrated in Listing 5, lines 8 to 13, a match expression allows a selection between multiple alternatives and
always needs the catch-all condition "_" in the last alternative.

VADL has special notations to mark exceptional behavior. In theory, these notations are not necessary, as every
exceptional behavior can be described with the basic ISA language constructs. However, neither a human reader nor the
compiler generator can distinguish normal behavior from exceptional behavior. Therefore, it is required that exceptional
behavior is marked by the keyword raise as shown in Listing 6 at line 32. Exception-raising code is often quite similar.
Exceptions can be specified similarly to functions to enable code reuse. In contrast to functions, exceptions do not
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1 in s t ruc t ion se t arch i tec ture MIPSIV = {
2
3 using IWord = B i t s <32 > / / 32 b i t i n s t r u c t i o n word
4 using RWord = B i t s <64 > / / 64 b i t r e g i s t e r word
5 using Address = RWord / / 64 b i t r e g i s t e r word
6 using Index = B i t s <5 > / / r e g i s t e r index f o r 32 r e g i s t e r s
7
8 [ nex t ] / / PC po i n t s to the nex t f o l l ow i n g i n s t r u c t i o n
9 program counter PC : Address / / program po i n t e r
10 r eg i s t e r EPC : Address / / saved e x c ep t i o n program counte r
11
12 [GPR ( 0 ) = 0 ] / / z e r o r e g i s t e r
13 r eg i s t e r f i l e GPR : Index −> RWord / / g en e r a l purpose r e g i s t e r s
14
15 format R_Type : IWord = / / r e g i s t e r 3 operand i n s t r u c t i o n word
16 { opcode [ 3 1 . . 2 6 ] / / o p e r a t i o n code
17 , r s [ 2 5 . . 2 1 ] / / 1 s t s ou r c e r e g i s t e r
18 , r t [ 2 0 . . 1 6 ] / / 2nd sou r c e r e g i s t e r
19 , rd [ 1 5 . . 1 1 ] / / d e s t i n a t i o n r e g i s t e r
20 , shamt [ 1 0 . . 6 ] / / uns igned s h i f t amount
21 , f un c t [ 5 . . 0 ] / / f u n c t i o n code
22 }
23
24 exception Overf low = { / / o v e r f l ow e x c ep t i o n
25 EPC : = PC − 4 / / save e x c ep t i o n r a i s i n g PC
26 PC : = 0 xFFFF ' FFFF ' 8 0 0 0 ' 0 1 8 0 / / s e t PC to the e x c ep t i o n hand l e r add r e s s
27 }
28
29 in s t ruc t ion add : R_Type = { / / add with ove r f l ow
30 l e t r e s u l t , s t a t u s = VADL : : adds (GPR( r s ) , GPR ( r t ) ) in {
31 i f s t a t u s . o v e r f l ow then
32 ra i s e Overf low
33 GPR( rd ) : = r e s u l t
34 }
35 }
36 }

Listing 6. ISA exception handling (simplified MIPS)

return an expression but have side effects caused by assignment statements (see lines 24 to 27). Nevertheless, it must be
guaranteed that reads to a register or memory location precede all writes.

To specify exceptional behavior like overflow, the basic VADL built-in functions exist in two flavors. In the normal
one, only the primary function result is returned. In the exceptional one, there are two return values: the result and the
status (see line 30). The status contains information like overflow, zero, negative, or carry. These built-in functions are
used to specify instructions that handle operations with overflow or to specify architectures that have a status register,
like the ARM AArch64 or AMD64 architectures.

Listing 7 shows the two variants of the forall definition, which enables comfortable specification of tensor operation
instructions. Despite the name forall this definition is not a loop. It specifies the parallel independent execution of
operations on tensors (multidimensional representation of registers). In the example in Listing 7, register file Z is a
one-dimensional vector and register file Y is a two-dimensional matrix. Y and Z also could be an alias of register file X.
The keyword forall is followed by at least one index specifier with a given range after the keyword in. The tensor
expression creates a tensor with the same dimensions as the provided index ranges. Each resulting element contains
the evaluated tensor expression. The comments after the tensor definition in Listing 7 line 10 show this definition’s
semantically equivalent unrolled version. fold is used to specify reductions. The reduction operation defined by the
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1 in s t ruc t ion se t arch i tec ture Tensor = {
2 using Index = B i t s <4 >
3 r eg i s t e r f i l e X : Index −> B i t s <64 >
4 r eg i s t e r f i l e Y : Index −> B i t s <16 > <2 ,2 >
5 r eg i s t e r f i l e Z : Index −> B i t s <16 > <4 >
6
7 format F : B i t s <16 > = { r s 2 : Index , r s 1 : Index , rd : Index , opcode : B i t s <4 > }
8
9 in s t ruc t ion AddElements : F =
10 Y ( rd ) : = f o r a l l i in 0 . . 1 , j in 0 . . 1 tensor Y ( r s 1 ) ( i , j ) + Y ( r s 2 ) ( i , j )
11 / / Y ( rd ) : = ( ( Y ( r s 1 ) ( 0 , 0 ) + Y ( r s 2 ) ( 0 , 0 ) , Y ( r s 1 ) ( 0 , 1 ) + Y ( r s 2 ) ( 0 , 1 ) ) ,
12 / / ( Y ( r s 1 ) ( 1 , 0 ) + Y ( r s 2 ) ( 1 , 0 ) , Y ( r s 1 ) ( 1 , 1 ) + Y ( r s 2 ) ( 1 , 1 ) ) )
13
14 in s t ruc t ion Dot : F =
15 Z ( rd ) : = f o r a l l i in 0 . . 3 fold + with Z ( r s 1 ) ( i ) ∗ Z ( r s 2 ) ( i )
16 / / Z ( rd ) : = ( ( ( Z ( r s 1 ) ( 0 ) ∗ Z ( r s 2 ) ( 0 ) ) + (Z ( r s 1 ) ( 1 ) ∗ Z ( r s 2 ) ( 1 ) ) ) +
17 / / ( ( Z ( r s 1 ) ( 2 ) ∗ Z ( r s 2 ) ( 2 ) ) + (Z ( r s 1 ) ( 3 ) ∗ Z ( r s 2 ) ( 3 ) ) ) )
18 }

Listing 7. ISA tensor definitions

operator after the keyword fold is applied to reduce all results of the expression after the keyword with to a single
value. Again, the comments after the fold definition in Listing 7 line 15 show this definition’s semantically equivalent
unrolled version. The Dot example shows an instruction which is a building block of a dot product algorithm inspired
by the same instruction of the TIC64x architecture. VADL additionally provides constructs for the specification of
constant tensors.

VADL also supports language features for the convenient specification of VLIW architectures by applying regular
expressions with constraints on operation sets. These features will be presented in a separate article.

3.4 Micro Architecture Section

The microarchitecture section aims to specify the processor implementation at a high level of abstraction. These abstrac-
tions enable a concise and understandable specification, as the generators handle many implementation details (e.g.,
hazard detection or pipeline registers). Users would have more flexibility and control with low level microarchitecture
specifications (e.g., in a HDL), but it would be impossible for generators to determine the purpose or the correctness of
such specifications. Therefore, only predefined elements configurable by annotations are supported. If these predefined
elements are not sufficient, further elements have to be added to the language and the affected generators have to
be extended. These extensions to the language have to be done by experts. Their usage should be simple and can be
accomplished by inexperienced users.

Firstly, this section will present the core concepts of the MiA modeling view - pipeline stages and instructions. Then,
these concepts are illustrated with the example of a 5-stage implementation of the RISC-V architecture. Finally, logic
elements that model components outside of the stages (e.g., caches, control logic) are discussed.

3.4.1 Pipeline Stage. Pipeline stages allow users to define the hardware structure of the processor. Each stage defines
cyclic behavior, which the processor executes. For example, one processor stage might fetch instructions from memory
while another computes arithmetic results. Users can specify the exact behavior using syntax similar to that used to
express the instruction behavior in Section 3.3. It is easy to define a concise microarchitecture using powerful language
built-ins. Section 3.4.3 provides some examples of pipeline stages.
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In addition to the provided examples, annotations can specify a stage’s restart interval and latency period. The restart
interval governs the frequency at which new inputs are allowed to enter the stage. In contrast, the latency period
controls the number of machine cycles required to complete a single execution. Additionally, users can assign a range
to the latency, thus providing pipeline stages of varying lengths.

3.4.2 Instruction Abstraction. The instruction abstraction is a central concept of the MiA. Users can leverage this
concept with Instruction typed variables. These variables abstract away two dimensions – the kind of instruction
and the progress of the instruction execution. The first aspect implies that the MiA specification is not aware of the
instructions present in the ISA. Such variables may even represent VLIW bundles. The second aspect implies that the
MiA specification is not aware of the execution state. That is, it is not aware of which parts of the instruction semantics
have already been computed at any point in the pipeline. The generator resolves these abstractions automatically during
the microarchitecture synthesis. If the generator cannot entirely resolve the abstractions, it will raise an error. Section
4.9 explains this process in more detail.

Because the MiA is blissfully unaware of the complexity behind the Instruction variable, it can solely interact
with the instruction using abstract operations on the variable. For example, it can specify that the instruction should
make arithmetic computations using instr.compute. VADL provides a set of such operations. We will refer to them as
instruction mappings, or simply mappings. Some mappings are very general (e.g., read any register), while others are
more specific (e.g., read register file X). This enables users to trade off between precise control and compatibility with
other ISAs.

3.4.3 An Exemplary Pipeline. This Section describes the IMPL microarchitecture depicted in Listing 8. A microarchi-
tecture must implement an ISA, such as the RV32I architecture (line 2) in our example. The pipeline consists of five
stages. The specifications of each stage will be discussed in the following paragraphs. The dataBusWidth annotation
determines the width of the memory interface. In this example, reading from and writing to memory is done in 32-bit
blocks.

Listing 9 depicts the FETCH and DECODE stages of the pipeline. All stages but the final stage have to specify the
result of the stage. The order of stages is defined by accessing the result of a previous stage. The FETCH stage makes
use of the fetchNext built-in. The result type of this operation (FetchResult) abstracts the fetch size while the
built-in automatically determines the next program counter. The generator determines the fetch size by analyzing the
instructions in the ISA. In the future, VADL users may provide additional options for the fetch operation (e.g., buffers,
multiple instructions). To understand the MiA specification, it is sufficient to know that the fetchNext built-in loads
enough bytes from the correct memory position to represent a single instruction.

The DECODE stage makes use of the decode built-in. The primary goal of this built-in is to represent a decode for the
implemented ISA. The generator will synthesize a decoder automatically. It takes a FetchResult as input and produces
an Instruction as output. This is the origin of the instruction abstraction, which was discussed in Section 3.4.2. The
FetchResult input is obtained from the preceding FETCH stage. Note that the generator can resolve the instruction
abstraction because it has access to the ISA. The decoded instruction then reads the source operands from the X register
file.
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1 [ dataBusWidth = 32 ]
2 micro arch i tec ture IMPL implements RV32I = {
3 stage FETCH / / . . .
4 stage DECODE / / . . .
5 stage EXECUTE / / . . .
6 stage MEMORY / / . . .
7 stage WRITEBACK / / . . .
8 }

Listing 8. Execute Stage

1 stage FETCH −> ( f r : F e t c hRe su l t ) = {
2 f r : = f e t chNex t
3 }
4

5 stage DECODE −> ( i r : I n s t r u c t i o n ) = {
6 l e t i n s t r = decode ( FETCH . f r ) in {
7 i n s t r . read ( @X )
8 i r : = i n s t r
9 }
10 }

Listing 9. Fetch and Decode Stage

Listing 10 shows the specification for the EXECUTE stage. It is responsible for computing arithmetic operations
and executing branches. Firstly, the stage obtains the current instruction from the DECODE stage (line 2). Then, the
specification checks whether the instruction is valid (line 3). If not, the stage raises an invalid instruction exception, thus
redirecting the control flow to the exception handler (line 4). If the instruction is valid, the stage computes arithmetic
operations (line 6) and writes the new program counter (line 8). In addition, the stage verifies whether the instruction is
on the correct program execution path (line 7). If this is not the case (branch misprediction), the control logic flushes the
EXECUTE stage and all its predecessors. The MEMORY and WRITE_BACK stages in Listing 11 complete the 5-stage pipeline.
The displayed definitions define a valid VADL MiA specification.

1 stage EXECUTE −> ( i r : I n s t r u c t i o n ) = {
2 l e t i n s t r = DECODE . i r in {
3 i f ( i n s t r . unknown ) then
4 ra i s e i n v a l i d
5 e l se {
6 i n s t r . compute
7 i n s t r . v e r i f y
8 i n s t r . w r i t e ( @PC )
9 }
10 i r : = i n s t r
11 }
12 }

Listing 10. Execute Stage

1 stage MEMORY −> ( i r : I n s t r u c t i o n ) = {
2 l e t i n s t r = EXECUTE . i r in {
3 i n s t r . w r i t e ( @MEM )
4 i n s t r . read ( @MEM )
5 i r : = i n s t r
6 }
7 }
8

9 stage WRITE_BACK = {
10 l e t i n s t r = MEMORY. i r in {
11 i n s t r . w r i t e ( @X )
12 }
13 }

Listing 11. Memory and Write-Back Stage

3.4.4 Logic Elements. VADL uses the concept of a logic element to model microarchitectural concepts besides stages.
The complexity of logic elements varies greatly depending on its semantics. An annotation determines a logic element’s
type and, thus, its semantics. For example, Listing 12 displays a logic element that allows users to define forwarding
paths between stages. The generator must be aware of the logic element’s semantics as it must derive the implementation
in the microarchitecture synthesis.

Connecting logic elements with the instruction abstraction realizes their full potential. Listing 12 also shows how
instructions may read and write values to the previously mentioned forwarding logic. As the generator is aware of the
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semantics, it can synthesize the logic of the forwarding network. Furthermore, it can also integrate this knowledge into
the hazard detection logic element. After all, the control unit should not stall the pipeline if a forward can resolve the
hazard.

1 [ f o rwa rd ing ]
2 l og ic bypass
3

4 stage DECODE −> ( i r : I n s t r u c t i o n ) = {
5 l e t i n s t r = decode ( FETCH . f r ) in {
6 i n s t r . readOrForward ( @X, @bypass )
7 i r : = i n s t r
8 }
9 }

Listing 12. Decode Stage with Forwarding Logic

1 [ w r i t e through ]
2 [ e v i c t roundrob in ]
3 [ e n t r i e s = 1024 ]
4 [ b l o c k s = 4 ]
5 [ n_ se t = 2 ]
6 [ a t t a ched_ t o MEM ]
7 cache L1 : V i r t u a l Add r e s s −> B i t s <8 >

Listing 13. Cache Definition

Readers familiar with microarchitecture design may have noticed that the specification does not contain elements
for the necessary control logic and hazard detection. If the generator does not find a logic element that handles these
circumstances, it inserts a default hazard detection and control element into the MiA. Later, the microarchitecture
synthesis determines the necessary control logic for the processor. Letting the generator synthesize these elements
changes the role of hardware designers. Instead of testing an idea in a specific processor, they can define it as a new
logic element in the VADL generator. Then, they can test this concept in many different configurations with the regular
VADL design flow.

3.4.5 Caches. To represent a memory sub-system, VADL defines a cache definition to describe caches. The definition
can be parameterized through annotations. Listing 13 defines a cache named L1 with 1024 entries (cache lines). A
single cache line has 4 blocks where a single block corresponds to one addressable unit. For instance, this would be
eight bits on a byte-addressable architecture. Our cache is defined to be 2-way associative (n_set). Since the cache
has 1024 entries and each set contains two entries, the cache has a total of 512 sets. Observe that setting n_set to 1 is
equivalent to a directly mapped cache, while n_set = entries makes the cache fully associative. Most importantly, the
attached_to annotation defines where the cache can fallback to in case of a miss. The fallback storage can be another
cache (e.g., level 2), memory or a process. The latter can be used to translate a virtual address to a physical one before
accessing main memory for instance. In addition, several behavioral aspects of the cache can be specified, such as write
and eviction policy. The attribute naming and design was inspired by [100].

3.4.6 Branch Prediction. In order to model different simple branch prediction schemes and the branch unit behavior,
VADL provides the fetchNext construct that automatically incorporates branch prediction and control hazard resolving.
If no user-defined branch predictor can be found, a default always_not_taken branch predictor will be added to the
MiA. In general, the architecture of the MiA synthesis is agnostic to the correctness of the branch predictor. This is
done by storing the source address alongside the actual instruction variable and comparing the source address to the
actual PC at an adequate place. This place is determined by the instruction.verify mapping. Listings 8 and 10 show
the use of a simple branch prediction scheme. The branch predictor’s implementation can be changed with different
annotations. Combining multiple branch prediction schemes is also possible by defining two logic elements and using
appropriate instruction mappings on them.
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3.4.7 Advanced Techniques. This section will introduce concepts that are required for describing superscalar and
out-of-order processors. Many modern processors employ at least one of these two techniques. We will try to introduce
these concepts very briefly in the next paragraph. Readers interested in this topic can find more information in [62]. We
would like to highlight that we have not yet implemented these constructs in the generators. Therefore, this part of the
language is still a work in progress.

Superscalar processors can finish executing multiple instructions per clock cycle. As a result, the overall throughput
of the processor may increase. Furthermore, out-of-order processors dynamically schedule the execution of instructions
depending on the availability of their inputs. This technique allows the processor to tolerate a certain amount of latency
in the instruction stream while still keeping parts of the processor busy.

While these techniques are orthogonal optimizations, i.e., they can be applied separately, we will discuss them on a
single example. The following paragraphs will extend the 5-stage pipeline from earlier to a superscalar out-of-order
implementation. This MiA employs reservation stations, multiple execution units, register renaming, and a reorder
buffer. Again, we will explain these concepts superficially. Interested readers can find more information in [118], [62]
and [113].

A superscalar out-of-order processor may be implemented as follows. Firstly, the processor fetches multiple instruc-
tions from the memory which are then decoded in parallel. This can be achieved by parameterizing the fetchNext and
decode built-ins from Listing 9. The former one will include the number of bytes to fetch, while the latter includes the
maximum number of instructions to decode.

After decoding the instructions, the MiA tracks the instructions in the reorder buffer. This buffer allows the processor
to reconstruct the program order after the dynamic dispatching. Listing 14 shows a reorder buffer definition which is
modeled with a logic element. The buffer shown is also used to rename the X register file, mapping 32 architectural
registers to 64 physical registers (one per reorder buffer entry). This technique is used to eliminate anti- and output
dependencies in the original program.

Usually, a superscalar processor contains multiple execution units which are specialized to execute a subset of the
supported ISA. However, the processor must ensure that all operand values are available before executing an instruction.
To facilitate this, the MiA parks instructions in a reservation station until all their operands are ready. Listing 14 depicts
two example definitions of a reservation station. The MiA’s next task is to dispatch the instructions to their correct
reservation station. This step requires separating the instruction stream. For example, only integer instructions must be
dispatched to the integer reservation station. Often this is done in a separate stage which we will call DISPATCH.

Listing 15 shows an exemplary definition of a DISPATCH stage. The filter built-in is used to partition the instructions
into integer instructions and memory instructions. The resulting instructions are then dispatched to the corresponding
reservation station. The used operation concept models a set of instructions.
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1 [ renames X]
2 [ s i z e = 64 ]
3 [ r e o r d e r b u f f e r ]
4 l og ic Reo rd e rBu f f e r
5

6 [ s i z e = 16 ]
7 [ r e s e r v a t i o n s t a t i o n ]
8 l og ic In tegerQueue
9

10 [ s i z e = 8 ]
11 [ r e s e r v a t i o n s t a t i o n ]
12 l og ic MemoryQueue

Listing 14. Reorder Buffer and Reservation Station Definition

1 operation IntOps = {ADD, ADDI , SUB , . . . }
2 operation MemOps = {LW, SW, . . . }
3

4 stage DISPATCH = {
5 l e t i s = DECODE_AND_RENAME . i r in
6 l e t i n t s = f i l t e r ( i s , @IntOps ) in
7 l e t mems = f i l t e r ( i s , @MemOps) in {
8 In tegerQueue . d i s p a t ch ( i n t s )
9 MemoryQueue . d i s p a t ch (mems )
10 }
11 }

Listing 15. DISPATCH Stage Definition

After dispatching, the instructions reside in the reservation station until all their operands are ready. Execution
units subscribe to the reservation stations as consumers, as shown in Listing 16. The example shows two simplified
integer units and one memory unit that consume from corresponding reservation stations. Even though both stages use
the i.execute mapping, the integer units implement arithmetic computations, while the memory unit implements
memory access. The VADL generator is responsible for tracking which instructions are scheduled to the respective
execution units. Users may also use more specific instruction mappings (e.g., i.read(@Mem) in the memory unit) if
they prefer.

The resulting instruction streams are then merged in the COMPLETION stage depicted in Listing 17. This is done
by using the combine operator (|). In the example, the all variable joins the three instruction streams together. The
processor then marks all instructions in the joined instruction stream as completed in the reorder buffer. Note that this
step happens in the order of the instruction execution, not the program order.

Lastly, the MiA must retire the instruction in the reorder buffer. This is done by using the retire mapping as shown
in Listing 17. The example shows a possible specification that can retire up to three instructions in a cycle. Once an
instruction has retired, its allocated space in the reorder buffer is freed and the architectural state of the processor is
updated. Note that contrary to the COMPLETION stage, this process is done in program order. As a result, the original
order of the instructions is reconstructed and their architectural side effects are applied in this order.
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1 stage I n t e g e rE xu1 −> ( i r : I n s t r u c t i o n ) = {
2 l e t i = In tegerQueue . consume in {
3 i . e x e cu t e
4 i r : = i
5 }
6 }
7

8 stage I n t e g e rE xu2 = / / equa l to I n t e g e rExu1
9

10 stage MemoryExu −> ( i r : I n s t r u c t i o n ) = {
11 l e t i = MemoryQueue . consume in {
12 i . e x e cu t e
13 i r : = i
14 }
15 }

Listing 16. Definitions of Execution Units

1 stage COMPLETION = {
2 l e t i n tExu1 = In t e g e rExu1 . i r in
3 l e t i n tExu2 = In t e g e rExu2 . i r in
4 l e t memExu = MemoryExu . i r in
5 l e t a l l = i n tExu1 | i n tExu2 | memExu in
6 a l l . markAsCompleted ( @ReorderBuf fer )
7 }
8

9 stage RETIRE −> {
10 Reo rde rBu f f e r . r e t i r e ( 3 )
11 }

Listing 17. Retiring Instruction Streams

3.5 Application Binary Interface Section

The ABI ensures consistent and well-defined interoperation between units of object code.
The ABI specification section in VADL supports the definition of

• special purpose registers,
• stack alignments,
• register aliases,
• calling conventions and
• special instruction sequences.

This section provides a description and an example for each of these definitions.
ABI definitions are top-level elements inside a VADL file. The section starts with the keyword application binary

interface followed by a unique identifier. Since most elements inside the ABI section rely on previously defined ISA
elements, it is required to reference an ISA section using the for keyword after the identifier. Definitions from the
referenced ISA are available inside the ABI section. Listing 18 shows an empty ABI section for the RV32I ISA.

1 appl icat ion binary in te r face ILP32 for RV32I { }

Listing 18. ABI section definition

Specifying the calling convention is one of the most important tasks of the ABI. Calling conventions describe how a
function call is executed. The specification contains information on the instructions performing the call, which registers
are used to pass arguments or return values, or which registers are managed by the caller or callee. Additionally, it
holds information on special-purpose registers, such as a frame pointer, stack pointer, or return address. Figure
20 contains ABI code, that defines a calling convention with special-purpose registers. Each definition has the same
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structure, i.e., a descriptive keyword, that declares what register or register group will be specified, followed by a "="
and one or more references pointing to the actual registers. To be more concise, VADL provides a special syntax to
address multiple registers with similar names. In the example, the compact expression a{0..7} evaluates to [a0, a1,

a2, a3, a4, a5, a6, a7]. Moreover, Figure 20 showcases the alignment annotation. This is used to specify the
stack alignment.

Using expressive names for registers is not only helpful for reading and understanding the specification, but can also
have a positive impact on debugging and writing correct specifications. In order to provide registers with additional
names, the ABI section provides the alias register keyword. With the help of this mechanism, it is possible to assign
registers multiple names and use them as a reference throughout the VADL specification. The statement to declare
an alternative name for a register follows a structure similar to that of defining special-purpose registers. First, the
keywords alias register is written, followed by the new identifier. Next, the "=" operator points to the register
reference which should be extended by a new name. Note that a single hardware register or register cell is allowed
to have multiple different names. If multiple names are available for a specific register, you may use the annotation
[preferred alias] to emit only the preferred name in the generated code. Listing 19 showcases different alias register
statements and enforces the name fp for register X(8). In Listing 20, the alias names can be seen in action.

1 a l i a s r eg i s t e r z e r o = X ( 0 )
2 a l i a s r eg i s t e r ra = X ( 1 )
3 a l i a s r eg i s t e r sp = X ( 2 )
4 a l i a s r eg i s t e r gp = X ( 3 )
5 a l i a s r eg i s t e r tp = X ( 4 )
6

7 / / . . .
8

9 [ p r e f e r r e d a l i a s ]
10 a l i a s r eg i s t e r fp = X ( 8 )
11

12 a l i a s r eg i s t e r s0 = fp
13 a l i a s r eg i s t e r s1 = X ( 9 )
14 a l i a s r eg i s t e r a0 = X ( 1 0 )
15 a l i a s r eg i s t e r a1 = X ( 1 1 )
16 a l i a s r eg i s t e r a2 = X ( 1 2 )
17 a l i a s r eg i s t e r a3 = X ( 1 3 )

Listing 19. ABI Register Alias

1 [ a l i gnment : B i t s <128 > ]
2 stack pointer = sp
3

4 return address = ra
5

6 global pointer = gp
7

8 frame pointer = fp
9

10 return value = a { 0 . . 1 }
11

12 function argument = a { 0 . . 7 }
13

14 c a l l e r saved = [ ra , a { 0 . . 7 } , t { 0 . . 6 } ]
15

16 ca l l e e saved = [ sp , fp , s { 0 . . 1 1 } ]

Listing 20. ABI Calling Convention

Finally, the ABI section supports the definition of special instruction sequences. An instruction sequence is a particular
order in which a specific list of instructions has to be executed. For example, a call sequence might consist of two
separate parts. One instruction loads an address to a specific location and a second instruction jumps to this address
and prepares the return register. VADL is able to detect a lot of sequences on its own, e.g., stack manipulations or frame
index-related loads and stores. Detecting certain sequences can be challenging due to their explicit inclusion in the
processor’s ABI or their unreliable detection. To address this issue, the ABI section includes and mandates the use
of various sequences such as call sequence, return sequence, address sequence, nop sequence and constant

sequence. Figure 21 defines call and return sequence for the RISC-V processor. Every sequence has a predefined set
of parameters with specific meanings. In the case of the presented call sequence, the first operand is the target
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call address. The body of the definition describes how the address is split into two parts using VADL modifiers. The
instructions LUI and JALR are then used to load the address into a specific register and jump to it. In addition, the
return register X(1) is set. The call sequence is appropriately named, as it outlines the steps required to call a specific
address or symbol. Similarly, the return sequence serves the purpose of returning from a procedure call, as the name
implies. Both sequences are only allowed once per ABI section. The address sequence definition is used to specify
complex address loads. At present, the sequence is designed to load the entire address space and handle only absolute
addresses. Additional features are being planned for the load sequence to allow for the indication of various types
of loads using different flags, such as PC relative or absolute address. For now, the ABI section expects a single load
sequence. When executing the nop sequence, no state transformation should be performed. Finally, the constant
sequence specifies actions to load constant integers of different sizes. The ABI section supports multiple nop and
constant sequences. All mentioned sequences are analyzed and used by the compiler generator, introduced in Section
4.5, to generate compiler backend source code.

1 c a l l sequence ( symbol : Address ) =
2 {
3 LUI { rd = 1 , imm20 = h i 20 ( symbol ) }
4 JALR { rd = 1 , r s 1 = 1 , imm = l o 1 2 ( symbol ) }
5 }
6

7 return sequence =
8 {
9 JALR { r s 1 = 1 , rd = 0 , imm = 0 }
10 }

Listing 21. ABI Call and Return Sequence

3.6 User Mode Emulation Section

In the field of processor simulation, there is a distinction between two different modes of simulation: User Mode
Emulation (UME) (or simulation) and full system emulation (or simulation). In UME, the processor only simulates user
mode instructions. System call instructions of the emulated processor are mapped to system calls of the host operating
system. In contrast to this, full system emulation also virtualizes system elements of the host architecture, like disks,
network interfaces, attached keyboards, or monitors. This means also an operating system has to be executed on the
emulated processor to make these virtualized resources available to the emulated processor. VADL currently does not
support virtualization of an entire computer but provides language support for convenient UME.

Listing 22 demonstrates the mapping of Linux system calls of an emulated RISC-V processor to the operating system
of the host system. The enumeration in lines 1 to 4 defines some Linux system call numbers. The system call definition
in line 9 specifies that ECALL is a system call instruction, the system call number is passed in register A7, arguments to
the system call are passed in registers A0 to A5 and the result of the system call is returned in register A0. Then, similar
to the match syntax, the required mapping functions are invoked depending on the system call number (lines 10 and
11). The mapping functions are defined by a signature definition and embedded C++ code between the two symbols
"-<{" and "}>-" after the keyword procedure (lines 14 and 20).
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1 enumeration Sy sCa l l = / / L inux s y s c a l l numbers
2 { r ead = 63
3 , w r i t e = 64
4 }
5
6 user mode emulation ENV for CPU = {
7
8 / / s y s c a l l number i s i n a7 , arguments a re i n a0 . . a5 , r e s u l t i s i n a0
9 system ca l l @ECALL with format a7 : ( a { 0 . . 5 } ) −> a0 = {
10 Sy sCa l l : : w r i t e => wr i t e ,
11 _ => un s e r v i c e d
12 }
13
14 procedure wr i t e ( fd : Word , s r c : Word , l e n : Word ) −> ( r e s : Word ) = − <{
15 s td : : v e c t o r < u in t 8_ t > buf ;
16 readMemory ( buf , s r c , l e n ) ;
17 r e s = w r i t e ( getFd ( fd ) , buf . data ( ) , l e n ) ;
18 } > −
19
20 procedure un s e r v i c e d (num : Word ) = − <{
21 throw s td : : domain_er ro r ( " unhandled : " + s td : : t o _ s t r i n g (num ) ) ;
22 } > −
23 }

Listing 22. UME specification (RISC-V ECALL for Linux)

The simulator provides built-in functions like getFd and readMemory. getFd checks if the simulator owns the file
descriptor number and returns it. readMemory copies len bytes from the simulator memory to the specified buffer buf.
This copying is necessary as the simulator memory is not necessarily contiguous memory, but is implemented as a
hash map or an access function to a simulated cache. The simulator generator analyzes the signature of the system
call mapping functions and generates code for all necessary register copies. It copies the argument registers to the
argument variables, and after execution, the result variable to the result register. This copying code is combined with
the embedded C++ code and integrated with the generated simulator.

3.7 Assembly Description Section

To complete the compiler toolchain, a generator tool must be able to create an assembler and a linker so that users can
create executable programs for the specified processor. A critical aspect of this task is comprehending the artifacts’
inputs and outputs, assembly and object files as well as their interrelation. This understanding must include semantic
knowledge, as this is required to establish the relationship between the artifacts. For example, a generated assembler
must know how to parse an instruction, associate the string representation with an instruction from the ISA, structure
the output object file and emit the binary encoding for the identified instructions in the correct place. Naturally, this
knowledge has to be available to the parser generator. Thus, VADL must capture these aspects. This section provides
auxiliary information for generating an assembler and linker from a VADL specification.

Fortunately, efforts to define standardized object file formats (e.g., Executable and Linkable Format (ELF)) that can
cater to the needs of multiple processor architectures have been fruitful. Such formats dictate the overall structure of
the object file while leaving open inherently architecture specific aspects, such as instruction encoding. As a result,
processor description languages relying on these formats do not have to capture information regarding the object file’s

Manuscript submitted to ACM



28 Freitag et al.

structure. This restriction reduces the required specification while building on the rich ecosystems that evolve around
popular standard formats.

In contrast, assembly languages have no standardized structure like object files. However, many languages are alike.
This similarity allows VADL to make some assumptions about the structure of the assembly files to reduce specification
effort. Firstly, labels have a predefined syntax: the name followed by a colon (e.g., loop:). Secondly, each statement
must correspond to a (pseudo) instruction of the processor’s architecture. Lastly, the overall structure of the source
file is a sequence of labels and statements. A VADL specification thus can solely focus on defining the syntax of the
assembly instructions.

Figure 23 presents the structure of an assembly description element, including its three subsections. An assembly
description has to refer to an ABI. By extension, the assembly description also depends on the ISA linked to the ABI.
The commitment to a particular ABI instead of an ISA is necessary to provide additional information about the usage
of some registers. For example, a generated linker could use the defined global pointer to optimize access to certain
variables. As with any top-level element, annotations can provide additional information to the generators.

The most crucial element of the assembly description is the grammar definition. It defines the structure of assembly
instructions as a formal language grammar augmented with semantic information. For example, users can annotate
sub-elements of an instruction with type information, thus capturing the role of an element (e.g., refers to a register).
The style of the grammar element is inspired by Xtext [43]. This work will abstain from discussing all intricacies of
the grammar element. However, the example in Figure 24 gives readers a good intuition of how the grammar element
captures relevant information for the assembler generation. The example shows the definition of a rule that describes
RISC-V LUI (load upper immediate) instructions. Register and ImmediateOperand are non-terminals that have a
default definition in the language. Users can override these defaults by providing a rule with the corresponding name.

1 [ commentStr ing = " # " ]
2 assembly descr ipt ion RV32I_ASM for RV32I_ABI = {
3 d i r ec t i ve s = {
4 " . word " −> BYTE4
5 }
6

7 modifiers = {
8 " l o " −> RV32I : : l o12 ,
9 " h i " −> RV32I : : h i 2 0
10 }
11

12 grammar = { . . . }
13 }

Listing 23. Assembly Description Element

1 grammar = {
2 . . .
3 / / Example : l u i ra , %h i ( main )
4 L u i I n s t r u c t i o n : (
5 mnemonic= " l u i " @operand
6 rd= R e g i s t e r @operand
7 " , "
8 imm20= ImmediateOperand
9 ) @ in s t r u c t i on
10 . . .
11 }

Listing 24. Grammar for a RISC-V LUI Instruction

The power of the grammar system is rooted in the type system of the language as it also models the semantic
information. Usually, when parsing an assembly file, the algorithm receives tokens with primitive types from the lexical
analysis. These tokens do not capture any semantic information. However, an assembler must check whether the tokens
satisfy context-dependent criteria. For example, when the assembler encounters an ADD instruction, the first operand
has to be a valid register. VADL uses its type system to capture this information. By annotating elements of the grammar
with a semantic type, the user instructs the parser generator to insert a conversion routine for the value of the given
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element. This routine depends on the input and output types and may include validation and transformation of the
input value. For example, the conversion routine from the primitive string type to the register type checks whether a
register has a matching name. The procedure’s successful completion asserts that the value refers to a valid register.
VADL’s type system conveys this information to other parts of the grammar. A parser can generate a meaningful error
message if the validation fails.

Readers may wonder why VADL requires a separate grammar for the assembly syntax even though the ISA section
describes assembly formatting functions. The idea is that the language could also define the grammar solely by the
inversion of the formatting function. We decided against such an approach for two reasons. Firstly, VADL does not
always require grammar specifications for each instruction. By defining conventions for grammar rule names, generators
may support users by synthesizing rules from the formatting functions. This approach allows for a graceful degradation
of the required amount of specification as users may provide rules on a per-instruction basis. For example, a generator
may create the grammar rule from Figure 24 from the associated formatting function. Secondly, if the language relies
solely on function inversion, generators must have sophisticated inversion routines, as the system has to support every
possible formatting function. By defining the grammar separately, VADL provides an escape hatch if the rule generation
capabilities of a generator are not general enough. Lastly, a single assembly instruction may map to multiple valid
text representations (e.g., multiple spaces instead of one). This circumstance requires the inversion process to handle
alternatives, as the defined language should include all possible representations. Other works addressed this issue by
introducing the biased choice operator and special rules for whitespace handling [89]. We decided against relying on
this approach, as it significantly increases the complexity of the formatting functions. Reducing the complexity of
the ISA section caters to the goal of making computer architecture comprehensible. Understanding the ISA is more
important than knowing all possible assembly syntax variations. Thus, making this section more manageable may help
VADL users focus on the architecture’s essential aspects.

3.8 Micro Processor Section

The microprocessor modeling view is conceptualized to capture all the remaining aspects of a CPU design to specify the
actual composition of the used ISA and ABI which is necessary for generating software simulators as well as generating
actual hardware artifacts of a given CPU.

Therefore, this modeling view contains syntax elements to define the start address, the stop condition, the exception
handling, startup logic, as well as a firmware section to pre-load or set memory values as well as register states if, for
example, the CPU does not operate on a given executable.

Listing 25 depicts a RISC-V CPU specification by using the microprocessor modeling view to define an example
processor. This example includes setting up the register state and executing the provided firmware or an external
executable. Furthermore, the processor defines exception handling code that the MiA can use. The exception handler
saves the current PC in the exception registers and jumps to the exception handler (address stored in mtvec). The
exception registers are defined in the ISA.

4 IMPLEMENTATION

This section presents the VADL compiler’s implementation aspects, ranging from the compiler overview, language
parsing, and domain-specific IR to the detailed descriptions of the code generators for the different PDL artifacts. First,
Section 4.1 gives an overview of the compiler’s architecture. Then, each principal component is discussed separately
describing and comparing the original VADL and OpenVADL implementation.
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1 [ t a r g e t = " r v 3 2 i " ]
2 [ d e s c r i p t i o n = " 32− b i t RISC−V I n t e g e r " ]
3 micro processor CPU implements RV32IM with ILP32 = {
4
5 s t a r t = 0 x8000 ' 0 0 0 0
6
7 stop = PC = 0 xe000 ' 0 0 0 0
8
9 exception i n v a l i d = {
10 mepc : = PC
11 mtval : = PC
12 mcause : = 2
13 PC : = mtvec
14 }
15
16 s tar tup −> ( ok : Bool ) = {
17 mtvec : = 0 xe000 ' 0 0 0 0
18 PC : = 0 x8000 ' 0 0 0 0
19
20 ok : = PC = s t a r t / / s e l f − t e s t
21
22 i f e x e c u t a b l e then h a l t
23
24 firmware / / f l a s h
25 }
26
27 firmware = {
28 / / Rtype | f 7 | r s 2 | r s 1 | f 3 | rd | opcode |
29 MEM<4 >( 0 x8000 ' 0 0 0 0 ) : = 0b ' 0 0 0 0 0 0 0 ' 0 0 0 1 0 ' 0 0 0 0 1 ' 0 0 0 ' 0 0 1 0 0 ' 0 1 1 0 0 1 1 / / RV32I .ADD
30 / / . . .
31 }
32 }

Listing 25. CPU Specification (RISC-V)

4.1 VADL Compiler Overview

One of the first requirements to the VADL compiler development was that it should be implemented in an efficient and
safe programming language. This demanded a strongly, statically typed language which has array bound checking and
garbage collection. The original VADL compiler was implemented in Xtend [21]. Xtend is an extension of Java which
has type inference and excellent support for string templates. It would have been the perfect language if Xtend – similar
to other Java Virtual Machine (JVM) languages – had been implemented as an Xtend to JVM byte code compiler instead
of a source to source compiler from Xtend to Java. As line numbers are not related to the original Xtend source code
but to the generated Java code, debugging becomes extremely difficult. Therefore, we decided to implement OpenVADL
in Java directly using a string template library. Java also has better support in development tools like checking coding
style guidelines. This resulted in more effective development and the change of the implementation language proved to
be successful.

Figure 1 presents the complete overview of the VADL compiler design. Each processor specification starts as a plain
VADL text file. The parser is responsible for reading the VADL text file, applying all macros, and generating an AST.
The language compiler handles symbol resolving, type inference, type checking, annotation checking, and constant
evaluation. Section 4.2 provides an overview of the parser.

Then, the compiler transforms the AST into an IR, in the original VADL compiler this is the VADL Intermediate
Representation (VIR), in OpenVADL this is the VADL Intermediate Architecture Model (VIAM). The IR is the central
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Fig. 1. Overview of the original VADL and OpenVADL Compiler Architecture. Yellow boxes represent generators.

data structure in the compiler, as all generators operate on it. It must be able to describe behavioral aspects (e.g.,
instruction semantics) and structural aspects (e.g., pipeline stages). After creating the data structure, the compiler does
well-known optimizations like removal of redundant operations or dead-code elimination. Section 4.3 describes the VIR
in detail. Section 4.4 describes the VIAM in detail.

Generators that do not require knowledge about the microarchitecture can use the IR directly after the transformation.
These generators are the assembler and linker generator (see Section 4.6) and the instruction set simulator (for the
original VADL’s interpreting simulator see Section 4.7, for OpenVADL’s dynamic binary translating simulator see
Section 4.8). Furthermore, the compiler generator can do most of its work without knowing the microarchitecture.
However, the generated compiler might perform better at instruction scheduling if the generator has knowledge about
the microarchitecture.

The compiler executes the microarchitecture synthesis (see Section 4.9) prior to generators that require microarchi-
tectural details. This step is responsible for integrating ISA and MiA while also bridging much of the semantic gap
between VADL and the generated artifacts. As already mentioned, the compiler generator might use this information to
tailor the code generation to the processor implementation. Furthermore, the cycle-accurate simulator generator (see
Section 4.10) and hardware generator (see Section 4.11) rely on the microarchitecture synthesis.

4.2 Language Parser

4.2.1 Original VADL Parser. VADL’s parser is built on top of the well-established Xtext framework [43]. Xtext is
an open-source framework for the rapid development of programming languages and DSLs. The framework takes
a grammar file as input and generates a Java-based ANTLR [98] parser, meta-model classes for the syntax tree, and
parts of an Eclipse-Modeling-Framework project for effortless Eclipse IDE [66, 117] integration. This work refers to the
generated syntax tree consisting of the meta-model classes as Concrete Syntax Tree (CST). To gain more control over
the translation and shorten the IDE feedback time, we turned off all non-LL(k) features in the Xtext-generated parser,
i.e. backtracking, and implemented custom semantic predicates and code actions [99]. The gained context sensitivity is
mainly needed to support VADL’s embedded macro language (see Section 4.2.1). After the parsing and macro expansion,
the CST is pruned and transformed into the more abstract AST. Please note that the CST contains a lot of syntax-related
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information and is primarily used to handle syntactic aspects of an input specification. All further transformations and
analyses, e.g., symbol inference or type inference, are performed later on the AST.

The VADL macro language is embedded into VADL. We classify the macro system as a pattern-based and syntactic-
typed macro system with the support of higher-order macro patterns [64]. To benefit from the IDE support and check
syntactic correctness during parse time, we split the macro system into the parsing and the expansion phases.

The first phase parses the language and collects information on macro elements. The second phase is a recursive
expansion step of the collected macro elements. Since VADL does not perform symbol or type inference on the CST,
semantic predicates and code actions interact with a lightweight macro API to compare and update symbol and type
information.

A more detailed description of the VADL’s macro system, its types, and implementation can be found in previous
work [64].

4.2.2 OpenVADL Parser. The Xtext framework requires to generate a CST which adds additional passes to the parser.
Furthermore, the generated parser is based on the Eclipse Modeling Framework preventing ahead-of-time compilation.
Therefore, for OpenVADL we replaced Xtext by Coco/R [93, 124]. Coco/R is a pred-LL(1) parser generator based on
an attribute grammar. Coco/R does not generate a CST, the generation of an AST has to be specified by the user with
attributes. This makes it possible to generate an AST which already has the syntax macros expanded in a single pass.
Applying ahead-of-time compilation the OpenVADL parser is up to 150 times more efficient then the original VADL
parser. The OpenVADL parser comes with some improvements to the language like macros which generate macros,
additional syntax types and operator precedence for expressions. A detailed description of the OpenVADL parser is
available in a thesis [95].

4.3 The VADL Intermediate Representation (VIR)

In order to completely decouple specification and code generation while still reusing many intermediate artifacts
generated from the VADL specification, we introduced the VIR layer.

This compiler IR is designed to be very close to the abstraction level of a HDL regarding the concepts of expressing
sequential and parallel computation logic. Since the current hardware code generator emits Chisel [15] (a RTL abstraction)
code, many similar constructs can be found in the VIR.

The goal of the VIR is to provide both structural and behavioral elements well suited to describe the various aspects
of CPU design. Because of that, several ideas emerged from existing state-of-the-art IRs for hardware descriptions, like
the Low-Level Hardware Description (LLHD) [110] project or the Flexible Intermediate Representation for Register
Transfer Level (FIRRTL) [69] project. All of those IRs allow the specification of arbitrary HDL designs. The VIR, however,
focuses only on the requirements of CPU designs. Thus, aspects such as register files are first-class elements in the VIR.

Besides the structural elements in the VIR to represent memory components, register states, signals, ports, and
overall processor definitions, the main focus of the VIR is expressing data and control flows in the behavioral elements.
Two main definitions exist to describe behavior: functions and processes.

A function is a behavioral block in the VIR that describes arithmetic (combinational) functional behavior, which
would correspond to a hardware logic computation that can be performed during a single (the same) clock cycle without
requiring any memorization of a state. A process, on the other hand, describes a state-aware computational behavior
that can extend over several clock cycles. LLHD [110] introduced these concepts in their IR design.
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In order to represent computations executing within the same clock cycle, one or more VIR instructions in SSA form
[80] describe linearized operations over virtual registers. One BB represents a computation that can be executed in a
single clock cycle. These operations are grouped into a BB and subsequently into a Directed Acyclic Graph (DAG) of
BBs to express the data and control flow. One or more BBs can then form single or multi-cycle hardware logic.

Several classical static analysis and transformation passes are implemented on the VIR level, e.g. constant folding,
constant propagation, code motion, control flow elimination, inlining, and strength reduction.

Listing 26 shows the VIR representation of the RISC-V ADD instruction. Readers familiar with LLVM [77] or LLHD
will see the similarity with the IRs of these projects. Every instruction is implemented as a process. In this case, the
process consists of a single basic block. Note how the VIR describes some processor elements (e.g., the register file
@RV32.X) as first-class citizens of the IR.

1 process @RV32I .ADD. e xe cu t e ( b5 %rs2 , b5 %rs1 , b5 %rd ) −> ( ) = {
2 l b l %bb1 :
3 %1 = cons t u32 4
4 %2 = read b32 @RV32 . PC
5 %3 = add u32 %2 , %1
6 %4 = probe b5 %r s 2
7 %5 = probe b5 %r s 1
8 %6 = probe b5 %rd
9 %7 = read b32 @RV32 . X , %5
10 %8 = read b32 @RV32 . X , %4
11 %9 = c a s t s32 %7
12 %10 = c a s t s32 %8
13 %11 = add s32 %9 , %10
14 %12 = c a s t b32 %11
15 wr i t e b32 @RV32 . X , %6 , %12
16 wr i t e b32 @RV32 . PC , %3
17 hal t
18 }

Listing 26. VIR Code for the RISC-V ADD Instruction

The example shows several features of the VIR. The syntax is inspired by the LLVM IR. Variables are prefixed with
the percent symbol. Names for temporary variables are numbered increasingly. Each VIR instruction is explicitly typed,
e.g. the add instruction has the type u32 which represents an unsigned 32 bit integer. Type conversions are done by
explicit cast operations, as shown in lines 11 and 12. An example for bit fields are the input parameters, e.g. rs2 which
is a bit field of width 5. Registers and register files are accessed with read and write VIR instructions.

The lbl in line 2 specifies the beginning of a BB and is used as a jump target when specifying control flow. Since a
VIR process represents a stateful computation with a possible duration of more than a single clock cycle, the probe
instruction is used to access stateful variables, in this example the input parameters. Stateful variables can change their
value over time. In this example, the probe instructions represents taking the value of the input parameters at a certain
point in time. One could think of this as probing the input wires.
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4.4 The VADL Intermediate Architecture Model (VIAM)

The VIAM serves as an internal representation of a VADL specification used in the OpenVADL project. It is designed to
be both generic, ensuring compatibility with various generators, and extensible, allowing each generator to customize
it as required. The VIAM is divided into two components: one defines the structural aspects of a VADL specification,
including its definitions, while the other captures the behavioral elements, such as instruction behavior.

4.4.1 Behavior Graph. The behavior component of the VIAM is modeled as a multi-graph that integrates both a
dependency graph and a control flow graph. The functional nature of VADL’s behavior description enables the
construction of a data dependency graph, where data flow is naturally in SSA form due to the semantics of let
assignments [10, 20, 114]. Control flow constructs, such as if-else, are represented within the control flow graph. This
design is inspired by the IR of the GraalVM compiler [39, 40].

VADL behavior follows a sequential reading style for enhanced readability, while certain constraints enable a parallel
interpretation. Semantically, all resource reads complete before instruction execution, and all writes apply only after it
finishes. By modeling side effects—such as register writes—as dependencies of end nodes, VIAM enforces this parallel
view, discarding execution order and representing only the conditions under which side effects occur. Read operations
function as standard expression dependencies, ensuring each register read appears only once in the graph, regardless of
multiple occurrences in the source code. Additionally, no explicit ordering is maintained between a read and a write to
the same resource, providing generators with greater flexibility in managing side effects.

start

instr end

write<X>

add: Bits<64>

read<X>: Bits<64> read<X>: Bits<64>

field<rd>: Bits<5>

field<rs1>: Bits<5> field<rs2>: Bits<5>

Fig. 2. VIAM behavior graph of the RISC-V ADD instruction

Figure 2 illustrates the behavior graph for the RISC-V ADD instruction. Each instruction begins with a control flow
start node and concludes with an end node, representing the minimal control flow structure. The end node depends on
the register file write operation, which depends on the instruction’s format field reference rd, indicating the destination
register index. Additionally, the add operation depends on the register file reads for the operand indices.

To prevent read-write and write-write conflicts caused by the side effect relaxation described above, users are
prohibited from writing to the same resource multiple times within a single instruction execution path, as this would
lead to undefined behavior. While this constraint can be enforced for registers, it is not always feasible for register files
and memory locations, as their exact addresses may not be statically determinable.

4.4.2 VIAM vs. VIR. As described in Section 4.3, the VIR is a quadruple-code IR used in the original VADL implemen-
tation, which fundamentally differs from the behavior component of the VIAM. Different generators have distinct
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requirements for the IR, depending on how they analyze specifications and apply transformations. During the original
VADL implementation, it became evident that the more hardware oriented VIR is not well suited for most generator
use cases, leading generators to introduce their own intermediate representations.

The ISS generator produces sequential code that closely resembles the quadruple-code structure of the VIR. However,
due to the uniqueness of expressions in VIAM behavior graphs, optimizations such as common sub-expression elimina-
tion, copy propagation, and global value numbering occur naturally during graph construction. Furthermore, in the new
QEMU-based ISS, dependency analysis and scheduling of potentially conflicting operations are more efficiently managed
with VIAM behavior graphs. By lowering the graph to custom control nodes, an operation sequence is generated that
can be easily translated into C code.

For the compiler generator, the primary task is to analyze instruction semantics and generate instruction selection
patterns. These patterns define the dataflow nodes that must match to emit a machine instruction. In the original VADL
implementation, the compiler generator introduced its own dataflow representation, as performing analysis on VIR is
unnecessarily complex. In the OpenVADL implementation, this additional representation is no longer required, as the
behavior graph itself is directly usable to find selection patterns.

Hardware generation leverages the VIAM to create the Instruction Progress Graph (IPG), which is then combined
with the MiA description in MiA synthesis. VIAM behavior design streamlines the process by eliminating the need to
construct an intermediate Data Flow Graph (DFG) from quadruple-code and enabling control flow elimination during
IPG creation. Unlike the original VIR, where the CAS can execute one basic block per cycle, the DFG in VIAM lacks
this strict cycle-based operation grouping. Instead, during VIAM behavior scheduling, dependencies must be analyzed
to determine which operations can execute within a single cycle.

The VIR can be easily dumped into human-readable files, which is particularly useful for debugging. In contrast,
VIAM behavior graphs cannot be directly represented in a text-based format that is easily readable by developers. To
address this, OpenVADL exports the VIAM as an HTML file, embedding all graphs in DOT format. These graphs can
then be visualized using an HTML embedded graph viewer, allowing developers to inspect and debug behavior graphs.

4.5 Compiler Generator

This section provides an overview of the design and implementation of the compiler generation component, highlighting
its key features and functionality.

4.5.1 Overview. The compiler generation component closes the semantic gap between the high-level ISA specification
of instruction semantics and the low-level compiler implementation. Similar to our structure in the VADL tool, modern
compilers can usually be split into three main components [77, 116]. A frontend for source-level parsing, an IR for target-
independent optimizations and a target-specific backend for target-specific optimizations and generating assembly or
bytecode.

One of the most proven approaches for automated compiler generation is to limit the generation process to the target-
specific backend, reusing the compiler’s parsing and optimization capabilities [14, 128]. By applying this technique,
the generated implementation is compatible with state-of-the-art compiler frameworks, enabling us to profit from
previous works in compiler research. As a proof of concept, we implemented a VADL compiler backend generator
for the well-established LLVM compiler toolchain [77]. In order to keep the support of additional compilers open, we
have categorized the compiler backend generation into two subtasks: Extract generic compiler information from the
specification and produce compiler backend-specific source files. The Generic Compiler Backend (GCB) component
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Fig. 3. Compiler Generator Overview

reduces and transforms information provided by the VIR into compiler-generator-relevant information. The created IR,
mainly consisting of DAGs, is then passed to a specific compiler toolchain component, producing output files specific
to a target compiler’s backend. In our case, we implemented the LCB module, responsible for producing a working
LLVM backend. Figure 3 gives an overview of the main steps done by the compiler generator component.

4.5.2 Generic Compiler Backend. The GCB module is the core component of the compiler generator. It lifts the VIR
entities to a new abstraction, only retaining information relevant to the compiler model. The resulting intermediate
representation is the basis for further compiler synthesis steps. While we mainly focused on generating an LLVM
backend, the GCB IR could be extended to support a variety of compiler backend targets.

The GCB IR acts as a further abstraction layer over necessary compiler elements. Introduced abstractions mostly
behave like glue code between VIR, C++ sources and newly collected or synthesized information. At the beginning, the
GCB generation starts by bundling the low-level VIR and generated C++ source units for relocations and immediate
encoding, decoding and predicate functions into high-level compiler elements. During this first step, most of the core
structure of the GCB model is created. The generated model can be seen as a processor skeleton extended during the
execution of the GCB passes. All further passes mainly deal with analyzing instruction semantics.

Next, the dynamic format fields are examined to recognize the instruction operands and assign them to a specific
type. The preparatory work in the VIR is crucial here, as it minimizes the semantics and simplifies the recognition of
register accesses or immediates used as addresses or arithmetic operands. The categories used for instruction operands
are register- or immediate-operands. Constant register class access, e.g., X(0), single register access, or the use of register
values or immediates as memory addresses are all managed inside the instruction behavior and have no impact on
the operand type. The only additional distinction is, if the operand is used as input or output operand. In contrast to
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the LLVM specification language TableGen, VADL is able to work with multiple input and output operands. To deal
with these shortcomings of target backends, the GCB is able to transform most instructions into a suitable form by
duplicating operands that occur as input and output operands, and generating additional instruction operand constraints.
After the operands are collected, an additional analysis flags immediate operands that are used as relative and absolute
jump addresses, respectively.

Furthermore, the GCB models all kinds of register-related elements as register resource. First, a distinction is made
between single hardware registers and register classes. While a single hardware register only contains a VIR type, a
register class is a set of hardware registers. Second, the register classes are separated into hardware register classes
and virtual register classes. A hardware register class must provide registers for each given index. A virtual register
class, on the other hand, is a modification of a hardware register, modeling constraints and slight modifications, e.g.,
replacing a single register with a zero register or restricting specific indices. This becomes useful as some hardware
instructions that access register files have particular behaviors for specific index values. The VADL specification may
use the alias register files mechanism to restrict or modify the access of register files. To model this behavior,
the GCB analyzes these artificial resources, collects information on the different indices, and creates virtual register
classes for the affected instruction operands. Since single hardware registers are not viewed as operands, they need
special attention. A separate register analysis traverses the instruction behavior and marks the single registers used for
each instruction individually. The information gained is helpful for instruction selection in the backend.

The VADL tool automatically creates a relocation symbol and function for every specified modifier relocation.
However, this representation usually needs to be more high-level. The GCB creates specific low-level relocation behavior
based on the instruction’s immediate operands to use relocations during linking. This process looks at every instruction
separately, but future work to combine instructions with similar formats into bundles is already planned. After the
relocation management step, the compiler backend has information on modifying the bit-fields of encoded instructions
to perform specific relocations.

Moreover, a significant transformation done by the GCB is converting the instruction semantic to a DAG form.
Alternatively, we experimented with keeping the VIR representation, which turned out to be unnecessarily complex as
most of the applied analyses, transformations, and especially pattern-matching tasks are better suited for DAGs. In an
iterative process, the initially rudimentary graph nodes are merged into more complex node patterns. This process
serves a dual purpose. Firstly, it expedites the identification of significant patterns in the various ABI sequences, and
secondly, it guarantees a more concise representation of the instruction semantic. The implemented DAG node kinds are
inspired by the LLVM TableGen nodes. The reason for this is that TableGen is a well-developed language and secondly,
it shortens the development to generate an LLVM-compliant backend. This decision does not impact the generality of
the GCB.

The LLVM backend requires C++ helper functions that produce specific sequences of instructions to function correctly.
These sequences are responsible for copying registers, loading memory addresses, dealing with complex immediates,
or performing memory offset calculations. LLVM does not deduce these sequences from the provided patterns. Since
statically retrieving this information from the generated TableGen patterns is impractical, VADL additionally performs
a simple instruction selection for the mentioned sequences. Most of the C++ helper functions are also relevant for
particular ABI-specific behavior. In contrast to a simple value move, calling conventions or more complex loads with
symbols cannot be derived automatically. C++ code which deals with more complex or ABI-related sequences is
synthesized using information from the VADL ABI section. See Section 3.5 for more details.
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Finally, all DAG patterns are checked for semantically equivalent alternative forms. A separate pass performs semantic
preserving transformations and stores the newly generated patterns to their original instruction. This step is beneficial
to achieve more excellent coverage of necessary comparison patterns as the actual hardware usually only provides the
minimal complete set of compare operations.

This concludes the generation of a general processor model, which is passed to a specific backend generator.

4.5.3 LLVM Compiler Backend. The LCB starts by applying a lowering, followed by a validation pass on the received
generic processor model.

The lowering step transforms the generic model into a state where it only needs to be output by the emitters. First,
generated C++ classes and functions are adapted to be compliant with the LLVM infrastructure i.e., modification of
types and signatures. Second, the lowering pass tries to legalize the generated patterns. This primarily consists of
casting immediate operand types to a suitable size of a power of two and forcing a uniform operation bit-width for
generated instruction patterns. Finally, it removes incomplete or irrelevant information that LLVM or TableGen cannot
process.

Since the lowering process modifies and removes information, the LCB needs to validate the final processor model.
Currently, the validation consists of ensuring the existence of LLVM essential sequences, specific purpose registers or
ABI-relevant information to successfully compile simple test programs.

The remaining part of the LCB consists of individual emitters and templates for each LLVM source file. This enables
us to locate files and adapt their content quickly if needed. After the lowering step, the processor model is no longer
transformed or modified. All needed information is contained inside the model and is queried through the different
emitting strategies.

Finally, the backend structure generated by the LCB is designed to be copied over an existing LLVM project. The
LCB generates a configuration script for convenience, which can be used to move the generated backend and compile
the LLVM project with suitable settings.

4.5.4 LLVM Compiler Backend - Instruction Matching. Listing 27 shows a snippet from a VADL specification which
contains the ADD instruction. It reads the values from two registers, adds them together and writes the result into
register rd. LCB’s central task is to provide the LLVM backend with the tree patterns representing the semantics of
various instructions specified in the VADL specification. During compilation, LLVM uses these patterns to completely
cover a program’s dataflow representation. This phase is called Instruction Selection and LLVM’s dataflow representation
is a directed acyclic graph which is called Instruction Selection Graph. Once LLVM has found a complete cover of all the
nodes from the Instruction Selection Graph, it will emit machine instructions which have been specified in the VADL
specification. Thus, the generated code will be semantically equivalent to the LLVM IR program. LCB performs the
following steps to generate the tree patterns for the Instruction Selection:

• Convert the VADL specification into VIR representation
• Extract the semantics from the VIR by constructing a dataflow graph
• GCB matches known patterns to recognize instructions based on their semantics
• LCB converts the dataflow graphs into TableGen records used by LLVM

In our example, the code from Listing 27 is converted into VIR which you can find in Listing 28. Next, the VIR is
converted into a dataflow graph which captures the semantics, as depicted in Figure 4. Lastly, LCB emits the mappings
as TableGen definition, shown in Listing 29. Note that it is not always possible to pattern match the semantics of an
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instruction. TableGen does not support instructions with multiple results. So whenever the semantic representation is
not a tree, mappings cannot be emitted.

1 in s t ruc t ion ADD : Rtype =
2 {
3 X ( rd ) : = ( ( X ( r s 1 ) as S I n t ) + ( r s 2 ) ) as B i t s
4 }
5 . . .

Listing 27. VADL ADD instruction

1 process @RV32I .ADD. e xe cu t e . gcb
2 ( b5 %rs2 , b5 %rs1 , b5 %rd ) −> ( ) = {
3 l b l %bb819 :
4 %6372 = probe b5 %r s 2
5 %6373 = probe b5 %r s 1
6 %6374 = probe b5 %rd
7 %6375 = read b32 @RV32 . X , %6373
8 %6376 = read b32 @RV32 . X , %6372
9 %6377 = c a s t s32 %6375
10 %6378 = c a s t s32 %6376
11 %6379 = add s32 %6377 , %6378
12 %6380 = c a s t b32 %6379
13 wr i t e b32 @RV32 . X , %6374 , %6380
14 hal t
15 }

Listing 28. ADD instruction’s VIR

rd: Bits<5> rs1: Bits<5> rs2: Bits<5>

X: Bits<32> X: Bits<32> X: Bits<32>

add: SInt<32>

set: Void

Fig. 4. ADD instruction’s semantics

1 def ADD : I n s t r u c t i o n
2 {
3 . . .
4 l e t OutOperandLis t = ( ou t s X : $rd ) ;
5 l e t I nOpe randL i s t = ( i n s X : $ r s1 , X : $ r s 2 ) ;
6 . . .
7 }
8
9 def : Pat < ( add X : $ r s1 , X : $ r s 2 ) ,
10 (ADD X : $ r s1 , X : $ r s 2 ) > ;

Listing 29. ADD instruction’s TableGen

4.5.5 Changes with OpenVADL. The previous sections discussed the original compiler generator. The design changes
in OpenVADL’s frontend have led to changes in the new compiler generator. This section discusses two major changes.

The first major change is the underlying IR. The original VADL uses the VIR, which is a quadruple code describing
the machine instruction’s behavior. The original GCB creates a dataflow representation from the VIR to generate
the TableGen patterns for instruction selection. The OpenVADL implementation uses the VIAM as IR which already
contains the dataflow representation. So, OpenVADL’s GCB does not need the additional analysis and translation step.
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The second major change is the heuristic labeling of pseudo instructions and machine instructions. For constant
materialization, frame setup and frame destruction, LLVM needs a certain set of instructions to be present. LCB checks
if all of those instructions are defined in the VADL specification, and labels them appropriately. LCB finds those
instructions by heuristically analyzing their behavior. E.g., to identify an ADD, the heuristic labeling checks whether
there is a WriteRegFileNode with an addition BuiltinNode which has two ReadRegFileNode as input. An example of such
an instruction specification and its VIAM representation can be seen in Figure 2. Another benefit of the improved
labeling is that it simplifies the lowering. By labeling instructions, OpenVADL’s LCB can group them together and
apply different lowering strategies to generate a TableGen pattern. For example, the lowering of arithmetic or logical
instructions is handled differently than the lowering of jump instructions.

4.6 Assembler and Linker Generator

This section discusses the assembler generation within the original VADL LCB prototype. Its task is to emit the assembler
and disassembler components of the generated backend. This work abstains from outlining the exact architecture of
the generated artifacts because the LLVM infrastructure dictates large portions of the design. Interested readers may
find additional information in the official LLVM documentation1. Instead, we will cover a set of generic components
necessary for a full-fledged compiler toolchain. The text will focus on how the VADL tooling can extract the required
information from the specification. In addition, it introduces a straightforward approach to generating grammar rules
from the assembly formatting function. Lastly, this section elaborates on handling relocations at the boundary between
the assembler and linker.

As discussed in Section 2, a native program has two important persistent representations - assembly and object code.
Each tool operates differently on these file types. For example, an assembler must parse an assembly file and produce an
object file. In addition to the persistent manifestation, the tools use internal data structures during processing. Figure
5 illustrates the transformations between the representations and the responsible LLVM components. The following
paragraphs discuss the depicted components briefly.

Compiler IRAssembly Files Object Files

Instruction Printer Machine Code Emitter

Assembly Parser Disassembler

Fig. 5. Overview of Generated Components and Their Inputs and Outputs. Red Boxes Denote External Representations.

4.6.1 Instruction Printer. This component is responsible for transforming the internal representation into assembly
text. The compiler uses this component to emit assembly files. Furthermore, the disassembler uses it to print the
decoded instructions to a command line interface. Implementing this functionality requires knowing how to express an
instruction as text. VADL captures this relation with the assembly printing functions in the ISA section. The VADL
tool uses the regular translation path via an implemented C++ code generator to obtain an implementation for each
instruction type.

1https://llvm.org/docs/
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4.6.2 Assembly Parser. The inverse to printing is parsing the assembly text into an internal representation. The assembly
parser implements this transformation. The assembly description element is the primary information source for this task.
Section 3.7 introduced this definition. Generating a parser from a formal grammar is a well-studied problem. Interested
readers can find an excellent introduction in [34, Chapter 3]. The VADL tool generates an LL(1) recursive-descent parser
from the grammar specification. These operations include recording, transforming, and validating values extracted from
the text. Section 5.6 discusses some limitations of this parser implementation in the context of assembly languages.

After parsing, the algorithm identifies a set of named operands. Then, it compares the name and content of these
operands to the instructions provided by the ISA. For example, matching a RISC-V ADD instruction requires mnemonic,
rd, rs1, and rs2 operands. Furthermore, the mnemonic operand must equal "add". After finding a match, the parser
instantiates the corresponding internal representation. If the algorithm finds no matching instruction, the tool reports
an error to the user. The grammar validation ensures that the operand names match with at least one instruction.
However, this validation does not reason about an operand’s content, thus it is not guaranteed that a corresponding
instruction can be found. Lastly, the program assures further invariants. For example, it asserts that a constant’s value
does not exceed its range in the matched instruction. During this process, the parser applies the necessary immediate
decoding functions defined in the format. Determining the transformation functions is straightforward because the
parser knows the operand name and the instruction type.

4.6.3 Disassembler. The central task in generating the disassembler, apart from understanding the object file format, is
decoding the instructions into the internal representation. The instruction format and constant format fields define
the decoding function. LLVM allows defining this information in a TableGen file. From this, the infrastructure can
automatically synthesize the decoder. Of course, a VADL generator could also synthesize this functionality without
LLVM from the same information.

4.6.4 Machine Code Emitter & Linker. The machine code emitter encodes the internal representation in an object file
format. This task involves encoding instructions and recording metadata. LLVM can synthesize the encoding function
from the TableGen file. In addition, the final object file must include relocation entries. This information is necessary to
convey program details to the subsequent linkage step. It is essential to highlight that this information is necessary for
using symbols in assembly (e.g., function names). Most importantly, a relocation entry contains a type and a symbol
name. The relocation type entails information on how the linker shall resolve the symbol (e.g., relative or absolute). For
example, one relocation type could describe the usage of a symbol that is resolved relative to the current instruction
(e.g., RISC-V branches).

Before the assembler can record relocation definitions, the assembler and linker must agree on the supported
relocation types. Naturally, the VADL generator emits declarations for the relocations from the ISA section. In addition,
the tool synthesizes generic relocations for immediate format fields. The latter type is required so that users do not
have to define a relocation that applies no transformation to the value. For example, the relative RISC-V branching
instructions use this feature in our processor description.

The biggest concern when generating the linker is understanding the object file format. In the LCB, the LLVM
infrastructure provides this capability. The architecture-specific code focuses on applying relocations to the encoded
instructions.

4.6.5 Grammar Inference. Before generating the components mentioned above, the VADL tooling infers grammar
rules based on formatting functions from the ISA. The problem of synthesizing a formal grammar from a pretty printer
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is related to program inversion, as the grammar defines the inverse operation. The function’s parameters are the
instruction’s operands. The result of each formatting function is a plain assembly string. As a result, the inverted
function computes the operands from the assembly string. Our implementation combines multiple ideas from program
inversion to leverage this relationship.

The first observation is that, given an interpreter for VIR functions, an algorithm can synthesize an inverter by trying
all possible input combinations and recording their output. This result captures a unique input-output mapping if the
pretty printer is injective, i.e., the computed output values are unique. The program could obtain a formal grammar by
generating an alternative over the outputs from the mapping. Each choice is augmented with the initial input values,
resulting in an inversed mapping from output to input values. However, this becomes impractical as the input domain
size can increase quickly. In addition, the grammar structure resulting from this approach is ill-suited for many critical
aspects of a parser. Essentially, the grammar boils down to expressions that check if the input text matches precisely
with a particular string, such as "add x1, x2, x3", and then assign specific values to the corresponding variables.
Therefore, grammar rules no longer contain structural information. This information is crucial for tasks like automatic
error message generation.

Another approach is synthesizing the grammar rule from the VIR function by defining additional grammar generation
semantics for each instruction. This approach results in a well-structured grammar and can handle large input domains
as the algorithm does not have to interpret all possible values. However, once control structures are involved, writing a
general inversion algorithm can take time and effort. The primary reason is that the inverter must be able to handle all
VIR instructions used in the formatting functions. In addition, the inverter must consider interactions between multiple
instructions. For example, if the formatting function uses multiple conditional constructs with the same selection input.

The VADL tooling uses a hybrid approach to remedy the problems of both techniques. It directly handles widely
used VIR instructions, such as string concatenation. Once the algorithm encounters a VIR instruction that it cannot
directly process, it switches to an interpretation-based grammar inference technique. Implementing this approach allows
leveraging synergies with other components that require an interpreter. The remaining puzzle piece for a functioning
parser generator is the lexical analysis, which is responsible for tokenizing the input text. VADL defines a set of built-in
terminal symbols that the generator maps to equivalent LLVM token types. By not allowing users to specify custom
terminal rules, the system can reuse the LLVM tokenizer without modification. Interested readers can find an excellent
introduction to lexical analysis in [34, Chapter 2]. A detailed description of our assembler generator can be found in
[112].

4.7 Instruction Set Simulator Generator

The ISS of VADL is a functional instruction set simulator only. It does not emulate non functional behavior like caches
as the CAS does. The design space for implementing an ISS offers a vast number of options. Because of limited resources
we decided to go for a simple and generic but efficient simulator. Therefore, an ISS using JIT technology was out of
scope. Instead, we opted for an implementation based on efficient interpretation. The fastest interpretation technique
available is Direct Threaded Code (DTC) where the instruction memory only contains pointers to the code which
emulates the instruction. For the simulation of von Neumann architectures, DTC requires an additional instruction
memory mirroring the data memory. Depending on the instruction size and the size of pointers, this instruction memory
would have a multiple of the size of the data memory. Furthermore, most entries of the instruction memory would be
empty and the initialization overhead of these empty entries would be huge. Therefore, the ISS employs a hashmap
where an instruction memory address is mapped to a pair comprising of a pointer to the instruction’s emulation code
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and the instruction at that address. This design also eliminates a range check for the instruction pointer as only valid
addresses are entered into the hashmap. When it is necessary to simulate self modifying code there are two possibilities:
It can be checked if the returned instruction is equal to the instruction in the data memory. Or it can be checked at
every write to the data memory, if the write invalidates an entry in the hashmap. VADL’s ISS uses the first checking
technique.

1 format I t y p e : Word = / / I t y p e
2 { imm : B i t s <12 > / / [ 3 1 . . 2 0 ]
3 , r s 1 : Index / / [ 1 9 . . 1 5 ]
4 , f un c t 3 : B i t s <3 > / / [ 1 4 . . 1 2 ]
5 , rd : Index / / [ 1 1 . . 7 ]
6 , opcode : B i t s <7 > / / [ 6 . . 0 ]
7 , immS = imm as SIntR
8 }
9

10 in s t ruc t ion ADDI : I t y p e = {
11 X ( rd ) : = ( ( X ( r s 1 ) as S I n t ) + immS ) as B i t s
12 }

Listing 30. ADDI instruction definition in VADL

1 typedef unsigned in t s i n t 3 2 ;
2 typedef unsigned in t u i n t 3 2 ;
3

4 s i n t 3 2 X [ 3 2 ] ;
5

6 i n l ine u i n t 3 2 ADDI ( const u i n t 3 2 PC ,
7 const u i n t 3 2 i n s t r ) {
8 u i n t 3 2 rd = ( i n s t r >> 7 ) & 0 x1 f ;
9 u i n t 3 2 r s 1 = ( i n s t r >> 1 5 ) & 0 x1 f ;
10 s i n t 3 2 immS = ( s i n t 3 2 ) i n s t r >> 2 0 ;
11 X[ rd ] = X[ r s 1 ] + immS ;
12 return PC + 4 ;
13 }

Listing 31. ADDI translated to C++

In the ISS an instruction specification is represented as an inline C++ function which takes the program counter and
the instruction word as arguments and returns the updated program counter. Simple encoded format fields are derived
via shifting and masking. Complex encoded format fields can be predecoded and additionally stored in the hashmap
and only a pointer to these elements is passed to the C++ function. The presented translation in Listing 31 is simplified.
Because of the transformations, casts and optimization on the VIR the generated code only contains assignments
with a single binary expression and mangled names. The C++ compiler optimizes and simplifies the expressions in the
generated code. Therefore, the ISS generator only has to apply a few optimizations during C++ code generation. The ISS
main interpreter loop consists only of a single access to the hashmap (which returns the address of the label where an
invocation of the inlined translated function has been positioned) and a jump to that address.

The generation of the C++ code is straightforward. There is just a simple analysis of the assignment to and the use of
the program counter to add the correct program counter updating code. The decoder is already available in the VIR and
can be reused. It is combined with the function which adds new elements to the hashmap on a miss in the map.

To facilitate the validation of the generated simulators and of processor specifications, the simulator supports trace
generation and co-simulation. The amount of checked execution state can be controlled by command line options.
Co-simulation has been done against other simulators and real hardware (RISC-V, AArch64). The validations have
been conducted using existing processor validation suites. A detailed description of the simulator generator and an
evaluation of performance and co-simulation can be found in a thesis [90].

4.8 QEMU Generator

OpenVADL introduces a new ISS generator to overcome the limited performance of VADL’s DTC based ISS. The new
ISS is based on QEMU, an open-source emulator and virtualizer that enables hardware virtualization and full-system
emulation for various architectures.
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RISC-V
lb a11, 8(a10)

TCG IR
add_i64 loc3,x10,8
q_ld_i64 x11,loc3

x86_64
lea rdi, [r10 + 8]

mov r11, qword ptr [rdi]

Guest Frontend Host Backend

Fig. 6. TCG Translation Process

QEMU enables programs compiled for a guest architecture to run on a different host architecture using dynamic
binary translation for high performance. Its modular design simplifies the addition of new guest and host architectures.
To decouple guest and host implementations, QEMU employs the Tiny Code Generator (TCG). As shown in Figure
6, the guest frontend reads and decodes instructions from a Translation Block (TB) (a basic block of target code) and
translates them into TCG ops, QEMU’s architecture-independent IR. The TCG then optimizes this IR before passing it
to the host backend, which translates it into machine instructions.

To generate a minimal QEMU target, the generator must define four key components: a CPU state, which stores
all register values and CPU-related states; a machine, responsible for memory initialization and firmware loading; an
instruction decoder ; and the TCG translation. The CPU definition can be generated straightforwardly, as it is directly
derivable from the VIAM.

The machine definition is relatively generic, incorporating only memory definitions from the VADL ISA specification.
When defining the microprocessor, which serves as the entry point for ISS generation, users can annotate it with
[enable htif]. This enables support for the Berkeley Host-Target Interface (HTIF), a simple protocol used in the
RISC-V Spike simulator to facilitate communication with the simulation host. HTIF operates by mapping user-defined
memory addresses to callbacks that interpret commands sent by the simulated program. For example, this mechanism
allows to exit from full-system emulation with a specific exit code, which is particularly useful for running self-verifying
tests on the ISS.

QEMU provides its own decode tree format, allowing frontend developers to define a readable instruction format
specification, similar to what the VADL language offers. The build system then generates C functions and structs, which
the frontend uses to decode and process instructions. While the VADL Decode Tree (VDT) generator can emit this
format, the format itself lacks support for variable-length instructions. To overcome this limitation, the ISS generates
its own C-based decoder instead.

The core functionality of the generated TCG frontend lies in TCG operation generation. The ISS generator produces
a translate function for each instruction, which generates a sequence of TCG operations. These operations work on
strongly-typed variables, where each instruction follows a fixed format: a number of leading output variable operands,
followed by input or constant variables. Examples of such translate functions can be seen in Listing 32 and Listing 33,
which show implementations for the ADDI and BEQ RISC-V instructions, respectively.

There are different types of variables in TCG, defined by their lifespan and modifiability. Global variables persist
across all TBs and correspond to memory in the CPU state. For example, a register in the CPU state is represented as a
global variable, and any write to the TCG variable during instruction execution is propagated to the corresponding
register. Constant variables exist throughout a TB but are immutable singletons. They are allocated on demand during
translation, only if a constant for the given value does not already exist. Temporary TB variables live for the duration
of a TB but are discarded upon any exit.

The following sections outline the key passes of the ISS generator, presented in the order of their execution, which
are essential for generating TCG translation functions.
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1 bool t r a n s _ add i (
2 DisasContext ∗ c tx ,
3 arg_addi ∗ a )
4 {
5 TCGv_i64 x_ r s 1 = ge t_x ( c tx , a−> r s 1 ) ;
6 TCGv_i64 x_rd = de s t _ x ( c tx , a−> rd ) ;
7 TCGv_i64 const_immS =
8 t c g _ c o n s t a n t _ i 6 4 ( a−>immS ) ;
9
10 t c g_add_ i 6 4 ( x_rd , x_ r s1 , const_immS ) ;
11 return t r u e ;
12 }

Listing 32. QEMU translate function of ADDI instruction

1 bool t r an s_beq (
2 DisasContext ∗ c tx ,
3 arg_beq ∗ a ) {
4 TCGv_i64 x_ r s 1 = ge t_x ( c tx , a−> r s 1 ) ;
5 TCGv_i64 x_ r s 2 = ge t_x ( c tx , a−> r s 2 ) ;
6 TCGLabel ∗ l _ e l s e _ 0 = gen_new_ labe l ( ) ;
7 t c g _b r c ond_ i 6 4 (TCG_COND_EQ, x_rs1 ,
8 x_rs2 , l _ e l s e _ 0 ) ;
9 gen_goto_ tb ( c tx , 1 ,
10 ctx −> base . pc_nex t + a−>immS ) ;
11 g e n _ s e t _ l a b e l ( l _ e l s e _ 0 ) ;
12 ctx −> base . i s_ jmp = DISAS_CHAIN ;
13 return t r u e ;
14 }

Listing 33. QEMU translate function of BEQ instruction

4.8.1 Operation Decomposition. While the VADL specification allows arbitrary bit widths, QEMU imposes a 64-bit
limit for most operations. This becomes problematic when an instruction specification requires types larger than 64
bits. For example, the MULH instruction in the RV64IM specification performs a long multiplication of two 64-bit values
and extracts the upper half of the 128-bit result. To handle such cases, the Operation Decomposition pass splits these
operations into multiple logically equivalent operations that only accept and return values with a maximum size of 64
bits.

4.8.2 Side Effect Scheduling. As discussed in section 4.4, the VIAM behavior graph represents expressions and side
effects using a dependency graph. However, since TCG ops execute sequentially, this dependency graph must be
scheduled. The first step in this process is scheduling side effects, such as register writes. Additionally, the pass analyzes
whether a side effect causes an instruction exit by modifying the program counter. Non-exit side effects are scheduled
at the start of the control flow branch, while program counter manipulations are placed immediately before the branch
end. This ensures that a jump out of the instruction does not occur before all other side effects have been applied.

4.8.3 Safe Resource Read. To ensure that writes do not occur before reads to the same resource, potentially conflicting
reads must be scheduled before any writes to that resource. Since register file indices and memory addresses are not
statically known, all reads to these resources must be conservatively treated as potential conflicts with all writes to the
same resource.

4.8.4 TCG Expression Scheduling. Before lowering to TCG operations, it must be determined which expressions are
evaluated during TCG translation and which are executed at runtime when the translated TCG code is executed.
Expressions evaluated at runtime must be converted into TCG operations and scheduled accordingly. This includes all
expressions that depend on the CPU state or memory, such as register reads.

Conversely, expressions that depend only on immediate values, such as format field values, can be computed at
translation time and represented as constant TCG variables. These expressions do not require scheduling, as their
dependencies can be directly translated into C expressions.

After this pass, all dependency nodes corresponding to TCG operations are correctly scheduled.

4.8.5 TCG Branch Lowering. At this stage, branches within the instruction are represented in the control flow using
if-else nodes. However, TCG implements jumps within a TB using goto-like operations, such as set_label, br and
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brcond. This pass analyzes which if-else control flow must be converted into TCG operations—specifically, those
where the condition expression was previously scheduled as a TCG operation. These control flow structures are then
transformed into a linear sequence of TCG operations using labels and conditional branching.

If-else control flow that do not require TCG translation remain unchanged and are later directly translated into if
statements in C.

4.8.6 TCG Op Lowering. The scheduled dependency nodes are lowered into control nodes, each corresponding to
one or more TCG operations. During this process, a node retrieves its destination and input TCG variables from a
context that generates variables on demand and attaches them to the dependency node. Once lowering is complete, all
dependency nodes are removed from the graph. The resulting structure is a Control Flow Graph (CFG) consisting of
TCG op nodes in SSA form.

4.8.7 TCG Variable Allocation. To minimize the number of temporary TCG variables, a variable allocation pass is
applied to the TCG CFG. First, the live ranges of previously created temporary variables are determined. Then, graph
coloring is used to compute an optimized TCG variable assignment. The primary objective is to maximize the reuse of
written registers, reducing unnecessary temporary allocations.

4.8.8 Putting It All Together. After the final pass before code generation, the instruction behavior graphs directly
reflect the structure of the C code to be generated. TCG operations correspond to control nodes with a single successor,
if-nodes translate to C if statements, and expression nodes map to C expressions. A code generator processes this graph,
producing a C function named trans_<mnemonic>, which takes a TCG context and a struct containing all format fields
of the instruction. This translation function is then invoked by the decoder during QEMU execution.

4.9 Microarchitecture Synthesis

The Microarchitecture Synthesis is an intermediate step executed before obtaining a cycle-accurate simulator or a
hardware schematic. Extracting this step is sensible because both artifacts require identical analysis and transformations.
After all, the cycle-accurate simulator shall be able to emulate the hardware implementation. Before generating an
artifact, the compiler must lower the high-level microarchitecture to standard VIR processes. I.e. the input to the
microarchitecture synthesis are the ISA specification and the MiA specification. The output is a program in the VIR 4.3
representing the unification of both the ISA and the MiA. This endeavor currently consists of six major tasks:

(1) By splitting instructions into parts the compiler maps the instruction semantics of the ISA to the placeholders in
the MiA. The system then replaces the placeholders with the corresponding parts of the instruction semantics.

(2) The compiler synthesizes implementations for the decode built-ins. These are implemented as matchers for bit
patterns.

(3) The system creates read ports and write ports for the resources. After that, the algorithm assigns these ports to
VIR instructions that access resources.

(4) The next step lowers logic elements to VIR processes. In this stage, the compiler generates the control and hazard
detection units.

(5) The compiler synthesizes the processor core itself. The primary goal is to allocate resources for pipeline registers
and interconnect the control and pipeline components.

(6) The control flow is eliminated and replaced by conditional instructions and multiplexers.
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The artifact generators can take over once the compiler has lowered the abstractions. Since the microarchitecture
mainly comprises standard VIR processes after this stage, the mapping to an artifact-specific IR is straightforward. The
following section elaborates on these steps in further detail.

4.9.1 Instruction Resolving. In VADL each instruction is defined as a separate entity. However, a processor pipeline has
to handle all of the defined instructions, thus the system first has to establish a comprehensive view over all instructions.
This analysis identifies overlaps and commonalities between instructions to make reuse of components possible. For
example, the analysis determines the minimum number of read ports needed.

As a consequence of this, the most crucial step in microarchitecture synthesis is integrating the instructions’
semantics into the processor pipeline. Figure 7 illustrates the idea of this step. The synthesis must map the two
instruction definitions on the left-hand side to the partially displayed pipeline specification on the right-hand side. In
this particular case, the algorithm maps three register read operations to the decode stage of the processor and the two
additions to the execute stage. Astute readers may notice that inserting three read operations into the decode stage is
unnecessary. Because an instruction cannot simultaneously be an ADDI and a SW instruction, the final decode stage
should only contain two register reads. Similarly, the two instruction implementations should share the adder that
computes the arithmetic operations.

1 in s t ruc t ion ADDI : I t y p e = {
2 X ( rd ) : = X ( r s 1 ) + immS
3 }
4
5 in s t ruc t ion SW : Stype = {
6 l e t addr = X ( r s 1 ) + immS in
7 l e t r e s u l t = X ( r s 2 ) in
8 MEM<4 >( addr ) : = r e s u l t as Word
9 }

1 stage DECODE −> ( i r : I n s t r u c t i o n ) = {
2 l e t i n s t r = decode ( FETCH . f r ) in {
3 i n s t r . read ( @X )
4 i r : = i n s t r
5 }
6 }
7
8 stage EXECUTE −> ( i r : I n s t r u c t i o n ) = {
9 l e t i n s t r = DECODE . i r in
10 i n s t r . compute
11 }

Fig. 7. Exemplary Mapping Between ISA and MiA

The VADL tool tackles all issues mentioned above by leveraging an augmented DFG of all instruction semantics.
Figure 8 depicts the DFG for the ADDI instruction from Figure 7. Each node constitutes an operation. Incoming edges
denote the input operands of a node, while outgoing edges define how the result of a node is distributed to other
operations. The compiler associates each occurrence of an instruction variable in the MiA definition with a DFG. During
instruction resolving the DFG is reduced stepwise towards the root nodes, starting from the leaves. Each reduction step
results in the emission of one or more VIR instructions and represents the current execution state of the instruction as it
progresses through the processor pipeline. Thus, the graph represents the outstanding computations, since all completed
computations have already been collapsed in the leaf nodes. A reduction step does not represent a control point in
the MiA. Red and blue nodes denote read and write operations, while black nodes denote future pure computations.
Green nodes represent values that the processor has already computed. We refer to these values as available nodes.
For example, the green nodes are the format fields in Figure 8. Figure 9 depicts the DFG for the same instruction after
reading the X register file and sign-extending the immediate value.
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write @X: b32

%rd: b5add: i32

cast: i32 cast: i32

%imm12: b12read @X: b32

%rs1: b5

Fig. 8. Simplified DFG for the ADDI instruction

write @X: b32

%rd: b5add: i32

cast: i32 cast: i32

Fig. 9. Simplified DFG for the ADDI instruction after reading the
X register file

The real power of this data structure comes from combining the DFGs of all instructions. The origin information is
preserved by annotating the nodes with the original instructions. The compiler can then apply global optimizations like
coalescing equivalent nodes and reducing the number of read and write nodes. This transformation may require the
insertion of nodes that multiplex between values depending on the currently executing instruction. The resulting graph
captures the execution progress for the entire instruction set architecture. Therefore, this graph is called the Instruction
Progress Graph. Figure 10 depicts the IPG for the ADDI and SW instructions from the example from above. The format
fields %imm and %imm12 are two different nodes because they are extracted from different parts of the instruction word.
Thus the main purpose of the IPG is to synthesize all instructions from the ISA definition and all processor stages from
the MiA definition into a single VIR program. Later this VIR program is the input to the Hardware Generator described
in 4.11, which in turn generates the actual MiA description in Chisel.

write @X: b32
{ADDI}

write @MEM: b32
{SW}

%rd: b5
{ADDI}

add: i32
{ADDI, SW}

cast: i32
{ADDI, SW}

mux instr: i32
{ADDI, SW}

cast: i32
{ADDI}

%imm12: b12
{ADDI}

cast: i32
{SW}

%imm: b12
{SW}

read @X: b32
{ADDI, SW}

%rs1: b5
{ADDI, SW}

read @X: b32
{SW}

%rs2: b5
{SW}

Fig. 10. Simplified IPG for the ADDI and SW Instructions

Now that the compiler has established a holistic view of the execution progress, it can map the IPG to the microar-
chitecture. This process is called instruction resolving, see algorithm 1. The idea of this approach is to track the flow
of the instruction variables across the microarchitecture. If the analysis encounters mappings on these variables (e.g.,
instr.read(@X)), the algorithm replaces the mapping with the actual VIR instructions to implement the instruction
semantics. Then, the IPG is updated to reflect the progress. When encountering the next instruction mapping, the
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algorithm uses the new IPG to determine the VIR instructions that replace the mapping. The following paragraphs
delve into some of the intricacies of this procedure as it is paramount to the microarchitecture synthesis.

Algorithm 1 Instruction Resolving

1: 𝑠𝑡𝑎𝑔𝑒𝑠 ← ComputeStageOrder() ⊲ Logical order of stages; e.g., decode before execute
2: for all 𝑠𝑡𝑎𝑔𝑒 in 𝑠𝑡𝑎𝑔𝑒𝑠 do
3: for all 𝑖𝑛𝑠𝑡 in GetRelInstructions(𝑠𝑡𝑎𝑔𝑒) do ⊲ Replace instruction mapping with instruction semantics
4: 𝑣𝑎𝑟 ← GetInstructionVariable(𝑖𝑛𝑠𝑡)
5: 𝑖𝑝𝑔← GetCurrentIPG(𝑣𝑎𝑟, 𝑖𝑛𝑠𝑡)
6: 𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑔← MatchNodes(𝑖𝑝𝑔)
7: ReplaceInMiA(𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑔, 𝑖𝑛𝑠𝑡)
8: 𝑛𝑒𝑤𝑖𝑝𝑔← UpdateIPG(𝑖𝑝𝑔,𝑚𝑎𝑡𝑐ℎ𝑖𝑛𝑔)
9: StoreIPG(𝑖𝑛𝑠𝑡, 𝑛𝑒𝑤𝑖𝑝𝑔)
10: end for
11: for all 𝑝𝑎𝑟𝑎𝑚 in GetInstructionOutputs(𝑠𝑡𝑎𝑔𝑒) do ⊲ Replace instruction abstraction
12: 𝑖𝑝𝑔← FindIPGAtStageEnd(𝑠𝑡𝑎𝑔𝑒, 𝑝𝑎𝑟𝑎𝑚)
13: 𝑟𝑒𝑔𝑠 ← ComputePipelineRegisters(𝑖𝑝𝑔)
14: ReplaceInMiA(𝑝𝑎𝑟𝑎𝑚, 𝑟𝑒𝑔𝑠)
15: end for
16: end for
17: 𝑙𝑎𝑠𝑡𝑖𝑝𝑔← FindLastIPG(𝑠𝑡𝑎𝑔𝑒𝑠)
18: if 𝑙𝑎𝑠𝑡𝑖𝑝𝑔 ≠ ∅ then ⊲ Check if all semantics were realized in the microarchitecture
19: IssueError()
20: end if

The algorithm starts by computing a topological order of the stages and their interdependencies. This order ensures
that the compiler processes a stage logically preceding another earlier (e.g., decode before execute). The algorithm then
iterates over all stages. For each one, the algorithm must complete two necessary steps.

In the first step, the algorithm replaces the instruction mapping with the instruction semantics defined by the IPG. For
example, this means replacing instr.compute with VIR code that does addition and multiplication. The first problem is
to extract the IPG subgraph that matches the current instruction mapping. Each instruction mapping defines a predicate
to distinguish between matching and non-matching nodes. This predicate is evaluated for each node, thus partitioning
them into matching and non-matching sets. In addition, a node must be ready to qualify as a matching node. A node is
ready if all its input values are available or become available in this instruction mapping. As a consequence, for example,
instr.compute cannot match an add node if one of the node’s inputs is a register read that is not yet available. After
replacing the instruction mapping, the algorithm updates the IPG to reflect the progress. One of the major concerns
during this update is marking the computed nodes as available. This procedure can make some nodes unnecessary as
they are only inputs to other available nodes. In other words, all computations that require them as input have already
been computed. Because the compiler must only keep relevant available nodes in the graph, this step also includes a
clean-up process that removes unnecessary available nodes. The updated graph is then associated with the instruction
mapping. This link is necessary to ensure the algorithm can access the correct IPG for the next instruction mapping.

The second step in processing a stage is to replace the instruction stage output with the pipeline registers associated
with this instruction variable. The available nodes define all computed values necessary for executing the remaining
instruction semantics. Recall that the algorithm removed unnecessary available nodes in the previous step. The compiler
can quickly determine the VIR instructions that must be saved in the pipeline registers via the maintained mapping.
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The compiler can also merge multiple available nodes into a single pipeline register to optimize the usage of resources.
This transformation is possible if the nodes are not active in the context of any instruction. For example, a temporary
result in an ADD instruction may not be necessary when executing a SW instruction and vice versa. Thus, the algorithm
can store both temporary results in a single pipeline register and multiplex between the values. Once the algorithm
computes the pipeline registers, it replaces the instruction stage output with the pipeline registers. The mapping from
the IPG to the VIR instructions also records the pipeline register of available values. A stage that reads the instruction
variable can create probes for these pipeline registers.

There are no instruction abstractions in the pipeline definition once the compiler has executed both steps. This
fact highlights the importance of this procedure in bridging the gap between the high-level VADL MiA model and
a synthesizable microarchitecture. Before concluding, the algorithm ensures that the IPG is trivial, i.e., empty at the
logical end of the microarchitecture. If not, the synthesis did not realize some part of the instruction semantics in the
microarchitecture. This circumstance is undesirable, and the compiler issues an error to the user. The user can then
use the graphical representation of the IPG to debug the issue. This concludes the first step in the microarchitecture
synthesis.

While the prototype compiler does not yet support the advanced techniques presented in section 3.4.7, we would
like to highlight the importance of the IPG in this context. In the future, the information in the IPG shall be used to
automatically determine, for example, the layout of entries in reservation stations. The approach will be similar to
computing the set of pipeline registers.

4.9.2 Decoder synthesis. The compiler replaces the decoder built-ins with a bit pattern matching implementation.
This is done by analyzing the instruction encodings in the ISA. In the current compiler, the decoder is responsible to
deduce the exact instruction (e.g., ADD or SUB) from the instruction word by matching the bit patterns of the opcode. The
implementation will compare the constant parts of the instruction encodings with the instruction word. If all constant
parts of an encoding match, the algorithm found the corresponding instruction. The comparison order prioritizes tests
from more specific encodings. This approach allows for a relatively simple decoder synthesis step. Optimizing away
the instruction kind variable is done on the IPG in the instruction resolving step. We rely on the synthesis tools to
completely eliminate the instruction kind variable.

4.9.3 Port Inference and Assignment. The next step in synthesizing the microarchitecture is generating and assigning
register ports. The set of ports determines the functionality that a register file can provide in a single cycle. For
example, a register file with two read ports allows the pipeline to initiate two read requests every clock cycle. The
VADL compiler analyzes the stages in the microarchitecture to determine the number of ports that are necessary to
enable full parallelization. For example, if a pipeline requires reading two values from a register file in the decode stage
and one value in the execute stage, the analysis would assign three read ports to the register. Note that this analysis
incorporates information on the control flow. As a result, two mutually exclusive read instructions can share the same
read port. Then, the system allocates the generated ports to individual read and write VIR instructions. These processes
are isolated as this design separates the generation and assignment procedures. Thus, extending the implementation to
allow users to set a maximum number of read and write ports to limit resource usage is straightforward. In contrast to
registers, for the main memory our prototype currently only supports a single read and write port.

4.9.4 Logic Element Synthesis. The system synthesizes the logic elements after determining the read and write ports.
Each type of logic element has a different synthesis procedure. We will illustrate the idea in the example of the
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combinational hazard detection unit. The logic of the synthesized component is based on [76]. This element is responsible
for detecting hazards in the pipeline that appear due to the interleaved execution of multiple instructions. For example,
an instruction in the decode stage may depend on the value of an instruction in the execute stage. However, the latter
writes its result only in a later stage. One solution to this problem is letting the instruction in the decode wait until the
result is available. However, doing this requires detecting the presence of a hazard. Observing these circumstances is
the job of the hazard detection unit.

Synthesizing this unit requires two types of information. Firstly, the procedure must have access to the entire pipeline
to look for operations that may cause a hazard. Secondly, it is necessary to know which parts of the system require and
provide values from or to the logic element. The former information can be provided easily by sharing the VIR with
the synthesis algorithm. The VIR implements the second piece of information with special logic element operation
instructions that can be contained in any other VIR definition. These operations include inputs and outputs that the
compiler must relay from and to the synthesized logic element. In addition, as regular VIR instructions, they also convey
the location where this information comes from and is required. For example, one such operation in the hazard detection
unit checks whether a stage requires stalling. After synthesizing the component, the algorithm usually translates these
logic operations into inputs and outputs on a stage or logic element, including any required probing instructions. After
the logic element synthesis, the VIR instructions explicitly capture the entire logic of the processor.

4.9.5 Pipeline Synthesis. The next step is synthesizing the pipeline implementation. This step is relatively straightfor-
ward. Components are represented as VIR processes. As shown in section 4.3, VIR processes contain probe instructions
to access input values. A probe instruction represents taking the value of input lines. The probe instructions of
components directly refer to the output parameters in other elements. These instructions indicate whether the result
shall be observed in the same machine cycle (e.g., the output of the hazard detection) or the next machine cycle (e.g.,
computed value in the execute stage). This step first determines which values must be relayed from one component to
another. For every connection, the synthesis assigns a wire (same-cycle) or a register (cross-cycle) to the value. This
step thus realizes some inputs and outputs as pipeline registers.

4.9.6 Controlflow Elimination. To conclude the microarchitecture synthesis, the compiler tries to eliminate all control
flow in the stages and synthesized logic elements. The presence of control flow in a VIR process is represented by it
containing more than one basic block at this point. This implies that the process cannot be translated to hardware using
combinational logic alone, but has to be synthesized into a state machine with one state for the execution of each basic
block. This in turn implies that the execution of the VIR process takes more than one clock cycle.

If the VIR process is the description of a pipeline stage, this situation is especially undesirable, because then one
machine cycle takes more than one clock cycle. Under the described circumstances the machine cycle increases due
to the fact that the whole pipeline can only advance (i.e., each stage hands down results to the next stage) when the
slowest pipeline stage is finished. It also causes the faster pipeline stages to be idle while waiting.

To remedy this situation, control flow elimination attempts to remove as much control flow as possible in order to
reduce the complexity of the state machines. In the optimal case, all control flow is eliminated and no state machine is
necessary. In this case combinational logic is sufficient to implement the VIR process. Ideally, the algorithm can reduce
each component to a single basic block. The VADL compiler can still synthesize a functionally correct microarchitecture
if this is impossible. However, each machine cycle is distributed across multiple clock cycles, drastically deteriorating
performance. One example of such a problematic microarchitecture could contain two instructions that access the same
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port in a single stage. This construct often happens in single-stage implementations as loading the instruction and
executing a load instruction currently occupies the same port. This step concludes the microarchitecture synthesis.

Even though we have already invested tremendous efforts into implementing microarchitecture synthesis, more is
needed to improve the usefulness of the emitted hardware in real-world scenarios. For example, the memory is currently
idealized, meaning read results can be served in the same cycle as they are requested. Another example is the need for a
floating point implementation and supporting advanced pipeline techniques, such as out-of-order execution. However,
we see no reason why it should not be possible to add these extensions to the current prototype. Furthermore, they do
not impact the primary goal of the prototype: demonstrating the feasibility of mapping the ISA to the MiA.

4.10 Cycle Accurate Simulator Generator

Unlike an ISS, a cycle-accurate simulator’s (CAS) aim is to model properties of the CPU’s microarchitecture such as
pipeline stalls and latencies of memory accesses. As mentioned in 4.11, the VADL compiler is capable of generating
Verilog via Chisel, a HDL, which can be used for simulation by Verilator. However, HDL generation can take considerably
longer compared to generating a CAS, see 5.10. Using a CAS allows simulating microarchitectural aspects while also
having the benefit of shorter test cycles for changes in the CPU design. This facilitates analysis of the changes and
estimation of their impact on real hardware.

Nonetheless, there are many similarities between HDL generation and CAS generation in order to reuse many
generation steps and program transformations. This allows the behavior and properties of interest of the resulting CAS
to be as close as possible to the actual hardware design. However, instead of outputting Chisel, the VADL compiler
generates C++ code. Each resource definition, such as registers and memory, corresponds to an individual C++ class
with corresponding functionality (e.g., read and write functions for memory access). In addition, each stage of the
microarchitecture is implemented as a C++ class containing an eval function which executes the corresponding
functionality. Each VIR instruction is translated into an equivalent C++ operation. Since hardware is parallel in its
nature, unlike most common programming languages, the resulting C++-code might seem less idiomatic to regular
software engineers. For instance, consider a feature that might only be used conditionally. Developers would usually
use an if-statement to steer control flow. However, hardware often uses ’enable’ signals, so a piece of hardware only
activates if this signal is set to ’HIGH’. The generated C++ code resembles this behavior (e.g. by using a bitmask where
all bits are set to one/zero depending on whether the result of the piece of hardware it mimics is required).

halt imm1ADD.eval()

ADD.eval()

Fig. 11. Example state machine for an ADD instruction which executes the addition and setting the carry flag in two separate machine
cycles. halt represents the start and end state. First execution of eval() applies the addition and switches the state to imm1, while
the second execution sets the carry flag and switches back to the halt state, finishing the operation.

Furthermore, some operations might require multiple cycles. In order to reflect this, one can partition a single
operation into multiple steps represented by states of a finite state machine (FSM). As a toy example, consider an ADD

instruction which applies the addition in one cycle and sets the carry flag in the next one. Thus, the instruction consists
of two states as seen in Figure 11: A halt state and an intermediate state, which we call imm1. The former state denotes
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the start and end at the same time while the latter represents the situation after the addition but before the carry flag
has been set. A transition from one state to another requires exactly one machine cycle.

Regarding the generated C++ code, the VADL compiler generates an enum containing an entry for each state. The
eval-function applies the semantics of the instruction. In the prologue, the method checks what state the instruction is
currently in. Considering our example from above, if the current state is halt, then the operation is in its starting state.
The current state will be updated to imm1 and eval will apply the addition but return before the carry flag will be set.
In the next invocation of eval (usually after one machine cycle), the method observes that the current state is imm1 and
thus set the carry flag according to the addition which was calculated in the previous cycle. The current state will be
updated to halt, showing that the operation has concluded.

Last but not least, other components can check whether an operation has finished by querying the busy method
which is also generated for every stage class. Recall that an operation is busy until it has reached the halt state.

The original VADL CAS implementation is not performance optimized. It is very close to the hardware generator to
reduce development efforts and to have highest conformance with the hardware. A drawback is the low performance.
OpenVADL’s CAS will be based on QEMU and try to compute some state statically at dynamic translation time to
improve the performance. It is to early to have details of OpenVADL’s CAS.

4.11 Hardware Generator

The hardware generator’s responsibility is emitting an equivalent hardware design based on a specification in VIR. The
microarchitecture synthesis covered in Section 4.9 must have processed the design beforehand. The main objective
of this component is to bridge the gap between the VIR and HDLs. For example, in the VIR, ports are global entities
that read and write instructions can access. However, in an HDL, the interface of a circuit module must make these
connections explicit. The generator uses an HDL-IR to model the hardware design internally. Most IR elements map
directly to a concept in a HDL. Thus, emitting files from the IR is straightforward.

This paragraph briefly introduces HDLs for readers unfamiliar with the topic. HDLs enable engineers to model and
simulate the behavior of electronic systems before physically implementing them. At the core of HDLs is the concept
of a "module." A module is a self-contained unit of hardware description that encapsulates a specific functionality or
component of a digital system. Modules can be interconnected to create complex systems and HDLs provide a structured
way to define the interactions and relationships between these modules. Users can use logical and arithmetic operations
to describe a module’s data flow. Furthermore, these languages support concise descriptions of standard hardware
constructs like multiplexers and decoders.

Generating the HDL-IR from the VIR is done in three steps. Firstly, the transformation creates a module for each
VIR resource definition (e.g., registers). The information on the number of read and write ports is used to generate the
module’s interfaces. While the process is straightforward, adhering to all constraints in the resource definition is vital.
For example, the module must correctly implement hardwired register indices.

After synthesizing the resource definitions, an analysis computes the hardware design hierarchy. The analysis can
obtain this information from the instantiation relations between processes. The root of this hierarchy is the behavior
process of the Central Processing Unit (CPU). The algorithm recursively enumerates the reachable process definitions
and defines a corresponding module. These components contain connectors for all used read and write ports. A parent
module must provide dedicated connections for each port used by its child modules. It is mandatory to define these
connections explicitly. The transformation combines multiple child connectors to the same port to a single one. This

Manuscript submitted to ACM



54 Freitag et al.

can be done because the microarchitecture synthesis guarantees that there are no instances where two child processes
can access a port simultaneously.

The final step in computing the HDL-IR is generating the actual circuits. This task boils down to synthesizing the
modules of nested processes rooted in the CPU behavior. Each synthesized process instantiation requires a description
of the module hierarchy, data flow, and control logic. Computing the module hierarchy and data flow is straightforward.

The derivation of the hierarchy naturally unfolds during the enumeration of nested processes. Each process module
contains sub-modules that correspond to the instantiated sub-processes. None of these modules includes components
for resource definitions. The task of defining the data flow hinges on the premise that most VIR instructions coincide
with an operator in the HDL-IR. There is a peculiarity when translating instructions that require access to resources.
In such cases, the algorithm must automatically connect the inputs and outputs to the corresponding port interfaces.
The HDL-IR does not contain modules for commonly found components such as an Arithmetic Logic Unit (ALU).
All computations are done directly within the pipeline stages. Synthesizing the implementation of operations like
addition and multiplication is left to the hardware synthesis tool. This approach contrasts with tools that compose the
microarchitecture from a set of predefined components.

A fully functioning VADL-generated processor design requires control logic that implements the control flow of
processes. Unfortunately, this is often undesirable in a pipeline stage as executing control flow can occupy multiple
clock cycles. Executing a basic block requires at least one clock cycle. Therefore, the whole pipeline halts once a pipeline
stage executes control flow. The microarchitectural synthesis tries to eliminate the control flow in the pipeline stages to
address this issue. However, control flow may still be necessary for the processor’s initialization logic. Furthermore,
given resource limitations, the hardware generator must resort to control flow for some design specification. For
example, the microarchitecture synthesis currently creates a single memory read port. If a pipeline stage requires two
memory reads (e.g., instruction fetch and memory operation), control flow is necessary to distribute these accesses
across multiple clock cycles.

The generator implements control flow by translating the process to a finite state machine. Each basic block
corresponds to a state. The terminator of the basic block determines the state transitions. For example, an unconditional
jump will result in a single transition between the two states. Each state machine has an enable and busy signal in
addition to its regular inputs and outputs. Initially, the state machine remains idle until the parent module drives the
enable signal. The state machine asserts the busy signal until its finished execution. Thus, once the busy signal is low, a
parent module is aware that a process has terminated, and the output is valid. The hardware computes all operations in
a state simultaneously. Therefore, the implementation must handle side effects with great care once child FSMs run for
multiple cycles.

After generating the hardware design hierarchy, the generator emits the corresponding Chisel files. The Chisel
compiler then translates the specification into Verilog, a well-established hardware description language. After that, users
can apply off-the-shelf hardware synthesis and simulation tools to the generated design. This also allows embedding
VADL-generated cores into a larger Verilog (or Chisel) design.

5 EVALUATION

5.1 ISA Language Evaluation

To evaluate the expressive power of VADL we specified different processor architectures with different characteristics.
Some statistics about the specification for the instruction set architecture section are shown in Table 1. "Lines of Code"
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gives the number of lines of code of the unprocessed VADL specification. "Lines without Comments" are the lines of
code which are not comments. "Models" gives the number of model definitions in the VADL specification. "Expanded
Lines of Code" is the number of lines of code after model expansion in a pretty printed compact VADL specification
without comments. "Function Definitions" and "Format Definitions" give the number of function respectively format

definitions. "Instruction Definitions" gives the final number of instructions in the expanded VADL specification.

Table 1. ISA Specification Statistics

RV32I MIPS IV TriLen AArch64 AArch32 TIC64x Hexagon NEON
Lines of Code 161 1131 521 2334 1273 925 1634 2968

Lines without Comments 161 1023 408 2157 1172 877 1385 1844
Models 8 64 21 142 90 47 33 -

Expanded Lines of Code 339 1432 1301 10227 110369 116768 3877 1228
Function Definitions - 7 2 60 3 9 32 5
Format Definitions 6 8 9 33 11 10 53 22

Instruction Definitions 37 106 123 799 8865 9778 240 140

The first is the RV32I instruction set of the RISC-V architecture as specified in Listing 34 in the appendix. RV32I is a
simple 32 bit Reduced Instruction Set Computer (RISC) architecture without multiplication and division and therefore
has the smallest specification. MIPS IV is also a simple 64 bit RISC architecture but the specification is more complete.
It has a richer instruction set and the specification includes exception handling and system registers. TriLen is a
variable length 32 bit RISC toy architecture where immediate values are 8 bit, 16 bit or 32 bit wide. The ISA includes all
instructions which are necessary to generate an efficient compiler. The instruction length is either 16 bit, 32 bit or 48
bit. It serves as a testbed for variable length architectures until we have a VADL specification of a reasonable subset of
the AMD64 instruction set.

AArch32 andAArch64 are specifications of the complete integer instruction set of ARM’s 32 bit and 64 bit architectures.
Both ISAs use a status register and have instructions in many variants because of a large set of addressing modes,
scaled operands and in particular in the case of AArch32 predicated execution. The specifications make heavy use
of higher-order macros. The expansion factor for the lines of code is about 5 for AArch64 and 95 for AArch32. The
AArch64 specification benefitted a lot from aliasing of register files with different constraints. This feature reduced the
number of instruction variants by about 500 instructions. The high number of function definitions is the result of the
very complex computation of immediate values for logic operations. The encoding functions for these immediate values
in the LLVM compiler are C++ code using loops and multiple destructive assignments. The same encoding functions
written in VADL are specified in a pure single assignment style using functions by employing the technique of divide
and conquer. The high number of format definitions is because of the many different instruction formats and format
definitions for quite a few system registers.

TIC64x is a VLIW architecture from Texas Instruments. It is used to show the specification capabilities for VLIW
architectures with partitioned register files, complex addressing modes, delayed load and branch instructions and
predicated instructions. Because of these features and especially predicated execution there is the high expansion factor
of 133 in lines of code. In one line of the VADL specification 12 instructions are specified.

Hexagon is another VLIW architecture by Qualcomm. Like TIC64x, it has predicated instructions andmany addressing
modes, but only a single register file and no exposed instruction latencies. It also features multiple concepts which
are currently not covered by the VADL language (such as hardware loops and forwarding results instructions within
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the same bundle). Only a small subset of all instructions and addressing modes are currently implemented as a VADL
specification.

Both TIC64x and NEON are the testbed for VADL’s tensor definitions. NEON is the Single Instruction Multiple
Data (SIMD) extension of the AArch32 architecture. The specification has been developed before the model support
was available in VADL. A rewrite of the NEON specification using model will reduce the size of the specification
significantly.

All the architectures specified in VADL until now have demonstrated the great capabilities of VADL to develop concise
and comprehensive specifications, not only for complex RISC architectures but also for VLIW and SIMD architectures.
The main language elements of VADL which contribute to the expressive power in the ISA section are the syntactic
macro system, type inference, two distinct ways of format specifications, format access functions, encoding definitions
with constraints, enumeration and match, pure functions, register file alias with constraints, specification of VLIW
instruction grouping by regular expressions with constraints and finally the tensor definitions using forall.

5.2 MiA Language Evaluation

To evaluate the expressiveness of the MiA, we specified multiple microarchitectures for the RV32I instruction set. Note
that these implementations can be easily retargeted to other architectures by, e.g., defining corresponding operations.
Table 2 contains the lines of code per specification, the length of the longest pipeline and the number of functional
units. The p1 microarchitecture only has a single stage that executes one instruction per machine cycle2. The p2

microarchitecture separates the fetching from the decoding and execution steps. The latter two steps are again separated
in the p3 microarchitecture. The p5 microarchitecture implements the well-known 5-stage RISC pipeline, while p5_fw
adds forwarding logic to the 5-stage implementation. p5_alt specifies the same microarchitecture as p5 but uses the
alternative pipeline construct. This concept can define a whole pipeline in a single definition in which stages are
separated with a keyword. OoO is an experimental specification of a superscalar out-of-order processor which was
introduced in Section 3.4.7. The OoO_max implementation widens the decoders, adds additional functional units, and
expands the buffers of the OoO implementation. Lastly, the OoO_cfe further extends the OoO_max specifications. It
adds a complex frontend that uses two branch predictors (a slower prediction that may override the quick prediction),
thus spending four cycles on total with fetching and decoding the instructions. The results show that the language is
able to concisely specify a range of microarchitectures. Identical or similar specifications can be created for the other
architectures presented in this section.

Table 2. Microarchitecture Specification Statistics. The * symbol marks experimental specifications that have not been tested for
feasibility with the current VADL generators.

p1 p2 p3 p5 p5_alt p5_fw OoO* OoO_max* OoO_cfe*
Lines of Code 19 23 31 52 43 58 81 105 133

Pipeline Length 1 2 3 5 5 5 6 6 9
Functional Units 1 1 1 1 1 1 3 6 6

2As mentioned in Section 4.9.6, this may be implemented in multiple clock cycles.
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5.3 Evaluation Infrastructure

All performance evaluations were executed on our continuous integration server. The CPU of the machine is an Intel(R)

Xeon(R) W-1370P running at 3.60GHz, featuring 16 cores and 128 GiB of memory. However the number of cores was
irrelevant, since we only measure single threaded programs.

5.4 Evaluation of the Original Generated Compiler

As the VADL setup, we used the original LCB to generate a LLVM compiler target based on the RISC-V 32-bit RV32IM
VADL instruction set specification, the same as used in Section 5.7. This generated target can be selected by specifying
–target=rv32im to the clang frontend.

As upstream setup for comparison serving as baseline, we used LLVM’s standard upstreamRISC-V target –target=riscv32
with the ILP32 ABI. Both compilers are based on LLVM version 17.0.6. And both setups use the LLVM upstream assem-
bler and GNU linker to generate the executable binaries.

As workload we used the Embench [4] benchmark suite. In the evaluation of the original LCB, for both the VADL
setup and the upstream setup, we used VADL generated CAS RV32-P3 as execution environment. The metric for the
comparison was the number of executed machine cycles as reported by the CAS.

Limitations. As LCB is still a work in progress, there exist some limitations in the VADL setup. At the moment the
VADL setup could successfully compile, link and execute 18 of 22 benchmarks found in Embench.

• It failed to compile one benchmark, because the instruction selection did not support some needed patterns.
• Of the 21 benchmarks that were successfully compiled, 3 could not be linked against the runtime library. At the
moment the VADL setup does not yet support a complete libc runtime library.
• So 18 benchmarks could be compiled, linked and executed without error.
• The original VADL setup is not yet capable of utilizing optimization levels higher than -O0.

Figure 12 shows the number of machine cycles for the VADL setup relative to the upstream setup which is used
as baseline. For some benchmarks LCB gives better results, for some benchmarks the upstream compiler gives better
results, on average both compilers have identical performance. We still have to analyze the cause for the differences in
performance of single benchmarks.

5.5 Evaluation of the OpenVADL Generated Compiler

The original LCB could not handle long jumps because the necessary LLVM target hooks were not implemented.
The OpenVADL LCB supports long jumps, which enables optimizations that were not possible in the original LCB.
Additionally, the constant materialization to support the generation of constants which do not fit into a machine
instruction’s operand has been refactored. This also resulted in significant improvements for the frame lowering. The
labeling of machine instructions introduced in OpenVADLmakes it possible to construct a sequence of instructions which
can create large constants with fewer machine instructions. The original VADL used a sequence of ADDI instructions to
materialize a constant where each ADDI is limited from −2048 to 2047. Therefore, the OpenVADL LCB outperforms the
original VADL LCB when large arrays are allocated on the stack. Instead, the OpenVADL LCB can create a LUI and
ADDI pair which reduces drastically the number of instructions to execute. The benchmarks do not allocate large stacks
which is why this optimization is not particularly visible in Figure 12.
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Fig. 12. Embench count of machine cycles of VADL setup, scaled relative to upstream setup (lower is better)

As a performance metric, we used the number of executed instructions reported by the functional simulator Spike
[5]. This was necessary, since OpenVADL does not yet provide a CAS, and the original CAS was not compatible with
the OpenVADL LCB. Therefore, a direct comparison of Figure 12 and 13 is not possible. All benchmarks have been
compiled with -O0.

The Figure 13 shows that the mean of the number of executed instructions over all benchmarks is around 6% higher
than upstream. LLVM’s upstream implementation emits machine instructions in multiple handwritten C++ classes
which are not possible to define in TableGen. OpenVADL’s LCB only produces TableGen patterns, and does not provide
these handwritten optimizations.

• Like with the original LCB, it failed to compile one benchmark, because of some missing patterns.
• Of the 21 benchmarks that were successfully compiled, one could not be linked against the runtime library.
• So 20 benchmarks could be compiled, linked and executed without error.

5.6 Evaluation of the Assembler and Linker Generator

The evaluation of the generated assembler and generated linker focused on ensuring that the tools work correctly. We
gathered evidence for this by including them in our testing environment. The test infrastructure uses the assembler and
linker to build executables for all test programs generated for the RISC-V architecture. These tests include a RISC-V
compliance suite, handwritten assembly programs, and the compiler output for small C-Programs. A subsequent step
uses these executables to test the generated simulators. The setup exercises the assembly printer (compiler output),
assembly parser, machine code emitter, and linker. If one of these components is erroneous, the subsequent simulator
tests will fail if the simulator cannot execute the program correctly or the simulation returns a wrong result.
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Fig. 13. OpenVADL LCB RV32IM: Embench Spike executed instructions (lower better)

Table 3. Number of Generated Grammar Rules

Name # Insts # Inverted Percent # Rules
RV32I 74 74 100 75

MIPS IV 106 104 98.11 105
Aarch64 1439 1437 99.86 1446

During development, the VADL team used the RISC-V architecture to test the assembler generator and linker
generator. The resulting prototype was applied to the MIPS IV and AArch64 architectures to test the ability to capture
different assembly syntaxes. The following text lays out the findings in a qualitative discussion.

Describing the canonical MIPS IV syntax posed no problems. However, abbreviated instructions that leave out some
operands lead to problems due to the prototype’s LL(1) parsing algorithm. Similar limitation can also be observed for
abbreviated RISC-V instructions. One could extend the parsing algorithm to LL(k) or incorporate a state-of-the-art
parser generator to alleviate this problem. Please note that this is a limitation of the prototype and not VADL itself.

In addition, the test with the AArch64 instruction set showed some limitations of VADL’s grammar definition.
The problem is rooted in the separation of the parsing and matching phases, i.e., casting a grammar element to an
@instruction. As a result, the instruction matcher is oblivious to the applied grammar rule. This is not a problem
if the parser conveys the necessary information to distinguish between instructions with equivalent operands to
the matcher, e.g., via the intruction’s mnemonic. However, the current prototype only supports communicating this
syntax information for mnemonics. As a result, distinguishing instructions based on their syntactical structure proved
problematic. Providing additional data to the matcher can remedy this issue.

Manuscript submitted to ACM



60 Freitag et al.

The proposed grammar rule inference was evaluated on the VADL specifications of the RISC-V, MIPS IV, and AArch64
architectures. The focus was on identifying what type of formatting functions the approach could handle. Table 3 shows
the number of instructions in an architecture and the proportion of successfully inferred grammar rules. The last column
lists the number of generated rules. This number also includes generated helper rules from the interpretation-based
inference mechanism. The system could process all instructions in the RV32I ISA and most instructions in the MIPS IV
and AArch64 architectures. The two instructions that could not be inverted in the AArch64 architecture were due to
issues in the interpretation of the VIR. Therefore, the issue lies in the implementation of the interpreter and not the
grammar inference.

In the MIPS IV architecture, the approach could not deal with the abbreviated syntax of the syscall and ebreak

instructions. This abbreviation emits the 20-bit long code field only if it is unequal to zero. Because conditionals
require switching to the interpreter, this would result in 220 combinations requiring evaluation. Section 4.6.5 details this
behavior. Fortunately, VADL provides the escape hatch to manually define grammar rules for problematic instructions
to overcome this issue quickly. Still, the experiments show room for improvement when dealing with abbreviated
syntax.

5.7 Evaluation of the Instruction Set Simulator

We evaluated the VADL simulators using the Embench [4] benchmark suite. For the ISS, we implemented the RISC-V
32-bit instruction set including the M extension (RV32IM) and the complete integer subset of the AArch64 instruction
set (Armv8-A). The RISC-V benchmarks were compiled with GCC 12.2.0 and glibc, the AArch64 benchmarks using
Clang 14.0.6 and musl libc v1.2.4.

VADL currently has incomplete support for floating point numbers, so the floating point operations in Embench
were compiled to instead use software emulation for both architectures (which is normal for RV32IM, but the Armv8-A
specification technically mandates hardware floating point support).

The ISSs were compared against QEMU, which by default uses JIT compilation for increased performance. Therefore,
we also include QEMU with the one-insn-per-tb flag enabled (which JITs every instruction into its own block,
negating much of the JIT speedup), and QEMU compiled to use the fallback interpreter (--enable-tcg-interpreter)
instead of the JIT. These are called "QEMU singlestep" and "QEMU nojit" in the figure below, respectively. All QEMU
runs were performed using user mode emulation. For RISC-V, we also included the Spike reference simulator [5].

Figure 14 compares the benchmark runtimes (and their geometric mean) of the described simulators (relative to
QEMU). The VADL ISS is more than 21 times slower than QEMU in JIT mode and 75% slower than Spike, but still faster
than the other QEMU versions. This is expected because JIT simulation is faster than interpreting while the interpreter
Spike is written and optimized for just a single architecture.

As shown in Figure 15, the performance characteristics of the AArch64 ISS are similar to the RISC-V performance
characteristics.

5.7.1 OpenVADL ISS Evaluation. Since the OpenVADL ISS is based on QEMU, its primary goal is to achieve performance
comparable to handwritten QEMU guest implementations. The comparison was limited to these two implementations,
as previous evaluations showed that QEMU outperforms both the original DTC ISS and Spike. As the OpenVADL
ISS generator is still in its early stages, the RISC-V specification is currently the only one fully compatible with the
supported language features. Therefore, we used the RV64IM ISA specification to evaluate the performance differences
between the OpenVADL ISS and the official handwritten QEMU RISC-V guest.
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Fig. 14. Embench runtime of instruction-level simulators using RV32IM (relative to QEMU, smaller is better)
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Fig. 15. Embench Runtime of instruction-level simulators using AAarch64 soft-fp (relative to QEMU, smaller is better)

Figure 17 shows that the OpenVADL ISS outperforms the official QEMU implementation in most benchmarks,
achieving up to a 40% reduction in runtime. However, there are cases where QEMU is up to 20% faster, likely due to a
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missing TCG optimization in OpenVADL that introduces unnecessary move and comparison operations when handling
jumps within an instruction. Overall, the generated TCG operations closely resemble those emitted by the handwritten
RISC-V guest.

We believe the handwritten RISC-V guest performs worse in some cases due to its overall complexity. It includes
various additional features, such as support for the 16-bit compressed instruction extension, which introduces overhead
when executing simple programs compiled for RV64IM that do not utilize these features. In contrast, the generated ISS
strictly adheres to the given specification, with all other components, such as the machine definition, kept minimal. In
terms of emitted TCG operations, handwritten QEMU frontends can be considered optimal. This evaluation shows
the advantage of generated simulators over handwritten ones. If the necessary optimizations are provided and if the
specification of an architecture is large, handwritten simulators cannot compete with generated ones. An additional
advantage is that TCG operations could be added to QEMU and immediately used by generated simulators whereas this
would require a big effort for handwritten simulators.
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Fig. 16. Embench Runtime of instruction-level simulators using RV64I (relative to QEMU, smaller is better)

5.8 Evaluation of the Cycle Accurate Simulator

We implemented four microarchitectures for the RISC-V 32-bit RV32IM instruction set specification as used in Section
5.7:

• RV32-P1: This is a 1-stage pipeline with all steps (fetch, decode, execute, memory, write-back) executing within
one cycle.
• RV32-P2: This 2-stage pipeline separates fetching and decoding/execution/write-back into two separate stages.
• RV32-P3: This 3-stage pipeline has a fetch, decode and execute/write-back stage.
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Fig. 17. Embench Runtime of instruction-level simulators using RV64IM (relative to QEMU, smaller is better)

• RV32-P5: This 5-stage pipeline has a fetch, decode, execute, memory and write-back stage.

We compare the CASs generated by VADL to gem5 using its AtomicSimpleCPU. Atomic refers to the memory subsystem,
meaning that memory accesses return instantly. We chose to use this model as the CAS does not accurately simulate
the memory subsystem yet. The CPU simulated by gem5, however, does not have a pipeline, which is unrealistic
for real-world CPUs. Thus, we decided to provide a 1-stage pipeline microarchitecture in VADL to allow for a fair
comparison.

Figure 18 shows the runtimes of the Embench benchmarks with the three CASs and gem5 (relative to the one-stage
CAS). The CAS becomes slower as more stages are added (in this case three stages is more than 5 times slower than
a single stage) because there is an overhead associated with simulating a longer pipeline. gem5’s performance lies
between the 1-stage and 2-stage CAS.

Figure 19 compares the cycle counts of the Embench benchmarks, gem5’s (estimated) cycle count aligns with the
one-stage CAS. The simulators with two or more stages each have higher cycle counts (in this case three stages have a
62% higher cycle count than a single stage) which is expected because the real processors would then be able to run
with a (much) higher clock frequency, making the processor faster overall.

The CAS was created to provide a faster cycle accurate simulation than a low level HDL simulation using Verilator
version 5.010. This was evaluated in Figure 20: currently the CAS is slower than the equivalent HDL compiled into
a simulator using Verilator. This issue stems from linearizing the stage computations so that each stage must only
be executed once by the CAS. However, currently, this leads to duplicate computations in multiple stages. Verilator
handles these situations better than the C++ compiler, thus outperforming the CAS. We are working on addressing
this issue. As expected, the ISS is three orders of magnitudes faster than verilated HDL or the CAS, with gem5 being
slightly faster than the HDL simulation.
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Fig. 18. Embench runtime of cycle-level simulators using RV32IM (relative to CAS RV32-P1, smaller is better)
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Fig. 20. Embench runtime of RV32IM, comparing with HDL Verilator (in milliseconds, geometric mean over all benchmarks, smaller
is better)

5.9 Evaluation of the Hardware

We evaluated the hardware generator similarly to the CAS. The VADL tooling generatedMultiple Chisel implementations
of an RV32IM-compliant processor. Each implementation was translated to Verilog and simulated using Verilator version
5.010. Then, the test setup validated the designs by running the Embench benchmark suite and comparing the actual
output with the expected one. Furthermore, a RISC-V compliance suite was executed on every verilated design. All
designs exhibited the desired behavior in all test runs.

Quality is another crucial aspect of the designs, as it impacts the realized processor’s performance, power consumption,
and chip area. The generated designs are compared to hand-crafted implementations of the same ISA. The Sodor
standalone open source designs (revision e5638c39e5750ea98527547fbc3f9d269c451f3a) will be a reference in this work.
Once the VADL tooling is mature enough to handle more sophisticated concepts (e.g., reorder buffers), future work
may compare the generated artifacts to industry-grade processors. Before continuing with the evaluation, we want to
highlight that both the VADL-generated designs and Sodor used idealized memory. The result of the comparison may
be different for real-world memory modules.

We compared the structural metrics of the corresponding 5-stage implementations using the tool Yosys version 0.29.
To get a chip area metric for comparison, we used a simple demo cell library and mapping script found in the Yosys
distribution. In order to achieve a fair comparison, we chose a VADL specification similar to the 5-stage Sodor. This
specification contained forwarding and does not implement the RISC-V M extension for multiplication, which is not
present in Sodor.

The RISC-V ISA specifies the possibility of including up to 4096 Control and Status Registers (CSRs) in a RISC-V
implementation, each 32 bits wide. The CSRs are used to manage privilege modes and to provide general information
about the processor state, e.g.:

• Vendor ID
• Machine trap handling
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• Machine memory protection
• Machine counters
• Debugging information
• Custom information, specific to a concrete implementation

Not all CSRs have a standardized usage, leaving the possibility for custom extensions. Since most CSRs are optional,
Sodor only implements a subset of CSRs resulting in a much smaller CSR register file than the complete one used in our
VADL specification.

Table 4 shows the numbers reported by Yosys’ stat utility. Since the VADL hardware generation does implement the
full CSR RISC-V register file, which is 212 ∗ 32 = 131072 bits, we also provide the numbers without the chip area used
for the CSR modules.

In the future the VADL hardware generator will be able to restrict the number of implemented registers.

Table 4. Comparison of chip area for VADL RV32I and Sodor

VADL RV32I Sodor factor
Total area 10620711.0 170811.0 62.18

Area without CSR 203168.0 114785.0 1.77

5.10 Evaluation of the Simulator Build Times

For productive experimentation and design space exploration it is beneficial to have short simulator build times.
Depending on the task at hand, a short edit-build-run cycle also can influence the decision which kind of simulator to
choose.

We measured the generation time of the RISC-V generators used in our evaluation for comparison. Table 5 shows the
complete build times of the simulators for the RV32IM specification as reported by bash in seconds. The generation of
ISS and CAS include the VADL execution time and the build time of the emitted code. The generation of HDL includes
everything from the VADL execution time, the translation from Chisel to Verilog, the execution time of Verilator, to the
build time of the code emitted by Verilator.

Table 5. Build times of RISC-V RV32IM simulators

simulator build time in s
ISS 6.686
CAS 1 stage 10.779
CAS 2 stages 14.357
CAS 3 stages 12.480
CAS 5 stages 12.348
HDL 5 stages 58.599

6 RELATEDWORK

PDLs

A PDL is a domain specific Architecture Description Language (ADL) which is used for specifying and designing a
processor architecture. Typically a PDL is capable of describing aspects and properties of a processor in a succinct and
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convenient way. According to [92] PDLs can be classified regarding their content, i.e., what the PDL describes, and
regarding their objective, i.e., what the specification can be used for.

Classification by content distinguishes between structural, behavioral and mixed PDLs. The main focus of a structural
PDL is the possibility to describe the hardware components constituting the processor and the interactions between
these hardware components, e.g., registers and processor pipeline. A behavioral PDL focuses on describing the semantics
of the instruction set supported by the processor. While a structural PDL provides information about the hardware
not present in a behavioral description it is in general difficult to infer instruction semantics from a pure structural
description of the processor. However, [81] and [24] showed that with some effort it becomes feasible. Most PDLs are
mixed, showing characteristics of both structural and behavioral PDLs, but with different emphasis.

Usual objectives of a PDL are compilation, simulation, synthesis and validation. A PDL focusing on compilation is
used as input to a compiler generator. It must provide accurate information about the semantics of instructions, which
a behavioral PDL is well suited for. However, it should also provide structural information about the processor, e.g.,
information about pipeline stages or functional units, to determine an accurate cost model. This cost model of the
processor is used in the generated compiler. With the objective of simulation, it depends on the type of simulator
that can be generated from a description. A purely behavioral PDL is sufficient to generate an ISS, but a structural
description of the hardware is necessary to generate a CAS and the instruction scheduler for the compiler. For hardware
synthesis, a structural PDL is sufficient. Formal verification or automatic generation of test cases can benefit from both
a structural and a behavioral description, depending on the verification or the test scenario.

Table 6. Comparison of processor description languages

language redundancy of generated cycle generated hardware separate
classification specifications simulator accurate compiler generation format

VADL mixed single DBT yes LLVM full yes
xDSPcore ADL behavioral multiple compiled yes OCE decoder no
xADL structural single DBT yes LLVM full yes
StoneCutter behavioral ISA only none Chisel none partial yes
CoreDSL2 behavioral ISA only source JIT no extensions extensions no
Sail behavioral ISA only interpreted no none no partial
ViDL mixed single interpreted yes none full no
LISA mixed multiple compiled yes CoSy full partial
Expression mixed single+mappings interpreted yes EXPRESS full no
nML structural single interpreted yes CHESS full no
ISDL structural single interpreted yes AVIV full yes
TIE structural single RTL yes GCC extensions no
ISAC mixed single multiple yes LLVM no partial
CodAL mixed single multiple yes LLVM full partial
ISADL behavioral encoding only interpreted no assembler no yes
ArchC mixed multiple interpreted yes LLVM no yes
MAML mixed multiple mixed yes LCC full no
MIMOLA structural single events yes MSSQ full no

VADL is a mixed PDL which comprises a single specification split into the distinct ISA and the MiA descriptions.
There are no redundancies at all in the specification. Unique language features are the syntactic macro system and
the MiA description at a very high abstraction level with no intermingling of ISA and MiA. VADL enables clean
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specifications with type, format, constant and function definitions, enumerations, aliasing of register definitions, and
format field access functions. It has been designed to ease the development of generators. Different compilers, ahead-of-
and just-in-time, are supported. It assimilates the experience of all the existing languages and adds unique new features.
VADL was the third PDL developed in our research group. The first was an ADL designed for the development of the
xDSPcore processor, a compiler-based configurable Digital Signal Processor (DSP) [75].

The xDSPcore ADL is based on eXtensible Markup Language (XML). A specification contains information about
the architectural state including pipeline stages and the kind of instructions a stage can execute. The behavior of the
instructions for the simulator and their patterns for the compiler’s tree pattern matching instruction selector are a
kind of macros for the generators. This duplication of the instructions’ behavior descriptions leads to redundancies
in the specification. The generation of the optimizing compiler is described in [45], the generation of the compiled
instruction set simulator is presented in [44]. The compiler supports autovectorization [102], if-conversion of predicated
instructions, DSP addressing modes and hardware loops. An instruction decoder in a HDL can additionally be generated
from the instructions’ specification. With the xDSPcore ADL we experienced the problems of redundant specifications.
Therefore, we designed VADL in such a way that redundancy does not happen.

The structural PDL xADL was the second language we designed. It is described in detail in the thesis of Florian
Brandner [23]. It allows the specification of the structure of a processor on RTL in a language with XML syntax. An
extremely fast tiered CAS with three levels of optimization is generated from the low level specification. The simulator
starts with interpretation, then translates basic blocks and finally complete regions to the host architecture deploying
basic block duplication [25]. Despite the low level specification the compiler generator can extract all necessary
information to generate a backend for LLVM [24, 27]. The low level specification requires a rewrite of a processor
specification if the microarchitecture changes. The problems mentioned above influenced us to design VADL as it is
now, with strict separation of ISA and MiA.

StoneCutter is a language to define instructions and the hardware pipeline at a high abstraction level [70, 78, 79]. It is
only designed to generate a hardware description in Chisel. While no compiler or simulator can be generated directly,
Chisel can generate a simulator of the hardware. It is necessary to explicitly specify the splitting of an instruction’s
behavior between pipeline stages which results in verbose and error-prone specifications. The language allows multiple
assignments to local and global variables and has C-style loops. VADL has a higher level of abstraction and supports
compiler and simulator generation.

CoreDSL 2.0 is a very simple ISA description language. A simulator based on C source code strings which are compiled
just-in-time is available [71]. There is no way to specify compiler or micro architecture related information. Nevertheless,
CoreDSL has been used for the specification of ISA extensions for semiautomatic generation of compiler and hardware
extensions [96, 119]. In contrast to VADL, CoreDSL does not support formats, zero registers, subword registers, type
definitions, enumerations or specification of atomic instructions. Therefore, CoreDSL processor specifications are very
verbose and error-prone.

Sail [11] is a recent purely behavioral PDL for describing the semantics of an ISA with a focus on the verification
of ISAs. It can be used to produce a less performant ISS but also definitions for proof-assistants to provide evidence
of correctness. It is not possible to generate a compiler or hardware from a Sail specification. Sail has a powerful but
expensive type system, liquid types. VADL has a much simpler type system which can be efficiently checked. Using
VADL’s enumerations, safety can be ensured in many cases where Sail uses its liquid types. VADL does not support the
rich verification universe of Sail, but can generate efficient simulators, compilers and hardware. VADL and Sail have
different design goals.
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ViDL, the Versatile instruction set architecture Description Language, is a language to formally specify the instruction
set architecture of processors in a functional style inspired by the programming language Standard ML (SML) [37, 38].
An outstanding feature of ViDL is that all micro architecture properties are automatically derived by providing the
target frequency of the generated processor. There is no specification of any micro architecture details at all. The ViDL
generators produce a hardware description in VHDL and interpreting simulators. In the specification of the instructions’
behavior concurrent assignments happen to storage elements (memory, registers). No multiple assignments are possible
to intermediate variables. let expressions, as used in SML or VADL, bind expressions to names and define the scope of
the name. The set of primitives available for the specification of the instructions’ behavior can be extended by specifying
the emitted code for the generators (C++ for the simulator, VHDL for the hardware). The generation of a compiler is not
supported. With VADL many micro architecture properties are automatically determined, but the MiA can be specified
on a high abstraction level, whereas in ViDL the complete MiA is automatically determined.

When LISA [65, 101, 109] was initially developed, its focus was on efficient simulation of DSP architectures. It is a
mixed PDL and can be applied in the generation of many artifacts and tools, for example, a compiler, linker, profiler,
CAS or a low level hardware description for hardware synthesis. The behavior part of the language allows arbitrary
C-code in small chunks for every stage of a pipeline. This results in very large specifications and requires the addition
of a separate description of the compiler semantics. Therefore, LISA is very verbose and error-prone. VADL avoids all
these problems by the strict separation of ISA from MiA.

Expression [55, 60, 92] is a PDL with a syntax similar to the Lisp programming language. Its main use case is the
development of System-on-Chip (SoC) architectures. Expression is used to generate a CAS and a compiler which
optimizes for Instruction Level Parallelism (ILP). The toolchain is able to generate synthesizable hardware and has
extensive support for verification using model checking. Expression is a mixed PDL. The main focus is on a low level
structural specification like ports, connections, pipeline or caches. The behavioral aspects are described in operation
specifications which include operands, behavior and encoding. Mappings from a sequence of operations to another
sequence of operations can be specified to ease compiler generation and optimization. In comparison with Expression
VADL has a more user friendly syntax and specifies the MiA at a higher abstraction level leading to more concise
and maintainable specifications. In the current state of implementation OpenVADL does not have the same extensive
verification support as Expression.

nML [46, 92] is a structural PDL with an attributed grammar at its core. The grammar describes the processor’s
instructions. The instructions’ semantics are specified with an action attribute. Further attributes carry cycle count
and stalling information. A skeleton specifies structural elements carrying the processor state and transitions between
elements. The first language versions did not support pipelining, which was later added to the action attribute. From a
nML description the user can generate a compiler, a CAS, a low level hardware description and a test-program generator.
nML suffers from the intermingling of ISA and MiA leading to complex specifications which are difficult to maintain, a
problem which VADL avoids by the strict separation of ISA and MiA.

The syntax of ISDL [57–59] is based on an early version of nML which has been extended. ISDL is a PDL specializing
in the description of VLIW processor architectures. It is a behavioral PDL and emphasizes the description of instruction
semantics. Descriptions in ISDL can be used to generate an assembler, a compiler or a simulator. In comparison with
VADL ISDL has the same shortcomings as nML.

TIE, the Tensilica Instruction Extension language has been designed to support the comfortable extension of the
instruction set of the Xtensa processor [53, 121]. The basic instruction set and architectural state is fixed and cannot be
changed. TIE is based on a subset of the hardware description language Verilog. Because of that the specification is
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at a lower abstraction level in comparison to VADL. A compiler, assembler and linker based on the GNU toolchain is
generated. The added instructions can be accessed as intrinsics only. Simulation is done on RTL. VADL is more powerful
as it can describe any processor architecture and not only extensions of a single architecture.

The ISAC (Instruction Set Architecture C) language is a mixed PDL which was largely inspired by LISA and developed
at the Brno University of Technology [104]. Similar to LISA the behavior is specified in a subset of C. The design
and implementation of a fast cycle accurate interpreted simulator based on ISAC and using finite state machines for
simulation is presented in [105]. Additionally compiled and JIT compiled simulators have been developed. To avoid
the duplication of the behavior semantics for the compiler generation, it is extracted from the instructions’ assembly
grammar. The details of the automatic generation of a C compiler from an ISAC specification are described in [67]. In
VADL there is no need for instruction extraction, as there is an explicit definition for each instruction.

With the experience of the ISAC language CodAL has been developed [103] and commercialized by the company
Codasip Ltd. [6]. An example of the specification of an instruction for a RISC-V extension is available in [9]. There is no
further information publicly available on the details of CodAL.

ISADL is an encoding description language for VLIW architectures [125]. Its main purpose is to specify or au-
tomatically generate an encoding from a specification of the requirements of the encoding. Requirements can be
the set of functional units, the set of encoding fields, the number of instructions, and the default instructions. An
optimizing assembler can be generated from the encoding specification by specifying the syntax and matching by
regular expressions. The generation of an instruction set simulator is mentioned, but there is no information available
on how the semantic of the instructions’ behavior is specified, probably code in some high level language like C++. The
language is very verbose and the specifications are not easy to understand. In contrast to VADL, neither a compiler nor
hardware can be generated.

ArchC [14] is an extension to SystemC [97]. Both languages are embedded as a library in the C++ programming
language and thus are embedded Domain Specific Languages (eDSLs). While it is possible to describe a processor in
SystemC, the description is at such a low level that it is impossible to derive structure, semantics of instructions or
assembly language representation. ArchC provides a higher level of abstraction and adds this capability. The behavior
for every instruction including all MiA details like program counter updates and distribution to pipeline stages is
described in SystemC (C++). This intermingling of ISA and MiA leads to huge specifications which are hard to adapt to
changes in the MiA. An interpreting and a compiled simulator can be generated from an ArchC specification. If the
instructions’ behavior descriptions include all MiA details, the simulator is cycle accurate. Additionally, an assembler
and linker for the GNU toolchain can be automatically generated. Later compiler generation was added [12]. Because
the instruction behavior is not suited for compiler generation, an additional semantic specification in an additional
compiler semantic language has to be added. This duplication of the specification will lead to specification errors. VADL
does not have any of the above described deficiencies.

The MAchine Markup Language MAML has been designed for rapid development of application specific instruction
set processors with focus on multiprocessor systems [47, 92]. The syntax is based on XML, but specifications can be
created using a graphical integrated development environment. Instruction behaviors are specified in C++, necessitating
an additional specification of the patterns for the compiler’s instruction selector. A mixed compiled/interpreted simulator
is automatically generated. The machine model for the compiler’s optimizer and scheduler is automatically extracted
from the architecture specification. Synthesizable hardware is generated. VADL has a more readable syntax than MAML
and does not need graphical editing. In contrast to MAML, VADL can generate the instruction selector of the compiler
automatically and has no redundant specifications.
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MIMOLA was the first PDL to be developed [88, 92]. It is a structural PDL with PASCAL-inspired syntax and a focus
on hardware synthesis, generating a low-level hardware description. Despite the purely structural processor description
it is possible to extract instructions’ data flow graphs. These are used in the MSSQ compiler which is described in detail
in [81]. A distinguishing feature is the possibility to provide typical workloads with the processor description. These
are used for profiling and optimization of the resulting hardware. VADL abstained from a structural specification as
with changing micro architectures the whole processor specification has to be rewritten.

Additional languages are described in the book by Prabhat Mishra and Nikil Dutt [92].

Retargetable Compilers

An important artifact generated by VADL is the compiler. It is generated by VADL’s LCB.
Principles of compilers are described in [7], including retargetability. [82] describes retargetable compilers in the

context of embedded systems. This subsection’s organization is in large parts similar to [54]. See Section 2 for a short
explanation of retargetable compilers.

An early example of a retargetable compiler is described in [49]. A very well established open source compiler that
supports a great number of target architectures is GCC [116].

Another frequently used compiler is LLVM [77]. It was designed with retargetability as a central aspect. This is evident
by the use of a common and well-defined IR which is suitable for a wide range of transformations and optimizations.
LLVM uses the TableGen language to succinctly specify target specific properties, further simplifying retargetability.
TableGen is also used to specify the available instruction for a target architecture. The VADL LCB emits a compiler as
an LLVM target. Therefore an important task of LCB is the generation of the relevant TableGen patterns for instruction
selection.

Simulation

This subsection is organized in large parts similar to [111]. See Section 2 for a short explanation of simulation in the
context of VADL. A simulator is particularly useful during the development phase of a processor when actual hardware
is not yet available because the architecture is still subject to change as described in [26]. [92] mentions a simulator’s
usefulness during design space exploration.

There are two main goals when constructing a simulator: Accuracy and performance. Accuracy is a measure of how
similarly the simulator behaves to the system it simulates, i.e. how well the metrics reported by the simulator coincide
with a real run of the simulated system. Performance is a measure of how many computational resources are necessary
to execute the simulation. There exists a trade-off between these two goals as a more accurate simulation in general
requires greater computational resources. [126] and [127] investigate these trade-offs.

[51] has shown that a simulator enhanced with a graphical user interface can serve as a valuable educational tool to
teach the inner workings of a processor. An educational application is also a planned future use of VADL.

Another important way to improve the performance of a simulator is caching. [17] shows how caching of decoded
instructions that are executed multiple times can be done in a threaded code interpreter. A similar implementation
of this caching scheme developed for the SimICS simulator [87] is described in [86]. Also the ISS generated by VADL
follows a similar caching scheme. The method described in [107] caches not only decoded instructions but also fetched
values to improve simulator performance. Caching techniques found in JIT compilers can also be adapted for simulators,
like the one found in [83]. These are not implemented in the VADL ISS, but are possible extensions.
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Self-modifying code often hampers caching in a simulator. [72] investigates strategies to handle self-modifying code
for ISS. The VADL ISS uses the approach described as value checking.

Another aspect to consider in a simulator is the handling of system calls to the operating system’s kernel. [26]
describes two common ways to provide this functionality. One is User Mode Emulation (UME), also known as delegation.
It forwards system calls from the simulated program to the host’s operating system, as implemented for example in
[13]. The other is full system simulation, which also simulates operating system functionality inside the simulator. Full
system simulation is more complex to implement than UME, as it has to consider more components and properties of
the guest system, like input/output, access to devices or the memory model, as described in [120]. [29] shows that this
technique achieves a higher degree of precision modeling the behavior of the examined processor. QEMU [19] is capable
of both modes. At the moment both the VADL ISS and the OpenVADL ISS support UME, but not full system simulation.
Since the OpenVADL ISS targets QEMU, we expect its extension to full system emulation to be straight forward.

Interpretive simulation is the most basic simulation model. [73] compares a classical interpreter with a direct threaded
code interpreter [18] and an indirect threaded code interpreter [36]. [41] also compares threading models and [42] adds
findings about reducing branch mispredictions. The VADL ISS is a DTC interpreter.

Compiled simulation is described in the article [91]. [16] further improves this approach, especially with respect
to code size. [108] shows an extension that is able to detect code changes, thus offering the possibility to handle
self-modifying code. [44] describes a CAS based on compiling basic blocks to improve performance. It is also capable of
switching between interpreted mode and compiled mode.

DBT was first used in Shade [31] an ISS and profiler. The OpenVADL ISS targets QEMU [19], which is based on DBT.
gem5 is an open source computer simulator that has evolved over the years [22, 85] and was extended to model a

processor on the RTL [84]. It was used in the evaluation of VADL.
In order to reduce the computational complexity of a CAS there exist cycle approximate approaches like [68] or [48].

These approaches reduce accuracy to gain execution speed. A cycle approximate simulator based on QEMU is planned
for OpenVADL.

HDLs

In the context of VADL a HDL is a domain specific language used to specify digital electronic circuits. These circuits
can be instruction set processors, as in VADL, but also any other kind of ASIC. Compared to a PDL, a HDL is more
general, but cannot use domain specific abstractions because of this generality.

The abstraction level on which HDLs operate is called the RTL. See the background section 2 for a short explanation.
The step from the RTL to the concrete logic gates (the netlist), the layout and routing of the physical components and
connections that make up the electronic circuit, is realized with synthesis tools. Many of these tools are commercial
closed-source products, however Yosys [123] is an open source synthesis suite. It can target both FPGAs and ASICs.
The algorithms and basic principles for RTL synthesis are described in [56]. VADL’s hardware generator outputs code
on RTL level, and can be further processed by such synthesis tools.

The most frequently used HDLs are VHDL [2] and Verilog [1]. These languages are the industry standard. Yosys uses
Verilog as its input. An extension to Verilog is SystemVerilog [3], which enhances the language with better verification
capabilities, user-friendly syntax features and better object oriented abstractions.

Often HDLs are embedded as specialized libraries in general purpose programming languages. One frequently
used example is SystemC [97]. It is embedded in C++ and offers object oriented features and also good support for
simulation. The HDL used in the VADL project is Chisel [15]. It is embedded in the Scala programming language and
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naturally supports a functional programming style provided by the host language. Chisel is translated to Verilog. See
the background section 2 for a short summary.

7 FUTUREWORK

The original VADL implementation and OpenVADL are still research prototypes. Therefore, there are many different
areas to expand the research and to advance OpenVADL to achieve production quality.

The core VADL language design is quite complete. We plan to extend VADL to support heterogeneous multiprocessor
systems. This requires the specification of bus protocols. Currently, VADL relies on co-simulation and trace comparison
to verify the specification and the generated artifacts. We want to extend the language with further verification
capabilities.

In addition to extensions of the language, there are a lot of opportunities to improve the generators. Primarily it is
necessary that the generators support the entire specification language. This includes support for floating point.

For the compiler generator, we are currently working on efficient code generation for instructions with multiple
results and automatic translation of nested loops to tensor instructions. In order to convincingly demonstrate the
flexibility of the GCB it is necessary to implement generators for JIT compilers and the GNU compiler collection and its
toolchain.

For the simulator generators, we are currently working on support for VLIW architectures. Further optimizations
to reduce the overhead in the current CAS are essential. This will be accomplished by using QEMU as the basis for
OpenVADL’s CAS and by performing statically determinable computations during JIT compilation.

We are working on accurate cache and memory simulation. This includes cache protocols, memory consistency
models, atomic instructions and address translation including Translation Lookaside Buffer (TLB) support. These parts
have already been implemented in the original VADL implementation [63] and will be added to OpenVADL.

Finally, the microarchitecture synthesis has to be extended to support all VADL logic elements such as reservation
stations, reorder buffers, load/store queues, and fetch buffers. Further optimizations are necessary to generate competitive
hardware.

8 CONCLUSION

This article presented VADL and its generators. The powerful language constructs in VADL allow concise and compre-
hensible specifications of the instruction set architecture, the microarchitecture and the application binary interface of
processor architectures. Automatic generation of a toolchain including assemblers, compilers, linkers, functional and
cycle accurate instruction set simulators and synthesizable hardware enables fast and efficient DSE of ASIPs. VADL has
been successfully used to specify various common instruction set architectures like RISC-V, MIPS, Arm AArch32, Arm
AArch64, Arm NEON, Texas Instruments TIC64x and to specify a large variation of scalar and out-of-order superscalar
microarchitectures. The VADL research prototype is stable enough to employ the generated tools in the exploration of
processor architectures. Additional information is available at the web page of VADL.
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APPENDIX A

RISC-V RV32I example

This appendix shows a complete formal specification of the RISC-V RV32I instruction set architecture. This specification
contains all the necessary instructions and definitions to generate an ISS as it was used in the evaluation part of this
article.

1 in s t ruc t ion se t arch i tec ture RV32I = {
2

3 using Byte = B i t s < 8> / / 8 b i t Byte
4 using Hal f = B i t s <16 > / / 16 b i t h a l f word type
5 using Word = B i t s <32 > / / 32 b i t word type
6 using Index = B i t s < 5> / / 5 b i t r e g i s t e r index type f o r 32 r e g i s t e r s
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7 using SIntR = SInt <32 > / / r e g i s t e r word s i gned type
8 using UIntR = UInt <32 > / / r e g i s t e r word uns igned type
9 using UInt5 = UInt < 5> / / 5 b i t uns igned s h i f t ammount
10

11 [X ( 0 ) = 0 ] / / r e g i s t e r with index 0 a lways i s 0
12 r eg i s t e r f i l e X : Index −> Word / / i n t e g e r r e g i s t e r f i l e with 32 r e g i s t e r s o f 32 b i t s
13 program counter PC : Word / / PC po i n t s to the s t a r t o f the c u r r e n t i n s t r u c t i o n
14 memory MEM : Word −> Byte / / byte addre s sed memory
15

16 format Rtype : Word = / / Rtype r e g i s t e r 3 operand i n s t r u c t i o n format
17 { f un c t 7 : B i t s <7 > / / [ 3 1 . . 2 5 ] 7 b i t f u n c t i o n code
18 , r s 2 : Index / / [ 2 4 . . 2 0 ] 2nd sou r ce r e g i s t e r index / shamt
19 , r s 1 : Index / / [ 1 9 . . 1 5 ] 1 s t s ou r c e r e g i s t e r index
20 , f un c t 3 : B i t s <3 > / / [ 1 4 . . 1 2 ] 3 b i t f u n c t i o n code
21 , rd : Index / / [ 1 1 . . 7 ] d e s t i n a t i o n r e g i s t e r index
22 , opcode : B i t s <7 > / / [ 6 . . 0 ] 7 b i t o p e r a t i o n code
23 , shamt = r s 2 as UInt / / 5 b i t uns igned s h i f t ammount
24 }
25 format I t y p e : Word = / / I t y p e immediate i n s t r u c t i o n format
26 { imm : B i t s <12 > / / [ 3 1 . . 2 0 ] 12 b i t immediate va l u e
27 , r s 1 : Index / / [ 1 9 . . 1 5 ] sou r c e r e g i s t e r index
28 , f un c t 3 : B i t s <3 > / / [ 1 4 . . 1 2 ] 3 b i t f u n c t i o n code
29 , rd : Index / / [ 1 1 . . 7 ] d e s t i n a t i o n r e g i s t e r index
30 , opcode : B i t s <7 > / / [ 6 . . 0 ] 7 b i t o p e r a t i o n code
31 , immS = imm as SIntR / / s i gn extended immediate va l u e
32 }
33 format Utype : Word = / / Utype upper immediate i n s t r u c t i o n format
34 { imm : B i t s <20 > / / [ 3 1 . . 1 2 ] 20 b i t immediate va l u e
35 , rd : Index / / [ 1 1 . . 7 ] d e s t i n a t i o n r e g i s t e r index
36 , opcode : B i t s <7 > / / [ 6 . . 0 ] 7 b i t o p e r a t i o n code
37 , immU = ( imm as UIntR ) << 12 / / s h i f t e d uns igned immediate va l u e
38 }
39 format Stype : Word = / / Stype s t o r e i n s t r u c t i o n format
40 { imm [ 3 1 . . 2 5 , 1 1 . . 7 ] / / 12 b i t immediate va l u e
41 , r s 2 [ 2 4 . . 2 0 ] / / 2nd sou r c e r e g i s t e r index
42 , r s 1 [ 1 9 . . 1 5 ] / / 1 s t s ou r c e r e g i s t e r index
43 , f un c t 3 [ 1 4 . . 1 2 ] / / 3 b i t f u n c t i o n code
44 , opcode [ 6 . . 0 ] / / 7 b i t o p e r a t i o n code
45 , immS = imm as SIntR / / s i gn extended immediate va l u e
46 }
47 format Btype : Word = / / Btype branch i n s t r u c t i o n format
48 { imm [ 3 1 , 7 , 3 0 . . 2 5 , 1 1 . . 8 ] / / 12 b i t immediate va l u e
49 , r s 2 [ 2 4 . . 2 0 ] / / 2nd sou r c e r e g i s t e r index
50 , r s 1 [ 1 9 . . 1 5 ] / / 1 s t s ou r c e r e g i s t e r index
51 , f un c t 3 [ 1 4 . . 1 2 ] / / 3 b i t f u n c t i o n code
52 , opcode [ 6 . . 0 ] / / 7 b i t o p e r a t i o n code
53 , immS = ( imm as SIntR ) << 1 / / s i gn extended and s h i f t e d immediate va l u e immS
54 }
55 format J t y p e : Word = / / J t y p e jump and l i n k i n s t r u c t i o n format
56 { imm [ 3 1 , 1 9 . . 1 2 , 2 0 , 3 0 . . 2 1 ] / / 20 b i t immediate va l u e
57 , rd [ 1 1 . . 7 ] / / d e s t i n a t i o n r e g i s t e r index
58 , opcode [ 6 . . 0 ] / / 7 b i t o p e r a t i o n code
59 , immS = ( imm as SIntR ) << 1 / / s i gn extended and s h i f t e d immediate va l u e immS
60 }
61

62 model R t yp e I n s t r ( name : Id , op : BinOp , f u3 : Bin , f u7 : Bin , l h sTy : Id , rhsTy : Id ) : IsaDefs = {
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63 in s t ruc t ion $name : Rtype = / / 3 r e g i s t e r operand i n s t r u c t i o n s
64 X ( rd ) : = ( ( X ( r s 1 ) as $ lhsTy ) $op ( X ( r s 2 ) as $rhsTy ) ) as B i t s
65 encoding $name = { opcode = 0 b011 ' 0 0 1 1 , f un c t 3 = $fu3 , f un c t 7 = $ fu7 }
66 assembly $name = (mnemonic , " " , r eg i s t e r ( rd ) , " , " , r eg i s t e r ( r s 1 ) , " , " , r eg i s t e r ( r s 2 ) )
67 }
68 model I S h f t I n s t r ( name : Id , op : BinOp , f un c t 3 : Bin , f un c t 7 : Bin , l h sTy : Id ) : IsaDefs = {
69 in s t ruc t ion $name : Rtype = / / s h i f t immediate i n s t r u c t i o n s
70 X ( rd ) : = ( X ( r s 1 ) as $ lhsTy ) $op shamt
71 encoding $name = { opcode = 0 b001 ' 0 0 1 1 , f un c t 3 = $ func t3 , f un c t 7 = $ func t 7 }
72 assembly $name = (mnemonic , " " , r eg i s t e r ( rd ) , " , " , r eg i s t e r ( r s 1 ) , " , " , decimal ( r s 2 ) )
73 }
74 model I t y p e I n s t r ( name : Id , op : BinOp , f un c t 3 : Bin , exTy : Id ) : IsaDefs = {
75 in s t ruc t ion $name : I t y p e = / / immediate i n s t r u c t i o n s
76 X ( rd ) : = ( ( X ( r s 1 ) as $exTy ) $op ( immS as $exTy ) ) as Word
77 encoding $name = { opcode = 0 b001 ' 0 0 1 1 , f un c t 3 = $ func t 3 }
78 assembly $name = (mnemonic , " " , r eg i s t e r ( rd ) , " , " , r eg i s t e r ( r s 1 ) , " , " , decimal ( imm ) )
79 }
80 model Utype I n s t r ( name : Id , opcode : Bin , rhsEx : Ex ) : IsaDefs = {
81 in s t ruc t ion $name : Utype = / / upper immediate i n s t r u c t i o n s
82 X ( rd ) : = $ rhsEx
83 encoding $name = { opcode = $opcode }
84 assembly $name = (mnemonic , " " , r eg i s t e r ( rd ) , " , " , hex ( imm ) )
85 }
86 model L t y p e I n s t r ( name : Id , f un c t 3 : Bin , memEx : CallEx , exTy : Id ) : IsaDefs = {
87 in s t ruc t ion $name : I t y p e = / / l oad i n s t r u c t i o n s
88 l e t addr = X ( r s 1 ) + immS in
89 X ( rd ) : = $memEx as $exTy
90 encoding $name = { opcode = 0 b000 ' 0 0 1 1 , f un c t 3 = $ func t 3 }
91 assembly $name = (mnemonic , " " , r eg i s t e r ( rd ) , " , " , decimal ( imm ) , " ( " , r eg i s t e r ( r s 1 ) , " ) " )
92 }
93 model S t y p e I n s t r ( name : Id , f un c t 3 : Bin , memEx : CallEx , exTy : Id ) : IsaDefs = {
94 in s t ruc t ion $name : Stype = / / s t o r e i n s t r u c t i o n s
95 l e t addr = X ( r s 1 ) + immS in
96 $memEx : = X ( r s 2 ) as $exTy
97 encoding $name = { opcode = 0 b010 ' 0 0 1 1 , f un c t 3 = $ func t 3 }
98 assembly $name = (mnemonic , " " , r eg i s t e r ( r s 2 ) , " , " , decimal ( imm ) , " ( " , r eg i s t e r ( r s 1 ) , " ) " )
99 }
100 model B t yp e I n s t r ( name : Id , r e lOp : BinOp , f un c t 3 : Bin , l h sTy : Id ) : IsaDefs = {
101 in s t ruc t ion $name : Btype = / / c o n d i t i o n a l branch i n s t r u c t i o n s
102 i f ( X ( r s 1 ) as $ lhsTy ) $re lOp X ( r s 2 ) then
103 PC : = PC + immS
104 encoding $name = { opcode = 0 b110 ' 0 0 1 1 , f un c t 3 = $ func t 3 }
105 assembly $name = (mnemonic , " " , r eg i s t e r ( r s 1 ) , " , " , r eg i s t e r ( r s 2 ) , " , " , decimal ( imm ) )
106 }
107 model J L i n k I n s t r ( name : Id , i Fo rmat : Id , r eg : Ex , opcode : Encs , asm : Ex ) : IsaDefs = {
108 in s t ruc t ion $name : $ iFormat = / / jump and l i n k ( r e g i s t e r )
109 l e t r e t a dd r = PC . nex t in {
110 PC : = ( ( $ r eg + immS ) as UInt ) & 0 x f f f f ' f f f e / / $ r eg cou ld be equa l to X ( rd )
111 X ( rd ) : = r e t add r / / when r s 1 i s equa l to rd
112 }
113 encoding $name = { $opcode }
114 assembly $name = (mnemonic , " " , r eg i s t e r ( rd ) , " , " , decimal ( imm ) , $asm )
115 }
116

117 $R t yp e I n s t r (ADD ; + ; 0 b000 ; 0 b000 ' 0 0 0 0 ; B i t s ; B i t s ) / / add
118 $R t yp e I n s t r ( SUB ; − ; 0 b000 ; 0 b010 ' 0 0 0 0 ; B i t s ; B i t s ) / / s u b t r a c t
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119 $R t yp e I n s t r (AND ; & ; 0 b111 ; 0 b000 ' 0 0 0 0 ; B i t s ; B i t s ) / / and
120 $R t yp e I n s t r (OR ; | ; 0 b110 ; 0 b000 ' 0 0 0 0 ; B i t s ; B i t s ) / / or
121 $R t yp e I n s t r (XOR ; ^ ; 0 b100 ; 0 b000 ' 0 0 0 0 ; B i t s ; B i t s ) / / e x c l u s i v e or
122 $R t yp e I n s t r ( SLT ; < ; 0 b010 ; 0 b000 ' 0 0 0 0 ; S I n t ; S I n t ) / / s e t l e s s than
123 $R t yp e I n s t r ( SLTU ; < ; 0 b011 ; 0 b000 ' 0 0 0 0 ; UInt ; UInt ) / / s e t l e s s than uns igned
124 $R t yp e I n s t r ( SLL ; << ; 0 b001 ; 0 b000 ' 0 0 0 0 ; UInt ; UInt5 ) / / s h i f t l e f t l o g i c a l
125 $R t yp e I n s t r ( SRL ; >> ; 0 b101 ; 0 b000 ' 0 0 0 0 ; UInt ; UInt5 ) / / s h i f t r i g h t l o g i c a l
126 $R t yp e I n s t r ( SRA ; >> ; 0 b101 ; 0 b010 ' 0 0 0 0 ; S I n t ; UInt5 ) / / s h i f t r i g h t a r i t hme t i c
127

128 $ I S h f t I n s t r ( SLLI ; << ; 0 b001 ; 0 b000 ' 0 0 0 0 ; UInt ) / / s h i f t l e f t l o g i c a l immediate
129 $ I S h f t I n s t r ( SRLI ; >> ; 0 b101 ; 0 b000 ' 0 0 0 0 ; UInt ) / / s h i f t r i g h t l o g i c a l immediate
130 $ I S h f t I n s t r ( SRAI ; >> ; 0 b101 ; 0 b010 ' 0 0 0 0 ; S I n t ) / / s h i f t r i g h t a r i t hme t i c immediate
131

132 $ I t y p e I n s t r ( ADDI ; + ; 0 b000 ; S I n t ) / / add immediate
133 $ I t y p e I n s t r ( ANDI ; & ; 0 b111 ; S I n t ) / / and immediate
134 $ I t y p e I n s t r ( ORI ; | ; 0 b110 ; S I n t ) / / or immediate
135 $ I t y p e I n s t r ( XORI ; ^ ; 0 b100 ; S I n t ) / / e x c l u s i v e or immediate
136 $ I t y p e I n s t r ( SLTI ; < ; 0 b010 ; S I n t ) / / s e t l e s s than immediate
137 $ I t y p e I n s t r ( SLTIU ; < ; 0 b011 ; UInt ) / / s e t l e s s than immediate uns igned
138

139 $U type I n s t r ( AUIPC ; 0 b001 ' 0 1 1 1 ; PC + immU) / / add upper immediate to PC
140 $U type I n s t r ( LUI ; 0 b011 ' 0 1 1 1 ; immU) / / l oad upper immediate
141

142 $ L t y p e I n s t r ( LB ; 0 b000 ; MEM ( addr ) ; S In tR ) / / l oad byte s i gned
143 $ L t y p e I n s t r ( LBU ; 0 b100 ; MEM ( addr ) ; UIntR ) / / l oad byte uns igned
144 $ L t y p e I n s t r ( LH ; 0 b001 ; MEM<2 >( addr ) ; S In tR ) / / l oad h a l f word s i gned
145 $ L t y p e I n s t r (LHU ; 0 b101 ; MEM<2 >( addr ) ; UIntR ) / / l oad h a l f word uns igned
146 $ L t y p e I n s t r (LW ; 0 b010 ; MEM<4 >( addr ) ; S In tR ) / / l oad word
147 $ S t y p e I n s t r ( SB ; 0 b000 ; MEM ( addr ) ; Byte ) / / s t o r e byte
148 $ S t y p e I n s t r ( SH ; 0 b001 ; MEM<2 >( addr ) ; Ha l f ) / / s t o r e h a l f word
149 $ S t y p e I n s t r (SW ; 0 b010 ; MEM<4 >( addr ) ; Word ) / / s t o r e word
150

151 $B t yp e I n s t r (BEQ ; = ; 0 b000 ; B i t s ) / / branch equa l
152 $B t yp e I n s t r (BNE ; ! = ; 0 b001 ; B i t s ) / / branch not equa l
153 $B t yp e I n s t r (BGE ; >= ; 0 b101 ; S I n t ) / / branch g r e a t e r or equa l
154 $B t yp e I n s t r (BGEU ; >= ; 0 b111 ; UInt ) / / branch g r e a t e r or equa l uns igned
155 $B t yp e I n s t r ( BLT ; < ; 0 b100 ; S I n t ) / / branch l e s s than
156 $B t yp e I n s t r ( BLTU ; < ; 0 b110 ; UInt ) / / branch l e s s than uns igned
157

158 $ J L i n k I n s t r ( JAL ; J t y p e ; PC ; opcode = 0 b110 ' 1 1 1 1 ; " " ) / / jump and l i n k
159 $ J L i n k I n s t r ( JALR ; I t y p e ; X ( r s 1 ) ; opcode = 0 b110 ' 0 1 1 1 , / / jump and l i n k r e g i s t e r
160 f un c t 3 = 0 b000 ; ( " ( " , r eg i s t e r ( r s 1 ) , " ) " ) )
161 }

Listing 34. Complete RISC-V RV32I ISA specification
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